summaryrefslogtreecommitdiff
path: root/sbc/sbc_primitives.c
blob: c73fb1c516276a3bfd49594979c51ebd525db7f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
 *
 *  Bluetooth low-complexity, subband codec (SBC) library
 *
 *  Copyright (C) 2008-2010  Nokia Corporation
 *  Copyright (C) 2004-2010  Marcel Holtmann <marcel@holtmann.org>
 *  Copyright (C) 2004-2005  Henryk Ploetz <henryk@ploetzli.ch>
 *  Copyright (C) 2005-2006  Brad Midgley <bmidgley@xmission.com>
 *
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <stdint.h>
#include <limits.h>
#include <string.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"

#include "sbc_primitives.h"
#include "sbc_primitives_mmx.h"
#include "sbc_primitives_neon.h"

/*
 * A reference C code of analysis filter with SIMD-friendly tables
 * reordering and code layout. This code can be used to develop platform
 * specific SIMD optimizations. Also it may be used as some kind of test
 * for compiler autovectorization capabilities (who knows, if the compiler
 * is very good at this stuff, hand optimized assembly may be not strictly
 * needed for some platform).
 *
 * Note: It is also possible to make a simple variant of analysis filter,
 * which needs only a single constants table without taking care about
 * even/odd cases. This simple variant of filter can be implemented without
 * input data permutation. The only thing that would be lost is the
 * possibility to use pairwise SIMD multiplications. But for some simple
 * CPU cores without SIMD extensions it can be useful. If anybody is
 * interested in implementing such variant of a filter, sourcecode from
 * bluez versions 4.26/4.27 can be used as a reference and the history of
 * the changes in git repository done around that time may be worth checking.
 */

static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
							const FIXED_T *consts)
{
	FIXED_A t1[4];
	FIXED_T t2[4];
	int hop = 0;

	/* rounding coefficient */
	t1[0] = t1[1] = t1[2] = t1[3] =
		(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);

	/* low pass polyphase filter */
	for (hop = 0; hop < 40; hop += 8) {
		t1[0] += (FIXED_A) in[hop] * consts[hop];
		t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
		t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
		t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
		t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
		t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
		t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
		t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
	}

	/* scaling */
	t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
	t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
	t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
	t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;

	/* do the cos transform */
	t1[0]  = (FIXED_A) t2[0] * consts[40 + 0];
	t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
	t1[1]  = (FIXED_A) t2[0] * consts[40 + 2];
	t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
	t1[2]  = (FIXED_A) t2[0] * consts[40 + 4];
	t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
	t1[3]  = (FIXED_A) t2[0] * consts[40 + 6];
	t1[3] += (FIXED_A) t2[1] * consts[40 + 7];

	t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
	t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
	t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
	t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
	t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
	t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
	t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
	t1[3] += (FIXED_A) t2[3] * consts[40 + 15];

	out[0] = t1[0] >>
		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
	out[1] = t1[1] >>
		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
	out[2] = t1[2] >>
		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
	out[3] = t1[3] >>
		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}

static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
							const FIXED_T *consts)
{
	FIXED_A t1[8];
	FIXED_T t2[8];
	int i, hop;

	/* rounding coefficient */
	t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
		(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);

	/* low pass polyphase filter */
	for (hop = 0; hop < 80; hop += 16) {
		t1[0] += (FIXED_A) in[hop] * consts[hop];
		t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
		t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
		t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
		t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
		t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
		t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
		t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
		t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
		t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
		t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
		t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
		t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
		t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
		t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
		t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
	}

	/* scaling */
	t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
	t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
	t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
	t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
	t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
	t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
	t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
	t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;


