summaryrefslogtreecommitdiff
path: root/libSBRdec/src/lpp_tran.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libSBRdec/src/lpp_tran.cpp')
-rw-r--r--libSBRdec/src/lpp_tran.cpp986
1 files changed, 0 insertions, 986 deletions
diff --git a/libSBRdec/src/lpp_tran.cpp b/libSBRdec/src/lpp_tran.cpp
deleted file mode 100644
index 117e739..0000000
--- a/libSBRdec/src/lpp_tran.cpp
+++ /dev/null
@@ -1,986 +0,0 @@
-
-/* -----------------------------------------------------------------------------------------------------------
-Software License for The Fraunhofer FDK AAC Codec Library for Android
-
-© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- All rights reserved.
-
- 1. INTRODUCTION
-The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
-the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
-This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
-
-AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
-audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
-independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
-of the MPEG specifications.
-
-Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
-may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
-individually for the purpose of encoding or decoding bit streams in products that are compliant with
-the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
-these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
-software may already be covered under those patent licenses when it is used for those licensed purposes only.
-
-Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
-are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
-applications information and documentation.
-
-2. COPYRIGHT LICENSE
-
-Redistribution and use in source and binary forms, with or without modification, are permitted without
-payment of copyright license fees provided that you satisfy the following conditions:
-
-You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
-your modifications thereto in source code form.
-
-You must retain the complete text of this software license in the documentation and/or other materials
-provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
-You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
-modifications thereto to recipients of copies in binary form.
-
-The name of Fraunhofer may not be used to endorse or promote products derived from this library without
-prior written permission.
-
-You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
-software or your modifications thereto.
-
-Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
-and the date of any change. For modified versions of the FDK AAC Codec, the term
-"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
-"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
-
-3. NO PATENT LICENSE
-
-NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
-ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
-respect to this software.
-
-You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
-by appropriate patent licenses.
-
-4. DISCLAIMER
-
-This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
-"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
-of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
-CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
-including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
-or business interruption, however caused and on any theory of liability, whether in contract, strict
-liability, or tort (including negligence), arising in any way out of the use of this software, even if
-advised of the possibility of such damage.
-
-5. CONTACT INFORMATION
-
-Fraunhofer Institute for Integrated Circuits IIS
-Attention: Audio and Multimedia Departments - FDK AAC LL
-Am Wolfsmantel 33
-91058 Erlangen, Germany
-
-www.iis.fraunhofer.de/amm
-amm-info@iis.fraunhofer.de
------------------------------------------------------------------------------------------------------------ */
-
-/*!
- \file
- \brief Low Power Profile Transposer,
- This module provides the transposer. The main entry point is lppTransposer(). The function generates
- high frequency content by copying data from the low band (provided by core codec) into the high band.
- This process is also referred to as "patching". The function also implements spectral whitening by means of
- inverse filtering based on LPC coefficients.
-
- Together with the QMF filterbank the transposer can be tested using a supplied test program. See main_audio.cpp for details.
- This module does use fractional arithmetic and the accuracy of the computations has an impact on the overall sound quality.
- The module also needs to take into account the different scaling of spectral data.
-
- \sa lppTransposer(), main_audio.cpp, sbr_scale.h, \ref documentationOverview
-*/
-
-#include "lpp_tran.h"
-
-#include "sbr_ram.h"
-#include "sbr_rom.h"
-
-#include "genericStds.h"
-#include "autocorr2nd.h"
-
-
-
-#if defined(__arm__)
-#include "arm/lpp_tran_arm.cpp"
-#endif
-
-
-
-#define LPC_SCALE_FACTOR 2
-
-
-/*!
- *
- * \brief Get bandwidth expansion factor from filtering level
- *
- * Returns a filter parameter (bandwidth expansion factor) depending on
- * the desired filtering level signalled in the bitstream.
- * When switching the filtering level from LOW to OFF, an additional
- * level is being inserted to achieve a smooth transition.
- */
-
-#ifndef FUNCTION_mapInvfMode
-static FIXP_DBL
-mapInvfMode (INVF_MODE mode,
- INVF_MODE prevMode,
- WHITENING_FACTORS whFactors)
-{
- switch (mode) {
- case INVF_LOW_LEVEL:
- if(prevMode == INVF_OFF)
- return whFactors.transitionLevel;
- else
- return whFactors.lowLevel;
-
- case INVF_MID_LEVEL:
- return whFactors.midLevel;
-
- case INVF_HIGH_LEVEL:
- return whFactors.highLevel;
-
- default:
- if(prevMode == INVF_LOW_LEVEL)
- return whFactors.transitionLevel;
- else
- return whFactors.off;
- }
-}
-#endif /* #ifndef FUNCTION_mapInvfMode */
-
-/*!
