summaryrefslogtreecommitdiff
path: root/common/lz_compress_tmpl.c
blob: be1b941e86d240620cf25947355e623a4dedfac8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*

 Copyright 2009 Red Hat, Inc. and/or its affiliates.

 This program is licensed to you under the GNU General Public License,
 version 2 or (at your option) any later version published by the Free
 Software Foundation.  See the file COPYING for details.

 There is NO WARRANTY for this software, not even the implied
 warranties of MERCHANTABILITY, NONINFRINGEMENT, or FITNESS FOR A
 PARTICULAR PURPOSE.

 This file incorporates work covered by the following copyright and
 permission notice:
   Copyright (C) 2007 Ariya Hidayat (ariya@kde.org)
   Copyright (C) 2006 Ariya Hidayat (ariya@kde.org)
   Copyright (C) 2005 Ariya Hidayat (ariya@kde.org)

   Permission is hereby granted, free of charge, to any person
   obtaining a copy of this software and associated documentation
   files (the "Software"), to deal in the Software without
   restriction, including without limitation the rights to use, copy,
   modify, merge, publish, distribute, sublicense, and/or sell copies
   of the Software, and to permit persons to whom the Software is
   furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be
   included in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
   SOFTWARE.

*/

#define DJB2_START 5381;
#define DJB2_HASH(hash, c) (hash = ((hash << 5) + hash) ^ (c)) //|{hash = ((hash << 5) + hash) + c;}

/*
    For each pixel type the following macros are defined:
    PIXEL                         : input type
    FNAME(name)
    ENCODE_PIXEL(encoder, pixel) : writing a pixel to the compressed buffer (byte by byte)
    SAME_PIXEL(pix1, pix2)         : comparing two pixels
    HASH_FUNC(value, pix_ptr)    : hash func of 3 consecutive pixels
*/

#ifdef LZ_PLT
#define PIXEL one_byte_pixel_t
#define FNAME(name) lz_plt_##name
#define ENCODE_PIXEL(e, pix) encode(e, (pix).a)   // gets the pixel and write only the needed bytes
                                                  // from the pixel
#define SAME_PIXEL(pix1, pix2) ((pix1).a == (pix2).a)
#define HASH_FUNC(v, p) {  \
    v = DJB2_START;        \
    DJB2_HASH(v, p[0].a);  \
    DJB2_HASH(v, p[1].a);  \
    DJB2_HASH(v, p[2].a);  \
    v &= HASH_MASK;        \
    }
#endif

#ifdef LZ_RGB_ALPHA
//#undef LZ_RGB_ALPHA
#define PIXEL rgb32_pixel_t
#define FNAME(name) lz_rgb_alpha_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).pad);}
#define SAME_PIXEL(pix1, pix2) ((pix1).pad == (pix2).pad)
#define HASH_FUNC(v, p) {    \
    v = DJB2_START;          \
    DJB2_HASH(v, p[0].pad);  \
    DJB2_HASH(v, p[1].pad);  \
    DJB2_HASH(v, p[2].pad);  \
    v &= HASH_MASK;          \
    }
#endif


#ifdef LZ_RGB16
#define PIXEL rgb16_pixel_t
#define FNAME(name) lz_rgb16_##name
#define GET_r(pix) (((pix) >> 10) & 0x1f)
#define GET_g(pix) (((pix) >> 5) & 0x1f)
#define GET_b(pix) ((pix) & 0x1f)
#define ENCODE_PIXEL(e, pix) {encode(e, (pix) >> 8); encode(e, (pix) & 0xff);}

#define HASH_FUNC(v, p) {                 \
    v = DJB2_START;                       \
    DJB2_HASH(v, p[0] & (0x00ff));        \
    DJB2_HASH(v, (p[0] >> 8) & (0x007f)); \
    DJB2_HASH(v, p[1]&(0x00ff));          \
    DJB2_HASH(v, (p[1] >> 8) & (0x007f)); \
    DJB2_HASH(v, p[2] & (0x00ff));        \
    DJB2_HASH(v, (p[2] >> 8) & (0x007f)); \
    v &= HASH_MASK;                       \
}
#endif

#ifdef LZ_RGB24
#define PIXEL rgb24_pixel_t
#define FNAME(name) lz_rgb24_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#endif

#ifdef LZ_RGB32
#define PIXEL rgb32_pixel_t
#define FNAME(name) lz_rgb32_##name
#define ENCODE_PIXEL(e, pix) {encode(e, (pix).b); encode(e, (pix).g); encode(e, (pix).r);}
#endif