	/* do the cos transform */
	t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;

	for (i = 0; i < 4; i++) {
		t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
		t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
		t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
		t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
		t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
		t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
		t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
		t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
		t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
		t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
		t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
		t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
		t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
		t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
		t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
		t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
	}

	for (i = 0; i < 8; i++)
		out[i] = t1[i] >>
			(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}

static inline void sbc_analyze_4b_4s_simd(int16_t *x,
						int32_t *out, int out_stride)
{
	/* Analyze blocks */
	sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
	out += out_stride;
	sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
	out += out_stride;
	sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
	out += out_stride;
	sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
}

static inline void sbc_analyze_4b_8s_simd(int16_t *x,
					  int32_t *out, int out_stride)
{
	/* Analyze blocks */
	sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
	out += out_stride;
	sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
	out += out_stride;
	sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
	out += out_stride;
	sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
}

static inline int16_t unaligned16_be(const uint8_t *ptr)
{
	return (int16_t) ((ptr[0] << 8) | ptr[1]);
}

static inline int16_t unaligned16_le(const uint8_t *ptr)
{
	return (int16_t) (ptr[0] | (ptr[1] << 8));
}

/*
 * Internal helper functions for input data processing. In order to get
 * optimal performance, it is important to have "nsamples", "nchannels"
 * and "big_endian" arguments used with this inline function as compile
 * time constants.
 */

static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
	int position,
	const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
	int nsamples, int nchannels, int big_endian)
{
	/* handle X buffer wraparound */
	if (position < nsamples) {
		if (nchannels > 0)
			memcpy(&X[0][SBC_X_BUFFER_SIZE - 40], &X[0][position],
							36 * sizeof(int16_t));
		if (nchannels > 1)
			memcpy(&X[1][SBC_X_BUFFER_SIZE - 40], &X[1][position],
							36 * sizeof(int16_t));
		position = SBC_X_BUFFER_SIZE - 40;
	}

	#define PCM(i) (big_endian ? \
		unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))

	/* copy/permutate audio samples */
	while ((nsamples -= 8) >= 0) {
		position -= 8;
		if (nchannels > 0) {
			int16_t *x = &X[0][position];
			x[0]  = PCM(0 + 7 * nchannels);
			x[1]  = PCM(0 + 3 * nchannels);
			x[2]  = PCM(0 + 6 * nchannels);
			x[3]  = PCM(0 + 4 * nchannels);
			x[4]  = PCM(0 + 0 * nchannels);
			x[5]  = PCM(0 + 2 * nchannels);
			x[6]  = PCM(0 + 1 * nchannels);
			x[7]  = PCM(0 + 5 * nchannels);
		}
		if (nchannels > 1) {
			int16_t *x = &X[1][position];
			x[0]  = PCM(1 + 7 * nchannels);
			x[1]  = PCM(1 + 3 * nchannels);
			x[2]  = PCM(1 + 6 * nchannels);
			x[3]  = PCM(1 + 4 * nchannels);
			x[4]  = PCM(1 + 0 * nchannels);
			x[5]  = PCM(1 + 2 * nchannels);
			x[6]  = PCM(1 + 1 * nchannels);
			x[7]  = PCM(1 + 5 * nchannels);
		}
		pcm += 16 * nchannels;
	}
	#undef PCM

	return position;
}

static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
	int position,
	const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
	int nsamples, int nchannels, int big_endian)
{
	/* handle X buffer wraparound */
	if (position < nsamples) {
		if (nchannels > 0)
			memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
							72 * sizeof(int16_t));
		if (nchannels > 1)
			memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
							72 * sizeof(int16_t));
		position = SBC_X_BUFFER_SIZE - 72;
	}

	#define PCM(i) (big_endian ? \
		unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))