- *
- * \brief Perform inverse filtering level emphasis
- *
- * Retrieve bandwidth expansion factor and apply smoothing for each filter band
- *
- */
-
-#ifndef FUNCTION_inverseFilteringLevelEmphasis
-static void
-inverseFilteringLevelEmphasis(HANDLE_SBR_LPP_TRANS hLppTrans,/*!< Handle of lpp transposer */
- UCHAR nInvfBands, /*!< Number of bands for inverse filtering */
- INVF_MODE *sbr_invf_mode, /*!< Current inverse filtering modes */
- INVF_MODE *sbr_invf_mode_prev, /*!< Previous inverse filtering modes */
- FIXP_DBL * bwVector /*!< Resulting filtering levels */
- )
-{
- for(int i = 0; i < nInvfBands; i++) {
- FIXP_DBL accu;
- FIXP_DBL bwTmp = mapInvfMode (sbr_invf_mode[i],
- sbr_invf_mode_prev[i],
- hLppTrans->pSettings->whFactors);
-
- if(bwTmp < hLppTrans->bwVectorOld[i]) {
- accu = fMultDiv2(FL2FXCONST_DBL(0.75f),bwTmp) +
- fMultDiv2(FL2FXCONST_DBL(0.25f),hLppTrans->bwVectorOld[i]);
- }
- else {
- accu = fMultDiv2(FL2FXCONST_DBL(0.90625f),bwTmp) +
- fMultDiv2(FL2FXCONST_DBL(0.09375f),hLppTrans->bwVectorOld[i]);
- }
-
- if (accu < FL2FXCONST_DBL(0.015625f)>>1)
- bwVector[i] = FL2FXCONST_DBL(0.0f);
- else
- bwVector[i] = fixMin(accu<<1,FL2FXCONST_DBL(0.99609375f));
- }
-}
-#endif /* #ifndef FUNCTION_inverseFilteringLevelEmphasis */
-
-/* Resulting autocorrelation determinant exponent */
-#define ACDET_EXP (2*(DFRACT_BITS+sbrScaleFactor->lb_scale+10-ac.det_scale))
-#define AC_EXP (-sbrScaleFactor->lb_scale+LPC_SCALE_FACTOR)
-#define ALPHA_EXP (-sbrScaleFactor->lb_scale+LPC_SCALE_FACTOR+1)
-/* Resulting transposed QMF values exponent 16 bit normalized samplebits assumed. */
-#define QMFOUT_EXP ((SAMPLE_BITS-15)-sbrScaleFactor->lb_scale)
-
-/*!
- *
- * \brief Perform transposition by patching of subband samples.
- * This function serves as the main entry point into the module. The function determines the areas for the
- * patching process (these are the source range as well as the target range) and implements spectral whitening
- * by means of inverse filtering. The function autoCorrelation2nd() is an auxiliary function for calculating the
- * LPC coefficients for the filtering. The actual calculation of the LPC coefficients and the implementation
- * of the filtering are done as part of lppTransposer().
- *
- * Note that the filtering is done on all available QMF subsamples, whereas the patching is only done on those QMF
- * subsamples that will be used in the next QMF synthesis. The filtering is also implemented before the patching
- * includes further dependencies on parameters from the SBR data.
- *
- */
-
-void lppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, /*!< Handle of lpp transposer */
- QMF_SCALE_FACTOR *sbrScaleFactor, /*!< Scaling factors */
- FIXP_DBL **qmfBufferReal, /*!< Pointer to pointer to real part of subband samples (source) */
-
- FIXP_DBL *degreeAlias, /*!< Vector for results of aliasing estimation */
- FIXP_DBL **qmfBufferImag, /*!< Pointer to pointer to imaginary part of subband samples (source) */
- const int useLP,
- const int timeStep, /*!< Time step of envelope */
- const int firstSlotOffs, /*!< Start position in time */
- const int lastSlotOffs, /*!< Number of overlap-slots into next frame */
- const int nInvfBands, /*!< Number of bands for inverse filtering */
- INVF_MODE *sbr_invf_mode, /*!< Current inverse filtering modes */
- INVF_MODE *sbr_invf_mode_prev /*!< Previous inverse filtering modes */
- )
-{
- INT bwIndex[MAX_NUM_PATCHES];
- FIXP_DBL bwVector[MAX_NUM_PATCHES]; /*!< pole moving factors */
-
- int i;
- int loBand, start, stop;
- TRANSPOSER_SETTINGS *pSettings = hLppTrans->pSettings;
- PATCH_PARAM *patchParam = pSettings->patchParam;
- int patch;
-
- FIXP_SGL alphar[LPC_ORDER], a0r, a1r;
- FIXP_SGL alphai[LPC_ORDER], a0i=0, a1i=0;
- FIXP_SGL bw = FL2FXCONST_SGL(0.0f);
-
- int autoCorrLength;
-
- FIXP_DBL k1, k1_below=0, k1_below2=0;
-
- ACORR_COEFS ac;
- int startSample;
- int stopSample;
- int stopSampleClear;
-
- int comLowBandScale;
- int ovLowBandShift;
- int lowBandShift;
-/* int ovHighBandShift;*/
- int targetStopBand;
-
-
- alphai[0] = FL2FXCONST_SGL(0.0f);
- alphai[1] = FL2FXCONST_SGL(0.0f);
-
-
- startSample = firstSlotOffs * timeStep;
- stopSample = pSettings->nCols + lastSlotOffs * timeStep;
-
-
- inverseFilteringLevelEmphasis(hLppTrans, nInvfBands, sbr_invf_mode, sbr_invf_mode_prev, bwVector);
-
- stopSampleClear = stopSample;
-
- autoCorrLength = pSettings->nCols + pSettings->overlap;
-
- /* Set upper subbands to zero:
- This is required in case that the patches do not cover the complete highband
- (because the last patch would be too short).
