diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/crypto/asymmetric-keys.txt | 312 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 6 | ||||
-rw-r--r-- | Documentation/security/keys.txt | 50 |
3 files changed, 367 insertions, 1 deletions
diff --git a/Documentation/crypto/asymmetric-keys.txt b/Documentation/crypto/asymmetric-keys.txt new file mode 100644 index 000000000000..b7675904a747 --- /dev/null +++ b/Documentation/crypto/asymmetric-keys.txt @@ -0,0 +1,312 @@ + ============================================= + ASYMMETRIC / PUBLIC-KEY CRYPTOGRAPHY KEY TYPE + ============================================= + +Contents: + + - Overview. + - Key identification. + - Accessing asymmetric keys. + - Signature verification. + - Asymmetric key subtypes. + - Instantiation data parsers. + + +======== +OVERVIEW +======== + +The "asymmetric" key type is designed to be a container for the keys used in +public-key cryptography, without imposing any particular restrictions on the +form or mechanism of the cryptography or form of the key. + +The asymmetric key is given a subtype that defines what sort of data is +associated with the key and provides operations to describe and destroy it. +However, no requirement is made that the key data actually be stored in the +key. + +A completely in-kernel key retention and operation subtype can be defined, but +it would also be possible to provide access to cryptographic hardware (such as +a TPM) that might be used to both retain the relevant key and perform +operations using that key. In such a case, the asymmetric key would then +merely be an interface to the TPM driver. + +Also provided is the concept of a data parser. Data parsers are responsible +for extracting information from the blobs of data passed to the instantiation +function. The first data parser that recognises the blob gets to set the +subtype of the key and define the operations that can be done on that key. + +A data parser may interpret the data blob as containing the bits representing a +key, or it may interpret it as a reference to a key held somewhere else in the +system (for example, a TPM). + + +================== +KEY IDENTIFICATION +================== + +If a key is added with an empty name, the instantiation data parsers are given +the opportunity to pre-parse a key and to determine the description the key +should be given from the content of the key. + +This can then be used to refer to the key, either by complete match or by +partial match. The key type may also use other criteria to refer to a key. + +The asymmetric key type's match function can then perform a wider range of +comparisons than just the straightforward comparison of the description with +the criterion string: + + (1) If the criterion string is of the form "id:<hexdigits>" then the match + function will examine a key's fingerprint to see if the hex digits given + after the "id:" match the tail. For instance: + + keyctl search @s asymmetric id:5acc2142 + + will match a key with fingerprint: + + 1A00 2040 7601 7889 DE11 882C 3823 04AD 5ACC 2142 + + (2) If the criterion string is of the form "<subtype>:<hexdigits>" then the + match will match the ID as in (1), but with the added restriction that + only keys of the specified subtype (e.g. tpm) will be matched. For + instance: + + keyctl search @s asymmetric tpm:5acc2142 + +Looking in /proc/keys, the last 8 hex digits of the key fingerprint are +displayed, along with the subtype: + + 1a39e171 I----- 1 perm 3f010000 0 0 asymmetri modsign.0: DSA 5acc2142 [] + + +========================= +ACCESSING ASYMMETRIC KEYS +========================= + +For general access to asymmetric keys from within the kernel, the following +inclusion is required: + + #include <crypto/public_key.h> + +This gives access to functions for dealing with asymmetric / public keys. +Three enums are defined there for representing public-key cryptography +algorithms: + + enum pkey_algo + +digest algorithms used by those: + + enum pkey_hash_algo + +and key identifier representations: + + enum pkey_id_type + +Note that the key type representation types are required because key +identifiers from different standards aren't necessarily compatible. For +instance, PGP generates key identifiers by hashing the key data plus some +PGP-specific metadata, whereas X.509 has arbitrary certificate identifiers. + +The operations defined upon a key are: + + (1) Signature verification. + +Other operations are possible (such as encryption) with the same key data +required for verification, but not currently supported, and others +(eg. decryption and signature generation) require extra key data. + + +SIGNATURE VERIFICATION +---------------------- + +An operation is provided to perform cryptographic signature verification, using +an asymmetric key to provide or to provide access to the public key. + + int verify_signature(const struct key *key, + const struct public_key_signature *sig); + +The caller must have already obtained the key from some source and can then use +it to check the signature. The caller must have parsed the signature and +transferred the relevant bits to the structure pointed to by sig. + + struct public_key_signature { + u8 *digest; + u8 digest_size; + enum pkey_hash_algo pkey_hash_algo : 8; + u8 