#if  defined(LZ_RGB24) || defined(LZ_RGB32)
#define GET_r(pix) ((pix).r)
#define GET_g(pix) ((pix).g)
#define GET_b(pix) ((pix).b)
#define HASH_FUNC(v, p) {    \
    v = DJB2_START;          \
    DJB2_HASH(v, p[0].r);    \
    DJB2_HASH(v, p[0].g);    \
    DJB2_HASH(v, p[0].b);    \
    DJB2_HASH(v, p[1].r);    \
    DJB2_HASH(v, p[1].g);    \
    DJB2_HASH(v, p[1].b);    \
    DJB2_HASH(v, p[2].r);    \
    DJB2_HASH(v, p[2].g);    \
    DJB2_HASH(v, p[2].b);    \
    v &= HASH_MASK;          \
    }
#endif

#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
#define SAME_PIXEL(p1, p2) (GET_r(p1) == GET_r(p2) && GET_g(p1) == GET_g(p2) && \
                            GET_b(p1) == GET_b(p2))

#endif

#define PIXEL_ID(pix_ptr, seg_ptr) (pix_ptr - ((PIXEL *)seg_ptr->lines) + seg_ptr->size_delta)

// when encoding, the ref can be in previous segment, and we should check that it doesn't
// exceeds its bounds.
// TODO: optimization: when only one chunk exists or when the reference is in the same segement,
//       don't make checks if we reach end of segements
// TODO: optimize to continue match between segments?
// TODO: check hash function
// TODO: check times

/* compresses one segment starting from 'from'.*/
static void FNAME(compress_seg)(Encoder *encoder, LzImageSegment *seg, PIXEL *from, int copied)
{
    const PIXEL *ip = from;
    const PIXEL *ip_bound = (PIXEL *)(seg->lines_end) - BOUND_OFFSET;
    const PIXEL *ip_limit = (PIXEL *)(seg->lines_end) - LIMIT_OFFSET;
    HashEntry    *hslot;
    int hval;
    int copy = copied;

    if (copy == 0) {
        encode_copy_count(encoder, MAX_COPY - 1);
    }


    while (LZ_EXPECT_CONDITIONAL(ip < ip_limit)) {   // TODO: maybe change ip_limit and enabling
                                                     //       moving to the next seg
        const PIXEL            *ref;
        const PIXEL            *ref_limit;
        size_t distance;

        /* minimum match length */
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
        size_t len = 3;
#elif defined(LZ_RGB16)
        size_t len = 2;
#else
        size_t len = 1;
#endif
        /* comparison starting-point */
        const PIXEL            *anchor = ip;



        // TODO: RLE without checking if not first byte.
        // TODO: optimize comparisons

        /* check for a run */ // TODO for RGB we can use less pixels
        if (LZ_EXPECT_CONDITIONAL(ip > (PIXEL *)(seg->lines))) {
            if (SAME_PIXEL(ip[-1], ip[0]) && SAME_PIXEL(ip[0], ip[1]) && SAME_PIXEL(ip[1], ip[2])) {
                distance = 1;
                ip += 3;
                ref = anchor + 2;
                ref_limit = (PIXEL *)(seg->lines_end);
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
                len = 3;
#endif
                goto match;
            }
        }

        /* find potential match */
        HASH_FUNC(hval, ip);
        hslot = encoder->htab + hval;
        ref = (PIXEL *)(hslot->ref);
        ref_limit = (PIXEL *)(hslot->image_seg->lines_end);

        /* calculate distance to the match */
        distance = PIXEL_ID(anchor, seg) - PIXEL_ID(ref, hslot->image_seg);

        /* update hash table */
        hslot->image_seg = seg;
        hslot->ref = (uint8_t *)anchor;

        /* is this a match? check the first 3 pixels */
        if (distance == 0 || (distance >= MAX_FARDISTANCE)) {
            goto literal;
        }
        /* check if the hval key identical*/
        // no need to check ref limit here because the word size in the htab is 3 pixels
        if (!SAME_PIXEL(*ref, *ip)) {
            ref++;
            ip++;
            goto literal;
        }
        ref++;
        ip++;

        /* minimum match length for rgb16 is 2 and for plt and alpha is 3 */
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA) || defined(LZ_RGB16)
        if (!SAME_PIXEL(*ref, *ip)) {
            ref++;
            ip++;
            goto literal;
        }
        ref++;
        ip++;
#endif

