summaryrefslogtreecommitdiff
path: root/tools/bugpoint/ToolRunner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/bugpoint/ToolRunner.cpp')
-rw-r--r--tools/bugpoint/ToolRunner.cpp890
1 files changed, 890 insertions, 0 deletions
diff --git a/tools/bugpoint/ToolRunner.cpp b/tools/bugpoint/ToolRunner.cpp
new file mode 100644
index 00000000000..d975d68d969
--- /dev/null
+++ b/tools/bugpoint/ToolRunner.cpp
@@ -0,0 +1,890 @@
+//===-- ToolRunner.cpp ----------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces described in the ToolRunner.h file.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "toolrunner"
+#include "ToolRunner.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Config/config.h" // for HAVE_LINK_R
+#include <fstream>
+#include <sstream>
+using namespace llvm;
+
+namespace llvm {
+ cl::opt<bool>
+ SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files"));
+}
+
+namespace {
+ cl::opt<std::string>
+ RemoteClient("remote-client",
+ cl::desc("Remote execution client (rsh/ssh)"));
+
+ cl::opt<std::string>
+ RemoteHost("remote-host",
+ cl::desc("Remote execution (rsh/ssh) host"));
+
+ cl::opt<std::string>
+ RemotePort("remote-port",
+ cl::desc("Remote execution (rsh/ssh) port"));
+
+ cl::opt<std::string>
+ RemoteUser("remote-user",
+ cl::desc("Remote execution (rsh/ssh) user id"));
+
+ cl::opt<std::string>
+ RemoteExtra("remote-extra-options",
+ cl::desc("Remote execution (rsh/ssh) extra options"));
+}
+
+/// RunProgramWithTimeout - This function provides an alternate interface
+/// to the sys::Program::ExecuteAndWait interface.
+/// @see sys::Program::ExecuteAndWait
+static int RunProgramWithTimeout(const sys::Path &ProgramPath,
+ const char **Args,
+ const sys::Path &StdInFile,
+ const sys::Path &StdOutFile,
+ const sys::Path &StdErrFile,
+ unsigned NumSeconds = 0,
+ unsigned MemoryLimit = 0,
+ std::string *ErrMsg = 0) {
+ const sys::Path* redirects[3];
+ redirects[0] = &StdInFile;
+ redirects[1] = &StdOutFile;
+ redirects[2] = &StdErrFile;
+
+#if 0 // For debug purposes
+ {
+ errs() << "RUN:";
+ for (unsigned i = 0; Args[i]; ++i)
+ errs() << " " << Args[i];
+ errs() << "\n";
+ }
+#endif
+
+ return
+ sys::Program::ExecuteAndWait(ProgramPath, Args, 0, redirects,
+ NumSeconds, MemoryLimit, ErrMsg);
+}
+
+/// RunProgramRemotelyWithTimeout - This function runs the given program
+/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
+/// Returns the remote program exit code or reports a remote client error if it
+/// fails. Remote client is required to return 255 if it failed or program exit
+/// code otherwise.
+/// @see sys::Program::ExecuteAndWait
+static int RunProgramRemotelyWithTimeout(const sys::Path &RemoteClientPath,
+ const char **Args,
+ const sys::Path &StdInFile,
+ const sys::Path &StdOutFile,
+ const sys::Path &StdErrFile,
+ unsigned NumSeconds = 0,
+ unsigned MemoryLimit = 0) {
+ const sys::Path* redirects[3];
+ redirects[0] = &StdInFile;
+ redirects[1] = &StdOutFile;
+ redirects[2] = &StdErrFile;
+
+#if 0 // For debug purposes
+ {
+ errs() << "RUN:";
+ for (unsigned i = 0; Args[i]; ++i)
+ errs() << " " << Args[i];
+ errs() << "\n";
+ }
+#endif
+
+ // Run the program remotely with the remote client
+ int ReturnCode = sys::Program::ExecuteAndWait(RemoteClientPath, Args,
+ 0, redirects, NumSeconds, MemoryLimit);
+
+ // Has the remote client fail?
