summaryrefslogtreecommitdiff
path: root/include/net/wireless.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/net/wireless.h')
-rw-r--r--include/net/wireless.h492
1 files changed, 0 insertions, 492 deletions
diff --git a/include/net/wireless.h b/include/net/wireless.h
deleted file mode 100644
index abd27b033331..000000000000
--- a/include/net/wireless.h
+++ /dev/null
@@ -1,492 +0,0 @@
-#ifndef __NET_WIRELESS_H
-#define __NET_WIRELESS_H
-
-/*
- * 802.11 device management
- *
- * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
- */
-
-#include <linux/netdevice.h>
-#include <linux/debugfs.h>
-#include <linux/list.h>
-#include <linux/ieee80211.h>
-#include <net/cfg80211.h>
-
-/**
- * enum ieee80211_band - supported frequency bands
- *
- * The bands are assigned this way because the supported
- * bitrates differ in these bands.
- *
- * @IEEE80211_BAND_2GHZ: 2.4GHz ISM band
- * @IEEE80211_BAND_5GHZ: around 5GHz band (4.9-5.7)
- */
-enum ieee80211_band {
- IEEE80211_BAND_2GHZ,
- IEEE80211_BAND_5GHZ,
-
- /* keep last */
- IEEE80211_NUM_BANDS
-};
-
-/**
- * enum ieee80211_channel_flags - channel flags
- *
- * Channel flags set by the regulatory control code.
- *
- * @IEEE80211_CHAN_DISABLED: This channel is disabled.
- * @IEEE80211_CHAN_PASSIVE_SCAN: Only passive scanning is permitted
- * on this channel.
- * @IEEE80211_CHAN_NO_IBSS: IBSS is not allowed on this channel.
- * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
- * @IEEE80211_CHAN_NO_FAT_ABOVE: extension channel above this channel
- * is not permitted.
- * @IEEE80211_CHAN_NO_FAT_BELOW: extension channel below this channel
- * is not permitted.
- */
-enum ieee80211_channel_flags {
- IEEE80211_CHAN_DISABLED = 1<<0,
- IEEE80211_CHAN_PASSIVE_SCAN = 1<<1,
- IEEE80211_CHAN_NO_IBSS = 1<<2,
- IEEE80211_CHAN_RADAR = 1<<3,
- IEEE80211_CHAN_NO_FAT_ABOVE = 1<<4,
- IEEE80211_CHAN_NO_FAT_BELOW = 1<<5,
-};
-
-/**
- * struct ieee80211_channel - channel definition
- *
- * This structure describes a single channel for use
- * with cfg80211.
- *
- * @center_freq: center frequency in MHz
- * @max_bandwidth: maximum allowed bandwidth for this channel, in MHz
- * @hw_value: hardware-specific value for the channel
- * @flags: channel flags from &enum ieee80211_channel_flags.
- * @orig_flags: channel flags at registration time, used by regulatory
- * code to support devices with additional restrictions
- * @band: band this channel belongs to.
- * @max_antenna_gain: maximum antenna gain in dBi
- * @max_power: maximum transmission power (in dBm)
- * @beacon_found: helper to regulatory code to indicate when a beacon
- * has been found on this channel. Use regulatory_hint_found_beacon()
- * to enable this, this is is useful only on 5 GHz band.
- * @orig_mag: internal use
- * @orig_mpwr: internal use
- */
-struct ieee80211_channel {
- enum ieee80211_band band;
- u16 center_freq;
- u8 max_bandwidth;
- u16 hw_value;
- u32 flags;
- int max_antenna_gain;
- int max_power;
- bool beacon_found;
- u32 orig_flags;
- int orig_mag, orig_mpwr;
-};
-
-/**
- * enum ieee80211_rate_flags - rate flags
- *
- * Hardware/specification flags for rates. These are structured
- * in a way that allows using the same bitrate structure for
- * different bands/PHY modes.
- *
- * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
- * preamble on this bitrate; only relevant in 2.4GHz band and
- * with CCK rates.
- * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
- * when used with 802.11a (on the 5 GHz band); filled by the
- * core code when registering the wiphy.
- * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
- * when used with 802.11b (on the 2.4 GHz band); filled by the
- * core code when registering the wiphy.
- * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
- * when used with 802.11g (on the 2.4 GHz band); filled by the
- * core code when registering the wiphy.
- * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
- */
-enum ieee80211_rate_flags {
- IEEE80211_RATE_SHORT_PREAMBLE = 1<<0,
- IEEE80211_RATE_MANDATORY_A = 1<<1,
- IEEE80211_RATE_MANDATORY_B = 1<<2,
- IEEE80211_RATE_MANDATORY_G = 1<<3,
- IEEE80211_RATE_ERP_G = 1<<4,
-};
-
-/**
- * struct ieee80211_rate - bitrate definition
- *
- * This structure describes a bitrate that an 802.11 PHY can
- * operate with. The two values @hw_value and @hw_value_short
- * are only for driver use when pointers to this structure are
- * passed around.
- *
- * @flags: rate-specific flags
- * @bitrate: bitrate in units of 100 Kbps
- * @hw_value: driver/hardware value for this rate
- * @hw_value_short: driver/hardware value for this rate when
- * short preamble is used
- */
-struct ieee80211_rate {
- u32 flags;
- u16 bitrate;
- u16 hw_value, hw_value_short;
-};
-
-/**
- * struct ieee80211_sta_ht_cap - STA's HT capabilities
- *
- * This structure describes most essential parameters needed
- * to describe 802.11n HT capabilities for an STA.
- *
- * @ht_supported: is HT supported by the STA
- * @cap: HT capabilities map as described in 802.11n spec
- * @ampdu_factor: Maximum A-MPDU length factor
- * @ampdu_density: Minimum A-MPDU spacing
- * @mcs: Supported MCS rates
- */
-struct ieee80211_sta_ht_cap {
- u16 cap; /* use IEEE80211_HT_CAP_ */
- bool ht_supported;
- u8 ampdu_factor;
- u8 ampdu_density;
- struct ieee80211_mcs_info mcs;
-};
-
-/**
- * struct ieee80211_supported_band - frequency band definition
- *
- * This structure describes a frequency band a wiphy
- * is able to operate in.
- *
- * @channels: Array of channels the hardware can operate in
- * in this band.
- * @band: the band this structure represents
- * @n_channels: Number of channels in @channels
- * @bitrates: Array of bitrates the hardware can operate with
- * in this band. Must be sorted to give a valid "supported
- * rates" IE, i.e. CCK rates first, then OFDM.
- * @n_bitrates: Number of bitrates in @bitrates
- */
-struct ieee80211_supported_band {
- struct ieee80211_channel *channels;
- struct ieee80211_rate *bitrates;
- enum ieee80211_band band;
- int n_channels;
- int n_bitrates;
- struct ieee80211_sta_ht_cap ht_cap;
-};
-
-/**
- * struct wiphy - wireless hardware description
- * @idx: the wiphy index assigned to this item
- * @class_dev: the class device representing /sys/class/ieee80211/<wiphy-name>
- * @custom_regulatory: tells us the driver for this device
- * has its own custom regulatory domain and cannot identify the
- * ISO / IEC 3166 alpha2 it belongs to. When this is enabled
- * we will disregard the first regulatory hint (when the
- * initiator is %REGDOM_SET_BY_CORE).
- * @strict_regulatory: tells us the driver for this device will ignore
- * regulatory domain settings until it gets its own regulatory domain
- * via its regulatory_hint(). After its gets its own regulatory domain
- * it will only allow further regulatory domain settings to further
- * enhance compliance. For example if channel 13 and 14 are disabled
- * by this regulatory domain no user regulatory domain can enable these
- * channels at a later time. This can be used for devices which do not
- * have calibration information gauranteed for frequencies or settings
- * outside of its regulatory domain.
- * @reg_notifier: the driver's regulatory notification callback
- * @regd: the driver's regulatory domain, if one was requested via
- * the regulatory_hint() API. This can be used by the driver
- * on the reg_notifier() if it chooses to ignore future
- * regulatory domain changes caused by other drivers.
- * @signal_type: signal type reported in &struct cfg80211_bss.
- * @cipher_suites: supported cipher suites
- * @n_cipher_suites: number of supported cipher suites
- */
-struct wiphy {
- /* assign these fields before you register the wiphy */
-
- /* permanent MAC address */
- u8 perm_addr[ETH_ALEN];
-
- /* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
- u16 interface_modes;
-
- bool custom_regulatory;
- bool strict_regulatory;
-
- enum cfg80211_signal_type signal_type;
-
- int bss_priv_size;
- u8 max_scan_ssids;
- u16 max_scan_ie_len;
-
- int n_cipher_suites;
- const u32 *cipher_suites;
-
- /* If multiple wiphys are registered and you're handed e.g.