#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
        if (!SAME_PIXEL(*ref, *ip)) {
            ref++;
            ip++;
            goto literal;
        }
        ref++;
        ip++;
#endif
        /* far, needs at least 5-byte match */
        if (distance >= MAX_DISTANCE) {
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
            if (ref >= (ref_limit - 1)) {
                goto literal;
            }
#else
            if (ref > (ref_limit - 1)) {
                goto literal;
            }
#endif
            if (!SAME_PIXEL(*ref, *ip)) {
                ref++;
                ip++;
                goto literal;
            }
            ref++;
            ip++;
            len++;
#if defined(LZ_PLT) || defined(LZ_RGB_ALPHA)
            if (!SAME_PIXEL(*ref, *ip)) {
                ref++;
                ip++;
                goto literal;
            }
            ref++;
            ip++;
            len++;
#endif
        }
match:        // RLE or dictionary (both are encoded by distance from ref (-1) and length)

        /* distance is biased */
        distance--;

        // ip is located now at the position of the second mismatch.
        // later it will be substracted by 3

        if (!distance) {
            /* zero distance means a run */
            PIXEL x = *ref;
            while ((ip < ip_bound) && (ref < ref_limit)) { // TODO: maybe separate a run from
                                                           //       the same seg or from different
                                                           //       ones in order to spare 
                                                           //       ref < ref_limit
                if (!SAME_PIXEL(*ref, x)) {
                    ref++;
                    break;
                } else {
                    ref++;
                    ip++;
                }
            }
        } else {
            // TODO: maybe separate a run from the same seg or from different ones in order
            //       to spare ref < ref_limit and that way we can also perform 8 calls of
            //       (ref++ != ip++) outside a loop
            for (;;) {
                while ((ip < ip_bound) && (ref < ref_limit)) {
                    if (!SAME_PIXEL(*ref, *ip)) {
                        ref++;
                        ip++;
                        break;
                    } else {
                        ref++;
                        ip++;
                    }
                }
                break;
            }
        }

        /* if we have copied something, adjust the copy count */
        if (copy) {
            /* copy is biased, '0' means 1 byte copy */
            update_copy_count(encoder, copy - 1);
        } else {
            /* back, to overwrite the copy count */
            compress_output_prev(encoder);
        }

        /* reset literal counter */
        copy = 0;

        /* length is biased, '1' means a match of 3 pixels for PLT and alpha*/
        /* for RGB 16 1 means 2 */
        /* for RGB24/32 1 means 1...*/
        ip -= 3;
        len = ip - anchor;
#if defined(LZ_RGB16)
        len++;
#elif defined(LZ_RGB24) || defined(LZ_RGB32)
        len += 2;
#endif
        /* encode the match (like fastlz level 2)*/
        if (distance < MAX_DISTANCE) { // MAX_DISTANCE is 2^13 - 1
            // when copy is pefrformed, the byte that holds the copy count is smaller than 32.
            // When there is a reference, the first byte is always larger then 32

            // 3 bits = length, 5 bits = 5 MSB of distance, 8 bits = 8 LSB of distance
            if (len < 7) {
                encode(encoder, (uint8_t)((len << 5) + (distance >> 8)));
                encode(encoder, (uint8_t)(distance & 255));
            } else { // more than 3 bits are needed for length
                    // 3 bits 7, 5 bits = 5 MSB of distance, next bytes are 255 till we
                    // recieve a smaller number, last byte = 8 LSB of distance
                encode(encoder, (uint8_t)((7 << 5) + (distance >> 8)));
                for (len -= 7; len >= 255; len -= 255) {
                    encode(encoder, 255);
                }
                encode(encoder, (uint8_t)len);
                encode(encoder, (uint8_t)(distance & 255));
            }
        } else {
            /* far away */
            if (len < 7) { // the max_far_distance is ~2^16+2^13 so two more bytes are needed
                // 3 bits = length, 5 bits = 5 MSB of MAX_DISTANCE, 8 bits = 8 LSB of MAX_DISTANCE,
                // 8 bits = 8 MSB distance-MAX_distance (smaller than 2^16),8 bits=8 LSB of
                // distance-MAX_distance
                distance -= MAX_DISTANCE;
                encode(encoder, (uint8_t)((len << 5) + 31));
                encode(encoder, (uint8_t)255);
                encode(encoder, (uint8_t)(distance >> 8));
                encode(encoder, (uint8_t)(distance & 255));
            } else {
                // same as before, but the first byte is followed by the left overs of len
                distance -= MAX_DISTANCE;
                encode(encoder, (uint8_t)((7 << 5) + 31));
                for (len -= 7; len >= 255; len -= 255) {
                    encode(encoder, 255);
                }
                encode(encoder, (uint8_t)len);
                encode(encoder, 255);
                encode(encoder, (uint8_t)(distance >> 8));
                encode(encoder, (uint8_t)(distance & 255));
            }
        }