- Possible optimization: Clearing bands up to usb would be sufficient here. */
- targetStopBand = patchParam[pSettings->noOfPatches-1].targetStartBand
- + patchParam[pSettings->noOfPatches-1].numBandsInPatch;
-
- int memSize = ((64) - targetStopBand) * sizeof(FIXP_DBL);
-
- if (!useLP) {
- for (i = startSample; i < stopSampleClear; i++) {
- FDKmemclear(&qmfBufferReal[i][targetStopBand], memSize);
- FDKmemclear(&qmfBufferImag[i][targetStopBand], memSize);
- }
- } else
- for (i = startSample; i < stopSampleClear; i++) {
- FDKmemclear(&qmfBufferReal[i][targetStopBand], memSize);
- }
-
- /* init bwIndex for each patch */
- FDKmemclear(bwIndex, pSettings->noOfPatches*sizeof(INT));
-
- /*
- Calc common low band scale factor
- */
- comLowBandScale = fixMin(sbrScaleFactor->ov_lb_scale,sbrScaleFactor->lb_scale);
-
- ovLowBandShift = sbrScaleFactor->ov_lb_scale - comLowBandScale;
- lowBandShift = sbrScaleFactor->lb_scale - comLowBandScale;
- /* ovHighBandShift = firstSlotOffs == 0 ? ovLowBandShift:0;*/
-
- /* outer loop over bands to do analysis only once for each band */
-
- if (!useLP) {
- start = pSettings->lbStartPatching;
- stop = pSettings->lbStopPatching;
- } else
- {
- start = fixMax(1, pSettings->lbStartPatching - 2);
- stop = patchParam[0].targetStartBand;
- }
-
-
- for ( loBand = start; loBand < stop; loBand++ ) {
-
- FIXP_DBL lowBandReal[(((1024)/(32))+(6))+LPC_ORDER];
- FIXP_DBL *plowBandReal = lowBandReal;
- FIXP_DBL **pqmfBufferReal = qmfBufferReal;
- FIXP_DBL lowBandImag[(((1024)/(32))+(6))+LPC_ORDER];
- FIXP_DBL *plowBandImag = lowBandImag;
- FIXP_DBL **pqmfBufferImag = qmfBufferImag;
- int resetLPCCoeffs=0;
- int dynamicScale = DFRACT_BITS-1-LPC_SCALE_FACTOR;
- int acDetScale = 0; /* scaling of autocorrelation determinant */
-
- for(i=0;i<LPC_ORDER;i++){
- *plowBandReal++ = hLppTrans->lpcFilterStatesReal[i][loBand];
- if (!useLP)
- *plowBandImag++ = hLppTrans->lpcFilterStatesImag[i][loBand];
- }
-
- /*
- Take old slope length qmf slot source values out of (overlap)qmf buffer
- */
- if (!useLP) {
- for(i=0;i<pSettings->nCols+pSettings->overlap;i++){
- *plowBandReal++ = (*pqmfBufferReal++)[loBand];
- *plowBandImag++ = (*pqmfBufferImag++)[loBand];
- }
- } else
- {
- /* pSettings->overlap is always even */
- FDK_ASSERT((pSettings->overlap & 1) == 0);
-
- for(i=0;i<((pSettings->overlap+pSettings->nCols)>>1);i++) {
- *plowBandReal++ = (*pqmfBufferReal++)[loBand];
- *plowBandReal++ = (*pqmfBufferReal++)[loBand];
- }
- if (pSettings->nCols & 1) {
- *plowBandReal++ = (*pqmfBufferReal++)[loBand];
- }
- }
-
- /*
- Determine dynamic scaling value.
- */
- dynamicScale = fixMin(dynamicScale, getScalefactor(lowBandReal, LPC_ORDER+pSettings->overlap) + ovLowBandShift);
- dynamicScale = fixMin(dynamicScale, getScalefactor(&lowBandReal[LPC_ORDER+pSettings->overlap], pSettings->nCols) + lowBandShift);
- if (!useLP) {
- dynamicScale = fixMin(dynamicScale, getScalefactor(lowBandImag, LPC_ORDER+pSettings->overlap) + ovLowBandShift);
- dynamicScale = fixMin(dynamicScale, getScalefactor(&lowBandImag[LPC_ORDER+pSettings->overlap], pSettings->nCols) + lowBandShift);
- }
- dynamicScale = fixMax(0, dynamicScale-1); /* one additional bit headroom to prevent -1.0 */
-
- /*
- Scale temporal QMF buffer.