- * a regular netdev with assigned ieee80211_ptr, you won't
- * know whether it points to a wiphy your driver has registered
- * or not. Assign this to something global to your driver to
- * help determine whether you own this wiphy or not. */
- void *privid;
-
- struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS];
-
- /* Lets us get back the wiphy on the callback */
- int (*reg_notifier)(struct wiphy *wiphy,
- struct regulatory_request *request);
-
- /* fields below are read-only, assigned by cfg80211 */
-
- const struct ieee80211_regdomain *regd;
-
- /* the item in /sys/class/ieee80211/ points to this,
- * you need use set_wiphy_dev() (see below) */
- struct device dev;
-
- /* dir in debugfs: ieee80211/<wiphyname> */
- struct dentry *debugfsdir;
-
- char priv[0] __attribute__((__aligned__(NETDEV_ALIGN)));
-};
-
-/** struct wireless_dev - wireless per-netdev state
- *
- * This structure must be allocated by the driver/stack
- * that uses the ieee80211_ptr field in struct net_device
- * (this is intentional so it can be allocated along with
- * the netdev.)
- *
- * @wiphy: pointer to hardware description
- * @iftype: interface type
- * @list: (private)
- * @netdev (private)
- */
-struct wireless_dev {
- struct wiphy *wiphy;
- enum nl80211_iftype iftype;
-
- /* private to the generic wireless code */
- struct list_head list;
- struct net_device *netdev;
-
- /* currently used for IBSS - might be rearranged in the future */
- struct cfg80211_bss *current_bss;
- u8 bssid[ETH_ALEN];
- u8 ssid[IEEE80211_MAX_SSID_LEN];
- u8 ssid_len;
-
-#ifdef CONFIG_WIRELESS_EXT
- /* wext data */
- struct cfg80211_ibss_params wext;
- u8 wext_bssid[ETH_ALEN];
-#endif
-};
-
-/**
- * wiphy_priv - return priv from wiphy
- */
-static inline void *wiphy_priv(struct wiphy *wiphy)
-{
- BUG_ON(!wiphy);
- return &wiphy->priv;
-}
-
-/**
- * set_wiphy_dev - set device pointer for wiphy
- */
-static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
-{
- wiphy->dev.parent = dev;
-}
-
-/**
- * wiphy_dev - get wiphy dev pointer
- */
-static inline struct device *wiphy_dev(struct wiphy *wiphy)
-{
- return wiphy->dev.parent;
-}
-
-/**
- * wiphy_name - get wiphy name
- */
-static inline const char *wiphy_name(struct wiphy *wiphy)
-{
- return dev_name(&wiphy->dev);
-}
-
-/**
- * wdev_priv - return wiphy priv from wireless_dev
- */
-static inline void *wdev_priv(struct wireless_dev *wdev)
-{
- BUG_ON(!wdev);
- return wiphy_priv(wdev->wiphy);
-}
-
-/**
- * wiphy_new - create a new wiphy for use with cfg80211
- *
- * create a new wiphy and associate the given operations with it.
- * @sizeof_priv bytes are allocated for private use.
- *
- * the returned pointer must be assigned to each netdev's
- * ieee80211_ptr for proper operation.
- */
-struct wiphy *wiphy_new(struct cfg80211_ops *ops, int sizeof_priv);
-
-/**
- * wiphy_register - register a wiphy with cfg80211
- *
- * register the given wiphy
- *
- * Returns a non-negative wiphy index or a negative error code.
- */
-extern int wiphy_register(struct wiphy *wiphy);
-
-/**
- * wiphy_unregister - deregister a wiphy from cfg80211
- *
- * unregister a device with the given priv pointer.
- * After this call, no more requests can be made with this priv
- * pointer, but the call may sleep to wait for an outstanding
- * request that is being handled.
- */
-extern void wiphy_unregister(struct wiphy *wiphy);
-
-/**
- * wiphy_free - free wiphy
- */
-extern void wiphy_free(struct wiphy *wiphy);
-
-/**
- * ieee80211_channel_to_frequency - convert channel number to frequency
- */
-extern int ieee80211_channel_to_frequency(int chan);
-
-/**
- * ieee80211_frequency_to_channel - convert frequency to channel number
- */
-extern int ieee80211_frequency_to_channel(int freq);
-
-/*
- * Name indirection necessary because the ieee80211 code also has
- * a function named "ieee80211_get_channel", so if you include
- * cfg80211's header file you get cfg80211's version, if you try
- * to include both header files you'll (rightfully!) get a symbol
- * clash.