        /* update the hash at match boundary */
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
        if (ip > anchor) {
#endif
        HASH_FUNC(hval, ip);
        encoder->htab[hval].ref = (uint8_t *)ip;
        ip++;
        encoder->htab[hval].image_seg = seg;
#if defined(LZ_RGB16) || defined(LZ_RGB24) || defined(LZ_RGB32)
    } else {ip++;
    }
#endif
#if defined(LZ_RGB24) || defined(LZ_RGB32)
        if (ip > anchor) {
#endif
        HASH_FUNC(hval, ip);
        encoder->htab[hval].ref = (uint8_t *)ip;
        ip++;
        encoder->htab[hval].image_seg = seg;
#if defined(LZ_RGB24) || defined(LZ_RGB32)
    } else {ip++;
    }
#endif
        /* assuming literal copy */
        encode_copy_count(encoder, MAX_COPY - 1);
        continue;

literal:
        ENCODE_PIXEL(encoder, *anchor);
        anchor++;
        ip = anchor;
        copy++;

        if (LZ_UNEXPECT_CONDITIONAL(copy == MAX_COPY)) {
            copy = 0;
            encode_copy_count(encoder, MAX_COPY - 1);
        }
    } // END LOOP (ip < ip_limit)


    /* left-over as literal copy */
    ip_bound++;
    while (ip <= ip_bound) {
        ENCODE_PIXEL(encoder, *ip);
        ip++;
        copy++;
        if (copy == MAX_COPY) {
            copy = 0;
            encode_copy_count(encoder, MAX_COPY - 1);
        }
    }

    /* if we have copied something, adjust the copy length */
    if (copy) {
        update_copy_count(encoder, copy - 1);
    } else {
        compress_output_prev(encoder); // in case we created a new buffer for copy, check that
                                       // red_worker could handle size that do not contain the
                                       // ne buffer
    }
}


/*    initializes the hash table. if the file is very small, copies it.
    copies the first two pixels of the first segment, and sends the segments
    one by one to compress_seg.
    the number of bytes compressed are stored inside encoder.
    */
static void FNAME(compress)(Encoder *encoder)
{
    LzImageSegment    *cur_seg = encoder->head_image_segs;
    HashEntry        *hslot;
    PIXEL            *ip;

    // fetch the first image segment that is not too small
    while (cur_seg && ((((PIXEL *)cur_seg->lines_end) - ((PIXEL *)cur_seg->lines)) < 4)) {
        // coping the segment
        if (cur_seg->lines != cur_seg->lines_end) {
            ip = (PIXEL *)cur_seg->lines;
            // Note: we assume MAX_COPY > 3
            encode_copy_count(encoder, (uint8_t)(
                                  (((PIXEL *)cur_seg->lines_end) - ((PIXEL *)cur_seg->lines)) - 1));
            while (ip < (PIXEL *)cur_seg->lines_end) {
                ENCODE_PIXEL(encoder, *ip);
                ip++;
            }
        }
        cur_seg = cur_seg->next;
    }

    if (!cur_seg) {
        return;
    }

    ip = (PIXEL *)cur_seg->lines;

    /* initialize hash table */
    for (hslot = encoder->htab; hslot < encoder->htab + HASH_SIZE; hslot++) {
        hslot->ref = (uint8_t*)ip;
        hslot->image_seg = cur_seg;
    }

    encode_copy_count(encoder, MAX_COPY - 1);
    ENCODE_PIXEL(encoder, *ip);
    ip++;
    ENCODE_PIXEL(encoder, *ip);
    ip++;

    // compressing the first segment
    FNAME(compress_seg)(encoder, cur_seg, ip, 2);

    // compressing the next segments
    for (cur_seg = cur_seg->next; cur_seg; cur_seg = cur_seg->next) {
        FNAME(compress_seg)(encoder, cur_seg, (PIXEL *)cur_seg->lines, 0);
    }
}

#undef FNAME
#undef PIXEL_ID
#undef PIXEL
#undef ENCODE_PIXEL
#undef SAME_PIXEL
#undef LZ_READU16
#undef HASH_FUNC
#undef BYTES_TO_16
#undef HASH_FUNC_16
#undef GET_r
#undef GET_g
#undef GET_b
#undef GET_CODE
#undef LZ_PLT
#undef LZ_RGB_ALPHA
#undef LZ_RGB16
#undef LZ_RGB24
#undef LZ_RGB32
#undef HASH_FUNC2