- */
- scaleValues(&lowBandReal[0], LPC_ORDER+pSettings->overlap, dynamicScale-ovLowBandShift);
- scaleValues(&lowBandReal[LPC_ORDER+pSettings->overlap], pSettings->nCols, dynamicScale-lowBandShift);
-
- if (!useLP) {
- scaleValues(&lowBandImag[0], LPC_ORDER+pSettings->overlap, dynamicScale-ovLowBandShift);
- scaleValues(&lowBandImag[LPC_ORDER+pSettings->overlap], pSettings->nCols, dynamicScale-lowBandShift);
- }
-
-
- if (!useLP) {
- acDetScale += autoCorr2nd_cplx(&ac, lowBandReal+LPC_ORDER, lowBandImag+LPC_ORDER, autoCorrLength);
- }
- else
- {
- acDetScale += autoCorr2nd_real(&ac, lowBandReal+LPC_ORDER, autoCorrLength);
- }
-
- /* Examine dynamic of determinant in autocorrelation. */
- acDetScale += 2*(comLowBandScale + dynamicScale);
- acDetScale *= 2; /* two times reflection coefficent scaling */
- acDetScale += ac.det_scale; /* ac scaling of determinant */
-
- /* In case of determinant < 10^-38, resetLPCCoeffs=1 has to be enforced. */
- if (acDetScale>126 ) {
- resetLPCCoeffs = 1;
- }
-
-
- alphar[1] = FL2FXCONST_SGL(0.0f);
- if (!useLP)
- alphai[1] = FL2FXCONST_SGL(0.0f);
-
- if (ac.det != FL2FXCONST_DBL(0.0f)) {
- FIXP_DBL tmp,absTmp,absDet;
-
- absDet = fixp_abs(ac.det);
-
- if (!useLP) {
- tmp = ( fMultDiv2(ac.r01r,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) -
- ( (fMultDiv2(ac.r01i,ac.r12i) + fMultDiv2(ac.r02r,ac.r11r)) >> (LPC_SCALE_FACTOR-1) );
- } else
- {
- tmp = ( fMultDiv2(ac.r01r,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) -
- ( fMultDiv2(ac.r02r,ac.r11r) >> (LPC_SCALE_FACTOR-1) );
- }
- absTmp = fixp_abs(tmp);
-
- /*
- Quick check: is first filter coeff >= 1(4)
- */
- {
- INT scale;
- FIXP_DBL result = fDivNorm(absTmp, absDet, &scale);
- scale = scale+ac.det_scale;
-
- if ( (scale > 0) && (result >= (FIXP_DBL)MAXVAL_DBL>>scale) ) {
- resetLPCCoeffs = 1;
- }
- else {
- alphar[1] = FX_DBL2FX_SGL(scaleValue(result,scale));
- if((tmp<FL2FX_DBL(0.0f)) ^ (ac.det<FL2FX_DBL(0.0f))) {
- alphar[1] = -alphar[1];
- }
- }
- }
-
- if (!useLP)
- {
- tmp = ( fMultDiv2(ac.r01i,ac.r12r) >> (LPC_SCALE_FACTOR-1) ) +
- ( (fMultDiv2(ac.r01r,ac.r12i) - (FIXP_DBL)fMultDiv2(ac.r02i,ac.r11r)) >> (LPC_SCALE_FACTOR-1) ) ;
-
- absTmp = fixp_abs(tmp);
-
- /*
- Quick check: is second filter coeff >= 1(4)
- */
- {
- INT scale;
- FIXP_DBL result = fDivNorm(absTmp, absDet, &scale);
- scale = scale+ac.det_scale;
-
- if ( (scale > 0) && (result >= /*FL2FXCONST_DBL(1.f)*/ (FIXP_DBL)MAXVAL_DBL>>scale) ) {
- resetLPCCoeffs = 1;
- }
- else {
- alphai[1] = FX_DBL2FX_SGL(scaleValue(result,scale));
- if((tmp<FL2FX_DBL(0.0f)) ^ (ac.det<FL2FX_DBL(0.0f))) {
- alphai[1] = -alphai[1];
- }
- }
- }
- }
- }
-
- alphar[0] = FL2FXCONST_SGL(0.0f);
- if (!useLP)
- alphai[0] = FL2FXCONST_SGL(0.0f);
-
- if ( ac.r11r != FL2FXCONST_DBL(0.0f) ) {
-
- /* ac.r11r is always >=0 */
- FIXP_DBL tmp,absTmp;
-
- if (!useLP) {
- tmp = (ac.r01r>>(LPC_SCALE_FACTOR+1)) +
- (fMultDiv2(alphar[1],ac.r12r) + fMultDiv2(alphai[1],ac.r12i));
- } else
- {
- if(ac.r01r>=FL2FXCONST_DBL(0.0f))
- tmp = (ac.r01r>>(LPC_SCALE_FACTOR+1)) + fMultDiv2(alphar[1],ac.r12r);
- else
- tmp = -((-ac.r01r)>>(LPC_SCALE_FACTOR+1)) + fMultDiv2(alphar[1],ac.r12r);
- }
-
- absTmp = fixp_abs(tmp);
-
- /*
- Quick check: is first filter coeff >= 1(4)
- */
-
- if (absTmp >= (ac.r11r>>1)) {
- resetLPCCoeffs=1;
- }
- else {
- INT scale;
- FIXP_DBL result = fDivNorm(absTmp, fixp_abs(ac.r11r), &scale);
- alphar[0] = FX_DBL2FX_SGL(scaleValue(result,scale+1));
-
- if((tmp>FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))
- alphar[0] = -alphar[0];