- */
-extern struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
- int freq);
-/**
- * ieee80211_get_channel - get channel struct from wiphy for specified frequency
- */
-static inline struct ieee80211_channel *
-ieee80211_get_channel(struct wiphy *wiphy, int freq)
-{
- return __ieee80211_get_channel(wiphy, freq);
-}
-
-/**
- * ieee80211_get_response_rate - get basic rate for a given rate
- *
- * @sband: the band to look for rates in
- * @basic_rates: bitmap of basic rates
- * @bitrate: the bitrate for which to find the basic rate
- *
- * This function returns the basic rate corresponding to a given
- * bitrate, that is the next lower bitrate contained in the basic
- * rate map, which is, for this function, given as a bitmap of
- * indices of rates in the band's bitrate table.
- */
-struct ieee80211_rate *
-ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
- u32 basic_rates, int bitrate);
-
-/**
- * regulatory_hint - driver hint to the wireless core a regulatory domain
- * @wiphy: the wireless device giving the hint (used only for reporting
- * conflicts)
- * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
- * should be in. If @rd is set this should be NULL. Note that if you
- * set this to NULL you should still set rd->alpha2 to some accepted
- * alpha2.
- *
- * Wireless drivers can use this function to hint to the wireless core
- * what it believes should be the current regulatory domain by
- * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
- * domain should be in or by providing a completely build regulatory domain.
- * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
- * for a regulatory domain structure for the respective country.
- *
- * The wiphy must have been registered to cfg80211 prior to this call.
- * For cfg80211 drivers this means you must first use wiphy_register(),
- * for mac80211 drivers you must first use ieee80211_register_hw().
- *
- * Drivers should check the return value, its possible you can get
- * an -ENOMEM.
- */
-extern int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
-
-/**
- * regulatory_hint_11d - hints a country IE as a regulatory domain
- * @wiphy: the wireless device giving the hint (used only for reporting
- * conflicts)
- * @country_ie: pointer to the country IE
- * @country_ie_len: length of the country IE
- *
- * We will intersect the rd with the what CRDA tells us should apply
- * for the alpha2 this country IE belongs to, this prevents APs from
- * sending us incorrect or outdated information against a country.
- */
-extern void regulatory_hint_11d(struct wiphy *wiphy,
- u8 *country_ie,
- u8 country_ie_len);
-/**
- * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
- * @wiphy: the wireless device we want to process the regulatory domain on
- * @regd: the custom regulatory domain to use for this wiphy
- *
- * Drivers can sometimes have custom regulatory domains which do not apply
- * to a specific country. Drivers can use this to apply such custom regulatory
- * domains. This routine must be called prior to wiphy registration. The
- * custom regulatory domain will be trusted completely and as such previous
- * default channel settings will be disregarded. If no rule is found for a
- * channel on the regulatory domain the channel will be disabled.
- */
-extern void wiphy_apply_custom_regulatory(
- struct wiphy *wiphy,
- const struct ieee80211_regdomain *regd);
-
-/**
- * freq_reg_info - get regulatory information for the given frequency
- * @wiphy: the wiphy for which we want to process this rule for
- * @center_freq: Frequency in KHz for which we want regulatory information for
- * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
- * you can set this to 0. If this frequency is allowed we then set
- * this value to the maximum allowed bandwidth.
- * @reg_rule: the regulatory rule which we have for this frequency
- *
- * Use this function to get the regulatory rule for a specific frequency on
- * a given wireless device. If the device has a specific regulatory domain
- * it wants to follow we respect that unless a country IE has been received
- * and processed already.
- *
- * Returns 0 if it was able to find a valid regulatory rule which does
- * apply to the given center_freq otherwise it returns non-zero. It will
- * also return -ERANGE if we determine the given center_freq does not even have
- * a regulatory rule for a frequency range in the center_freq's band. See
- * freq_in_rule_band() for our current definition of a band -- this is purely
- * subjective and right now its 802.11 specific.
- */
-extern int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
- const struct ieee80211_reg_rule **reg_rule);
-
-#endif /* __NET_WIRELESS_H */