	/* copy/permutate audio samples */
	while ((nsamples -= 16) >= 0) {
		position -= 16;
		if (nchannels > 0) {
			int16_t *x = &X[0][position];
			x[0]  = PCM(0 + 15 * nchannels);
			x[1]  = PCM(0 + 7 * nchannels);
			x[2]  = PCM(0 + 14 * nchannels);
			x[3]  = PCM(0 + 8 * nchannels);
			x[4]  = PCM(0 + 13 * nchannels);
			x[5]  = PCM(0 + 9 * nchannels);
			x[6]  = PCM(0 + 12 * nchannels);
			x[7]  = PCM(0 + 10 * nchannels);
			x[8]  = PCM(0 + 11 * nchannels);
			x[9]  = PCM(0 + 3 * nchannels);
			x[10] = PCM(0 + 6 * nchannels);
			x[11] = PCM(0 + 0 * nchannels);
			x[12] = PCM(0 + 5 * nchannels);
			x[13] = PCM(0 + 1 * nchannels);
			x[14] = PCM(0 + 4 * nchannels);
			x[15] = PCM(0 + 2 * nchannels);
		}
		if (nchannels > 1) {
			int16_t *x = &X[1][position];
			x[0]  = PCM(1 + 15 * nchannels);
			x[1]  = PCM(1 + 7 * nchannels);
			x[2]  = PCM(1 + 14 * nchannels);
			x[3]  = PCM(1 + 8 * nchannels);
			x[4]  = PCM(1 + 13 * nchannels);
			x[5]  = PCM(1 + 9 * nchannels);
			x[6]  = PCM(1 + 12 * nchannels);
			x[7]  = PCM(1 + 10 * nchannels);
			x[8]  = PCM(1 + 11 * nchannels);
			x[9]  = PCM(1 + 3 * nchannels);
			x[10] = PCM(1 + 6 * nchannels);
			x[11] = PCM(1 + 0 * nchannels);
			x[12] = PCM(1 + 5 * nchannels);
			x[13] = PCM(1 + 1 * nchannels);
			x[14] = PCM(1 + 4 * nchannels);
			x[15] = PCM(1 + 2 * nchannels);
		}
		pcm += 32 * nchannels;
	}
	#undef PCM

	return position;
}

/*
 * Input data processing functions. The data is endian converted if needed,
 * channels are deintrleaved and audio samples are reordered for use in
 * SIMD-friendly analysis filter function. The results are put into "X"
 * array, getting appended to the previous data (or it is better to say
 * prepended, as the buffer is filled from top to bottom). Old data is
 * discarded when neededed, but availability of (10 * nrof_subbands)
 * contiguous samples is always guaranteed for the input to the analysis
 * filter. This is achieved by copying a sufficient part of old data
 * to the top of the buffer on buffer wraparound.
 */

static int sbc_enc_process_input_4s_le(int position,
		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
		int nsamples, int nchannels)
{
	if (nchannels > 1)
		return sbc_encoder_process_input_s4_internal(
			position, pcm, X, nsamples, 2, 0);
	else
		return sbc_encoder_process_input_s4_internal(
			position, pcm, X, nsamples, 1, 0);
}

static int sbc_enc_process_input_4s_be(int position,
		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
		int nsamples, int nchannels)
{
	if (nchannels > 1)
		return sbc_encoder_process_input_s4_internal(
			position, pcm, X, nsamples, 2, 1);
	else
		return sbc_encoder_process_input_s4_internal(
			position, pcm, X, nsamples, 1, 1);
}

static int sbc_enc_process_input_8s_le(int position,
		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
		int nsamples, int nchannels)
{
	if (nchannels > 1)
		return sbc_encoder_process_input_s8_internal(
			position, pcm, X, nsamples, 2, 0);
	else
		return sbc_encoder_process_input_s8_internal(
			position, pcm, X, nsamples, 1, 0);
}

static int sbc_enc_process_input_8s_be(int position,
		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
		int nsamples, int nchannels)
{
	if (nchannels > 1)
		return sbc_encoder_process_input_s8_internal(
			position, pcm, X, nsamples, 2, 1);
	else
		return sbc_encoder_process_input_s8_internal(
			position, pcm, X, nsamples, 1, 1);
}