- }
-
- if (!useLP)
- {
- tmp = (ac.r01i>>(LPC_SCALE_FACTOR+1)) +
- (fMultDiv2(alphai[1],ac.r12r) - fMultDiv2(alphar[1],ac.r12i));
-
- absTmp = fixp_abs(tmp);
-
- /*
- Quick check: is second filter coeff >= 1(4)
- */
- if (absTmp >= (ac.r11r>>1)) {
- resetLPCCoeffs=1;
- }
- else {
- INT scale;
- FIXP_DBL result = fDivNorm(absTmp, fixp_abs(ac.r11r), &scale);
- alphai[0] = FX_DBL2FX_SGL(scaleValue(result,scale+1));
- if((tmp>FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))
- alphai[0] = -alphai[0];
- }
- }
- }
-
-
- if (!useLP)
- {
- /* Now check the quadratic criteria */
- if( (fMultDiv2(alphar[0],alphar[0]) + fMultDiv2(alphai[0],alphai[0])) >= FL2FXCONST_DBL(0.5f) )
- resetLPCCoeffs=1;
- if( (fMultDiv2(alphar[1],alphar[1]) + fMultDiv2(alphai[1],alphai[1])) >= FL2FXCONST_DBL(0.5f) )
- resetLPCCoeffs=1;
- }
-
- if(resetLPCCoeffs){
- alphar[0] = FL2FXCONST_SGL(0.0f);
- alphar[1] = FL2FXCONST_SGL(0.0f);
- if (!useLP)
- {
- alphai[0] = FL2FXCONST_SGL(0.0f);
- alphai[1] = FL2FXCONST_SGL(0.0f);
- }
- }
-
- if (useLP)
- {
-
- /* Aliasing detection */
- if(ac.r11r==FL2FXCONST_DBL(0.0f)) {
- k1 = FL2FXCONST_DBL(0.0f);
- }
- else {
- if ( fixp_abs(ac.r01r) >= fixp_abs(ac.r11r) ) {
- if ( fMultDiv2(ac.r01r,ac.r11r) < FL2FX_DBL(0.0f)) {
- k1 = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_SGL(1.0f)*/;
- }else {
- /* Since this value is squared later, it must not ever become -1.0f. */
- k1 = (FIXP_DBL)(MINVAL_DBL+1) /*FL2FXCONST_SGL(-1.0f)*/;
- }
- }
- else {
- INT scale;
- FIXP_DBL result = fDivNorm(fixp_abs(ac.r01r), fixp_abs(ac.r11r), &scale);
- k1 = scaleValue(result,scale);
-
- if(!((ac.r01r<FL2FX_DBL(0.0f)) ^ (ac.r11r<FL2FX_DBL(0.0f)))) {
- k1 = -k1;
- }
- }
- }
- if(loBand > 1){
- /* Check if the gain should be locked */
- FIXP_DBL deg = /*FL2FXCONST_DBL(1.0f)*/ (FIXP_DBL)MAXVAL_DBL - fPow2(k1_below);
- degreeAlias[loBand] = FL2FXCONST_DBL(0.0f);
- if (((loBand & 1) == 0) && (k1 < FL2FXCONST_DBL(0.0f))){
- if (k1_below < FL2FXCONST_DBL(0.0f)) { /* 2-Ch Aliasing Detection */
- degreeAlias[loBand] = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/;
- if ( k1_below2 > FL2FXCONST_DBL(0.0f) ) { /* 3-Ch Aliasing Detection */
- degreeAlias[loBand-1] = deg;
- }
- }
- else if ( k1_below2 > FL2FXCONST_DBL(0.0f) ) { /* 3-Ch Aliasing Detection */
- degreeAlias[loBand] = deg;
- }
- }
- if (((loBand & 1) == 1) && (k1 > FL2FXCONST_DBL(0.0f))){
- if (k1_below > FL2FXCONST_DBL(0.0f)) { /* 2-CH Aliasing Detection */
- degreeAlias[loBand] = (FIXP_DBL)MAXVAL_DBL /*FL2FXCONST_DBL(1.0f)*/;
- if ( k1_below2 < FL2FXCONST_DBL(0.0f) ) { /* 3-CH Aliasing Detection */
- degreeAlias[loBand-1] = deg;
- }
- }
- else if ( k1_below2 < FL2FXCONST_DBL(0.0f) ) { /* 3-CH Aliasing Detection */
- degreeAlias[loBand] = deg;
- }
- }
- }
- /* remember k1 values of the 2 QMF channels below the current channel */
- k1_below2 = k1_below;
- k1_below = k1;
- }
-
- patch = 0;
-
- while ( patch < pSettings->noOfPatches ) { /* inner loop over every patch */
-
- int hiBand = loBand + patchParam[patch].targetBandOffs;
-
- if ( loBand < patchParam[patch].sourceStartBand
- || loBand >= patchParam[patch].sourceStopBand
- //|| hiBand >= hLppTrans->pSettings->noChannels
- ) {
- /* Lowband not in current patch - proceed */
- patch++;
- continue;
- }
-
- FDK_ASSERT( hiBand < (64) );
-
- /* bwIndex[patch] is already initialized with value from previous band inside this patch */
- while (hiBand >= pSettings->bwBorders[bwIndex[patch]])
- bwIndex[patch]++;
-
-
- /*
- Filter Step 2: add the left slope with the current filter to the buffer