nr_mpi; + union { + MPI mpi[2]; + ... + }; + }; + +The algorithm used must be noted in sig->pkey_hash_algo, and all the MPIs that +make up the actual signature must be stored in sig->mpi[] and the count of MPIs +placed in sig->nr_mpi. + +In addition, the data must have been digested by the caller and the resulting +hash must be pointed to by sig->digest and the size of the hash be placed in +sig->digest_size. + +The function will return 0 upon success or -EKEYREJECTED if the signature +doesn't match. + +The function may also return -ENOTSUPP if an unsupported public-key algorithm +or public-key/hash algorithm combination is specified or the key doesn't +support the operation; -EBADMSG or -ERANGE if some of the parameters have weird +data; or -ENOMEM if an allocation can't be performed. -EINVAL can be returned +if the key argument is the wrong type or is incompletely set up. + + +======================= +ASYMMETRIC KEY SUBTYPES +======================= + +Asymmetric keys have a subtype that defines the set of operations that can be +performed on that key and that determines what data is attached as the key +payload. The payload format is entirely at the whim of the subtype. + +The subtype is selected by the key data parser and the parser must initialise +the data required for it. The asymmetric key retains a reference on the +subtype module. + +The subtype definition structure can be found in: + + #include <keys/asymmetric-subtype.h> + +and looks like the following: + + struct asymmetric_key_subtype { + struct module *owner; + const char *name; + + void (*describe)(const struct key *key, struct seq_file *m); + void (*destroy)(void *payload); + int (*verify_signature)(const struct key *key, + const struct public_key_signature *sig); + }; + +Asymmetric keys point to this with their type_data[0] member. + +The owner and name fields should be set to the owning module and the name of +the subtype. Currently, the name is only used for print statements. + +There are a number of operations defined by the subtype: + + (1) describe(). + + Mandatory. This allows the subtype to display something in /proc/keys + against the key. For instance the name of the public key algorithm type + could be displayed. The key type will display the tail of the key + identity string after this. + + (2) destroy(). + + Mandatory. This should free the memory associated with the key. The + asymmetric key will look after freeing the fingerprint and releasing the + reference on the subtype module. + + (3) verify_signature(). + + Optional. These are the entry points for the key usage operations. + Currently there is only the one defined. If not set, the caller will be + given -ENOTSUPP. The subtype may do anything it likes to implement an + operation, including offloading to hardware. + + +========================== +INSTANTIATION DATA PARSERS +========================== + +The asymmetric key type doesn't generally want to store or to deal with a raw +blob of data that holds the key data. It would have to parse it and error +check it each time it wanted to use it. Further, the contents of the blob may +have various checks that can be performed on it (eg. self-signatures, validity +dates) and may contain useful data about the key (identifiers, capabilities). + +Also, the blob may represent a pointer to some hardware containing the key +rather than the key itself. + +Examples of blob formats for which parsers could be implemented include: + + - OpenPGP packet stream [RFC 4880]. + - X.509 ASN.1 stream. + - Pointer to TPM key. + - Pointer to UEFI key. + +During key instantiation each parser in the list is tried until one doesn't +return -EBADMSG. + +The parser definition structure can be found in: + + #include <keys/asymmetric-parser.h> + +and looks like the following: + + struct asymmetric_key_parser { + struct module *owner; + const char *name; + + int (*parse)(struct key_preparsed_payload *prep); + }; + +The owner and name fields should be set to the owning module and the name of +the parser. + +There is currently only a single operation defined by the parser, and it is +mandatory: + + (1) parse(). + + This is called to preparse the key from the key creation and update paths. + In particular, it is called during the key creation _before_ a key is + allocated, and as such, is permitted to provide the key's description in + the case that the caller declines to do so. + + The caller passes a pointer to the following struct with all of the fields + cleared, except for data, datalen and quotalen [see + Documentation/security/keys.txt]. + + struct key_preparsed_payload { + char *description; + void *type_data[2]; + void *payload; + const void *data; + size_t datalen; + size_t quotalen; + }; + + The instantiation data is in a blob pointed to by data and is datalen in + size. The parse() function is not permitted to change these two values at + all, and shouldn't change any of the other values _unless_ they are + recognise the blob format and will not return -EBADMSG to indicate it is + not theirs. + + If the parser is happy with the blob, it should propose a description for + the key and attach it to ->description, ->type_data[0] should be set to + point to the subtype to be used, ->payload should be set to point to the + initialised data for that subtype, ->type_data[1] should point to a hex + fingerprint and quotalen should be updated to indicate how much quota this + key should account for. + + When clearing up, the data attached to ->type_data[1] and ->description + will be kfree()'d and the data attached to ->payload will be passed to the + subtype's ->destroy() method to be disposed of. A module reference for + the subtype pointed to by ->type_data[0] will be put. + + + If the data format is not recognised, -EBADMSG should be returned. If it + is recognised, but the key cannot for some reason be set up, some other + negative error code should be returned. On success, 0 should be returned. + + The key's fingerprint string may be partially matched upon. For a + public-key algorithm such as RSA and DSA this will likely be a printable + hex version of the key's fingerprint. + +Functions are provided to register and unregister parsers: + + int register_asymmetric_key_parser(struct asymmetric_key_parser *parser); + void unregister_asymmetric_key_parser(struct asymmetric_key_parser *subtype); + +Parsers may not have the same name. The names are otherwise only used for +displaying in debugging messages. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index e2ed3360b708..9776f068306b 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1593,6 +1593,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted. log everything. Information is printed at KERN_DEBUG so loglevel=8 may also need to be specified. + module.sig_enforce + [KNL] When CONFIG_MODULE_SIG is set, this means that + modules without (valid) signatures will fail to load. + Note that if CONFIG_MODULE_SIG_ENFORCE is set, that + is always true, so this option does nothing. + mousedev.tap_time= [MOUSE] Maximum time between finger touching and leaving touchpad surface for touch to be considered diff --git a/Documentation/security/keys.txt b/Documentation/security/keys.txt index aa0dbd74b71b..7d9ca92022d8 100644 --- a/Documentation/security/keys.txt +++ b/Documentation/security/keys.txt @@ -412,6 +412,10 @@ The main syscalls are: to the keyring. In this case, an error will be generated if the process does not have permission to write to the keyring. + If the key type supports it, if the description is NULL or an empty + string, the key type will try and generate a description from the content + of the payload. + The payload is optional, and the pointer can be NULL if not required by the type. The payload is plen in size, and plen can be zero for an empty payload. @@ -1114,12 +1118,53 @@ The structure has a number of fields, some of which are mandatory: it should return 0. - (*) int (*instantiate)(struct key *key, const void *data, size_t datalen); + (*) int (*preparse)(struct key_preparsed_payload *prep); + + This optional method permits the key type to attempt to parse payload + before a key is created (add key) or the key semaphore is taken (update or + instantiate key). The structure pointed to by prep looks like: + + struct key_preparsed_payload { + char *description; + void *type_data[2]; + void *payload; + const void *data; + size_t datalen; + size_t quotalen; + }; + + Before calling the method, the caller will fill in data and datalen with + the payload blob parameters; quotalen will be filled in with the default + quota size from the key type and the rest will be cleared. + + If a description can be proposed from the payload contents, that should be + attached as a string to the description field. This will be used for the + key description if the caller of add_key() passes NULL or "". + + The method can attach anything it likes to type_data[] and payload. These + are merely passed along to the instantiate() or update() operations. + + The method should return 0 if success ful or a negative error code + otherwise. + + + (*) void (*free_preparse)(struct key_preparsed_payload *prep); + + This method is only required if the preparse() method is provided, + otherwise it is unused. It cleans up anything attached to the + description, type_data and payload fields of the key_preparsed_payload + struct as filled in by the preparse() method. + + + (*) int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); This method is called to attach a payload to a key during construction. The payload attached need not bear any relation to the data passed to this function. + The prep->data and prep->datalen fields will define the original payload + blob. If preparse() was supplied then other fields may be filled in also. + If the amount of data attached to the key differs from the size in keytype->def_datalen, then key_payload_reserve() should be called. @@ -1135,6 +1180,9 @@ The structure has a number of fields, some of which are mandatory: If this type of key can be updated, then this method should be provided. It is called to update a key's payload from the blob of data provided. + The prep->data and prep->datalen fields will define the original payload + blob. If preparse() was supplied then other fields may be filled in also. + key_payload_reserve() should be called if the data length might change before any changes are actually made. Note that if this succeeds, the type is committed to changing the key because it's already been altered, so all |