/* Supplementary function to count the number of leading zeros */

static inline int sbc_clz(uint32_t x)
{
#ifdef __GNUC__
	return __builtin_clz(x);
#else
	/* TODO: this should be replaced with something better if good
	 * performance is wanted when using compilers other than gcc */
	int cnt = 0;
	while (x) {
		cnt++;
		x >>= 1;
	}
	return 32 - cnt;
#endif
}

static void sbc_calc_scalefactors(
	int32_t sb_sample_f[16][2][8],
	uint32_t scale_factor[2][8],
	int blocks, int channels, int subbands)
{
	int ch, sb, blk;
	for (ch = 0; ch < channels; ch++) {
		for (sb = 0; sb < subbands; sb++) {
			uint32_t x = 1 << SCALE_OUT_BITS;
			for (blk = 0; blk < blocks; blk++) {
				int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
				if (tmp != 0)
					x |= tmp - 1;
			}
			scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
				sbc_clz(x);
		}
	}
}

static int sbc_calc_scalefactors_j(
	int32_t sb_sample_f[16][2][8],
	uint32_t scale_factor[2][8],
	int blocks, int subbands)
{
	int blk, joint = 0;
	int32_t tmp0, tmp1;
	uint32_t x, y;

	/* last subband does not use joint stereo */
	int sb = subbands - 1;
	x = 1 << SCALE_OUT_BITS;
	y = 1 << SCALE_OUT_BITS;
	for (blk = 0; blk < blocks; blk++) {
		tmp0 = fabs(sb_sample_f[blk][0][sb]);
		tmp1 = fabs(sb_sample_f[blk][1][sb]);
		if (tmp0 != 0)
			x |= tmp0 - 1;
		if (tmp1 != 0)
			y |= tmp1 - 1;
	}
	scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
	scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(y);

	/* the rest of subbands can use joint stereo */
	while (--sb >= 0) {
		int32_t sb_sample_j[16][2];
		x = 1 << SCALE_OUT_BITS;
		y = 1 << SCALE_OUT_BITS;
		for (blk = 0; blk < blocks; blk++) {
			tmp0 = sb_sample_f[blk][0][sb];
			tmp1 = sb_sample_f[blk][1][sb];
			sb_sample_j[blk][0] = ASR(tmp0, 1) + ASR(tmp1, 1);
			sb_sample_j[blk][1] = ASR(tmp0, 1) - ASR(tmp1, 1);
			tmp0 = fabs(tmp0);
			tmp1 = fabs(tmp1);
			if (tmp0 != 0)
				x |= tmp0 - 1;
			if (tmp1 != 0)
				y |= tmp1 - 1;
		}
		scale_factor[0][sb] = (31 - SCALE_OUT_BITS) -
			sbc_clz(x);
		scale_factor[1][sb] = (31 - SCALE_OUT_BITS) -
			sbc_clz(y);
		x = 1 << SCALE_OUT_BITS;
		y = 1 << SCALE_OUT_BITS;
		for (blk = 0; blk < blocks; blk++) {
			tmp0 = fabs(sb_sample_j[blk][0]);
			tmp1 = fabs(sb_sample_j[blk][1]);
			if (tmp0 != 0)
				x |= tmp0 - 1;
			if (tmp1 != 0)
				y |= tmp1 - 1;
		}
		x = (31 - SCALE_OUT_BITS) - sbc_clz(x);
		y = (31 - SCALE_OUT_BITS) - sbc_clz(y);

		/* decide whether to use joint stereo for this subband */
		if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) {
			joint |= 1 << (subbands - 1 - sb);
			scale_factor[0][sb] = x;
			scale_factor[1][sb] = y;
			for (blk = 0; blk < blocks; blk++) {
				sb_sample_f[blk][0][sb] = sb_sample_j[blk][0];
				sb_sample_f[blk][1][sb] = sb_sample_j[blk][1];
			}
		}
	}

	/* bitmask with the information about subbands using joint stereo */
	return joint;
}

/*
 * Detect CPU features and setup function pointers
 */
void sbc_init_primitives(struct sbc_encoder_state *state)
{
	/* Default implementation for analyze functions */
	state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
	state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;

	/* Default implementation for input reordering / deinterleaving */
	state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
	state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
	state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
	state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;

	/* Default implementation for scale factors calculation */
	state->sbc_calc_scalefactors = sbc_calc_scalefactors;
	state->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j;
	state->implementation_info = "Generic C";

	/* X86/AMD64 optimizations */
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
	sbc_init_primitives_mmx(state);
#endif

	/* ARM optimizations */
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
	sbc_init_primitives_neon(state);
#endif
}