- pure source values are already in there
- */
- bw = FX_DBL2FX_SGL(bwVector[bwIndex[patch]]);
-
- a0r = FX_DBL2FX_SGL(fMult(bw,alphar[0])); /* Apply current bandwidth expansion factor */
-
-
- if (!useLP)
- a0i = FX_DBL2FX_SGL(fMult(bw,alphai[0]));
- bw = FX_DBL2FX_SGL(fPow2(bw));
- a1r = FX_DBL2FX_SGL(fMult(bw,alphar[1]));
- if (!useLP)
- a1i = FX_DBL2FX_SGL(fMult(bw,alphai[1]));
-
-
-
- /*
- Filter Step 3: insert the middle part which won't be windowed
- */
-
- if ( bw <= FL2FXCONST_SGL(0.0f) ) {
- if (!useLP) {
- int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
- for(i = startSample; i < stopSample; i++ ) {
- qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale;
- qmfBufferImag[i][hiBand] = lowBandImag[LPC_ORDER+i]>>descale;
- }
- } else
- {
- int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
- for(i = startSample; i < stopSample; i++ ) {
- qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale;
- }
- }
- }
- else { /* bw <= 0 */
-
- if (!useLP) {
- int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
-#ifdef FUNCTION_LPPTRANSPOSER_func1
- lppTransposer_func1(lowBandReal+LPC_ORDER+startSample,lowBandImag+LPC_ORDER+startSample,
- qmfBufferReal+startSample,qmfBufferImag+startSample,
- stopSample-startSample, (int) hiBand,
- dynamicScale,descale,
- a0r, a0i, a1r, a1i);
-#else
- for(i = startSample; i < stopSample; i++ ) {
- FIXP_DBL accu1, accu2;
-
- accu1 = (fMultDiv2(a0r,lowBandReal[LPC_ORDER+i-1]) - fMultDiv2(a0i,lowBandImag[LPC_ORDER+i-1]) +
- fMultDiv2(a1r,lowBandReal[LPC_ORDER+i-2]) - fMultDiv2(a1i,lowBandImag[LPC_ORDER+i-2]))>>dynamicScale;
- accu2 = (fMultDiv2(a0i,lowBandReal[LPC_ORDER+i-1]) + fMultDiv2(a0r,lowBandImag[LPC_ORDER+i-1]) +
- fMultDiv2(a1i,lowBandReal[LPC_ORDER+i-2]) + fMultDiv2(a1r,lowBandImag[LPC_ORDER+i-2]))>>dynamicScale;
-
- qmfBufferReal[i][hiBand] = (lowBandReal[LPC_ORDER+i]>>descale) + (accu1<<1);
- qmfBufferImag[i][hiBand] = (lowBandImag[LPC_ORDER+i]>>descale) + (accu2<<1);
- }
-#endif
- } else
- {
- int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale));
-
- FDK_ASSERT(dynamicScale >= 0);
- for(i = startSample; i < stopSample; i++ ) {
- FIXP_DBL accu1;
-
- accu1 = (fMultDiv2(a0r,lowBandReal[LPC_ORDER+i-1]) + fMultDiv2(a1r,lowBandReal[LPC_ORDER+i-2]))>>dynamicScale;
-
- qmfBufferReal[i][hiBand] = (lowBandReal[LPC_ORDER+i]>>descale) + (accu1<<1);
- }
- }
- } /* bw <= 0 */
-
- patch++;
-
- } /* inner loop over patches */
-
- /*
- * store the unmodified filter coefficients if there is
- * an overlapping envelope
- *****************************************************************/
-
-
- } /* outer loop over bands (loBand) */
-
- if (useLP)
- {
- for ( loBand = pSettings->lbStartPatching; loBand < pSettings->lbStopPatching; loBand++ ) {
- patch = 0;
- while ( patch < pSettings->noOfPatches ) {
-
- UCHAR hiBand = loBand + patchParam[patch].targetBandOffs;
-
- if ( loBand < patchParam[patch].sourceStartBand
- || loBand >= patchParam[patch].sourceStopBand
- || hiBand >= (64) /* Highband out of range (biterror) */
- ) {
- /* Lowband not in current patch or highband out of range (might be caused by biterrors)- proceed */
- patch++;
- continue;
- }
-
- if(hiBand != patchParam[patch].targetStartBand)
- degreeAlias[hiBand] = degreeAlias[loBand];
-
- patch++;
- }
- }/* end for loop */
- }
-
- for (i = 0; i < nInvfBands; i++ ) {
- hLppTrans->bwVectorOld[i] = bwVector[i];
- }
-
- /*
- set high band scale factor
- */
- sbrScaleFactor->hb_scale = comLowBandScale-(LPC_SCALE_FACTOR);
-
-}
-
-/*!
- *
- * \brief Initialize one low power transposer instance
- *
- *
- */
-SBR_ERROR
-createLppTransposer (HANDLE_SBR_LPP_TRANS hs, /*!< Handle of low power transposer */
- TRANSPOSER_SETTINGS *pSettings, /*!< Pointer to settings */
- const int highBandStartSb, /*!< ? */
- UCHAR *v_k_master, /*!< Master table */
- const int numMaster, /*!< Valid entries in master table */
- const int usb, /*!< Highband area stop subband */
- const int timeSlots, /*!< Number of time slots */
- const int nCols, /*!< Number of colums (codec qmf bank) */
- UCHAR *noiseBandTable, /*!< Mapping of SBR noise bands to QMF bands */
- const int noNoiseBands, /*!< Number of noise bands */
- UINT fs, /*!< Sample Frequency */
- const int chan, /*!< Channel number */
- const int overlap
- )
-{
- /* FB inverse filtering settings */
- hs->pSettings = pSettings;
-
- pSettings->nCols = nCols;
- pSettings->overlap = overlap;
-
- switch (timeSlots) {
-
- case 15:
- case 16:
- break;
-
- default:
- return SBRDEC_UNSUPPORTED_CONFIG; /* Unimplemented */
- }
-
- if (chan==0) {
- /* Init common data only once */
- hs->pSettings->nCols = nCols;
-
- return resetLppTransposer (hs,
- highBandStartSb,
- v_k_master,
- numMaster,
- noiseBandTable,
- noNoiseBands,
- usb,
- fs);
- }
- return SBRDEC_OK;
-}
-
-
-static int findClosestEntry(UCHAR goalSb, UCHAR *v_k_master, UCHAR numMaster, UCHAR direction)
-{
- int index;
-
- if( goalSb <= v_k_master[0] )
- return v_k_master[0];
-
- if( goalSb >= v_k_master[numMaster] )
- return v_k_master[numMaster];
-
- if(direction) {
- index = 0;
- while( v_k_master[index] < goalSb ) {
- index++;
- }
- } else {
- index = numMaster;
- while( v_k_master[index] > goalSb ) {
- index--;
- }
- }
-
- return v_k_master[index];
-}
-
-
-/*!
- *
- * \brief Reset memory for one lpp transposer instance
- *
- * \return SBRDEC_OK on success, SBRDEC_UNSUPPORTED_CONFIG on error
- */
-SBR_ERROR
-resetLppTransposer (HANDLE_SBR_LPP_TRANS hLppTrans, /*!< Handle of lpp transposer */
- UCHAR highBandStartSb, /*!< High band area: start subband */
- UCHAR *v_k_master, /*!< Master table */
- UCHAR numMaster, /*!< Valid entries in master table */
- UCHAR *noiseBandTable, /*!< Mapping of SBR noise bands to QMF bands */
- UCHAR noNoiseBands, /*!< Number of noise bands */
- UCHAR usb, /*!< High band area: stop subband */
- UINT fs /*!< SBR output sampling frequency */
- )
-{
- TRANSPOSER_SETTINGS *pSettings = hLppTrans->pSettings;
- PATCH_PARAM *patchParam = pSettings->patchParam;
-
- int i, patch;
- int targetStopBand;
- int sourceStartBand;
- int patchDistance;
- int numBandsInPatch;
-
- int lsb = v_k_master[0]; /* Start subband expressed in "non-critical" sampling terms*/
- int xoverOffset = highBandStartSb - lsb; /* Calculate distance in QMF bands between k0 and kx */
- int startFreqHz;
-
- int desiredBorder;
-
- usb = fixMin(usb, v_k_master[numMaster]); /* Avoid endless loops (compare with float code). */
-
- /*
- * Plausibility check
- */
-
- if ( lsb - SHIFT_START_SB < 4 ) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
-
- /*
- * Initialize the patching parameter
- */
- /* ISO/IEC 14496-3 (Figure 4.48): goalSb = round( 2.048e6 / fs ) */
- desiredBorder = (((2048000*2) / fs) + 1) >> 1;
-
- desiredBorder = findClosestEntry(desiredBorder, v_k_master, numMaster, 1); /* Adapt region to master-table */
-
- /* First patch */
- sourceStartBand = SHIFT_START_SB + xoverOffset;
- targetStopBand = lsb + xoverOffset; /* upperBand */
-
- /* Even (odd) numbered channel must be patched to even (odd) numbered channel */
- patch = 0;
- while(targetStopBand < usb) {
-
- /* Too many patches?
- Allow MAX_NUM_PATCHES+1 patches here.
- we need to check later again, since patch might be the highest patch
- AND contain less than 3 bands => actual number of patches will be reduced by 1.
- */
- if (patch > MAX_NUM_PATCHES) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- patchParam[patch].guardStartBand = targetStopBand;
- patchParam[patch].targetStartBand = targetStopBand;
-
- numBandsInPatch = desiredBorder - targetStopBand; /* Get the desired range of the patch */
-
- if ( numBandsInPatch >= lsb - sourceStartBand ) {
- /* Desired number bands are not available -> patch whole source range */
- patchDistance = targetStopBand - sourceStartBand; /* Get the targetOffset */
- patchDistance = patchDistance & ~1; /* Rounding off odd numbers and make all even */
- numBandsInPatch = lsb - (targetStopBand - patchDistance); /* Update number of bands to be patched */
- numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch, v_k_master, numMaster, 0) -
- targetStopBand; /* Adapt region to master-table */
- }
-
- /* Desired number bands are available -> get the minimal even patching distance */
- patchDistance = numBandsInPatch + targetStopBand - lsb; /* Get minimal distance */
- patchDistance = (patchDistance + 1) & ~1; /* Rounding up odd numbers and make all even */
-
- if (numBandsInPatch > 0) {
- patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
- patchParam[patch].targetBandOffs = patchDistance;
- patchParam[patch].numBandsInPatch = numBandsInPatch;
- patchParam[patch].sourceStopBand = patchParam[patch].sourceStartBand + numBandsInPatch;
-
- targetStopBand += patchParam[patch].numBandsInPatch;
- patch++;
- }
-
- /* All patches but first */
- sourceStartBand = SHIFT_START_SB;
-
- /* Check if we are close to desiredBorder */
- if( desiredBorder - targetStopBand < 3) /* MPEG doc */
- {
- desiredBorder = usb;
- }
-
- }
-
- patch--;
-
- /* If highest patch contains less than three subband: skip it */
- if ( (patch>0) && (patchParam[patch].numBandsInPatch < 3) ) {
- patch--;
- targetStopBand = patchParam[patch].targetStartBand + patchParam[patch].numBandsInPatch;
- }
-
- /* now check if we don't have one too many */
- if (patch >= MAX_NUM_PATCHES) {
- return SBRDEC_UNSUPPORTED_CONFIG;
- }
-
- pSettings->noOfPatches = patch + 1;
-
- /* Check lowest and highest source subband */
- pSettings->lbStartPatching = targetStopBand;
- pSettings->lbStopPatching = 0;
- for ( patch = 0; patch < pSettings->noOfPatches; patch++ ) {
- pSettings->lbStartPatching = fixMin( pSettings->lbStartPatching, patchParam[patch].sourceStartBand );
- pSettings->lbStopPatching = fixMax( pSettings->lbStopPatching, patchParam[patch].sourceStopBand );
- }
-
- for(i = 0 ; i < noNoiseBands; i++){
- pSettings->bwBorders[i] = noiseBandTable[i+1];
- }
-
- /*
- * Choose whitening factors
- */
-
- startFreqHz = ( (lsb + xoverOffset)*fs ) >> 7; /* Shift does a division by 2*(64) */
-
- for( i = 1; i < NUM_WHFACTOR_TABLE_ENTRIES; i++ )
- {
- if( startFreqHz < FDK_sbrDecoder_sbr_whFactorsIndex[i])
- break;
- }
- i--;
-
- pSettings->whFactors.off = FDK_sbrDecoder_sbr_whFactorsTable[i][0];
- pSettings->whFactors.transitionLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][1];
- pSettings->whFactors.lowLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][2];
- pSettings->whFactors.midLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][3];
- pSettings->whFactors.highLevel = FDK_sbrDecoder_sbr_whFactorsTable[i][4];
-
- return SBRDEC_OK;
-}