+ if (255 == ReturnCode) {
+ std::ostringstream OS;
+ OS << "\nError running remote client:\n ";
+ for (const char **Arg = Args; *Arg; ++Arg)
+ OS << " " << *Arg;
+ OS << "\n";
+
+ // The error message is in the output file, let's print it out from there.
+ std::ifstream ErrorFile(StdOutFile.c_str());
+ if (ErrorFile) {
+ std::copy(std::istreambuf_iterator<char>(ErrorFile),
+ std::istreambuf_iterator<char>(),
+ std::ostreambuf_iterator<char>(OS));
+ ErrorFile.close();
+ }
+
+ errs() << OS.str();
+ }
+
+ return ReturnCode;
+}
+
+static std::string ProcessFailure(sys::Path ProgPath, const char** Args,
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0) {
+ std::ostringstream OS;
+ OS << "\nError running tool:\n ";
+ for (const char **Arg = Args; *Arg; ++Arg)
+ OS << " " << *Arg;
+ OS << "\n";
+
+ // Rerun the compiler, capturing any error messages to print them.
+ sys::Path ErrorFilename("bugpoint.program_error_messages");
+ std::string ErrMsg;
+ if (ErrorFilename.makeUnique(true, &ErrMsg)) {
+ errs() << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ RunProgramWithTimeout(ProgPath, Args, sys::Path(""), ErrorFilename,
+ ErrorFilename, Timeout, MemoryLimit);
+ // FIXME: check return code ?
+
+ // Print out the error messages generated by GCC if possible...
+ std::ifstream ErrorFile(ErrorFilename.c_str());
+ if (ErrorFile) {
+ std::copy(std::istreambuf_iterator<char>(ErrorFile),
+ std::istreambuf_iterator<char>(),
+ std::ostreambuf_iterator<char>(OS));
+ ErrorFile.close();
+ }
+
+ ErrorFilename.eraseFromDisk();
+ return OS.str();
+}
+
+//===---------------------------------------------------------------------===//
+// LLI Implementation of AbstractIntepreter interface
+//
+namespace {
+ class LLI : public AbstractInterpreter {
+ std::string LLIPath; // The path to the LLI executable
+ std::vector<std::string> ToolArgs; // Args to pass to LLI
+ public:
+ LLI(const std::string &Path, const std::vector<std::string> *Args)
+ : LLIPath(Path) {
+ ToolArgs.clear ();
+ if (Args) { ToolArgs = *Args; }
+ }
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+ };
+}
+
+int LLI::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ std::vector<const char*> LLIArgs;
+ LLIArgs.push_back(LLIPath.c_str());
+ LLIArgs.push_back("-force-interpreter=true");
+
+ for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
+ e = SharedLibs.end(); i != e; ++i) {
+ LLIArgs.push_back("-load");
+ LLIArgs.push_back((*i).c_str());
+ }
+
+ // Add any extra LLI args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ LLIArgs.push_back(ToolArgs[i].c_str());
+
+ LLIArgs.push_back(Bitcode.c_str());
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ LLIArgs.push_back(Args[i].c_str());
+ LLIArgs.push_back(0);
+
+ outs() << "<lli>"; outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
+ errs() << " " << LLIArgs[i];
+ errs() << "\n";
+ );
+ return RunProgramWithTimeout(sys::Path(LLIPath), &LLIArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit, Error);
+}
+
+void AbstractInterpreter::anchor() { }
+
+// LLI create method - Try to find the LLI executable
+AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0,
+ std::string &Message,
+ const std::vector<std::string> *ToolArgs) {
+ std::string LLIPath =
+ PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t)&createLLI).str();
+ if (!LLIPath.empty()) {
+ Message = "Found lli: " + LLIPath + "\n";
+ return new LLI(LLIPath, ToolArgs);
+ }
+
+ Message = "Cannot find `lli' in executable directory!\n";
+ return 0;
+}
+
+//===---------------------------------------------------------------------===//
+// Custom compiler command implementation of AbstractIntepreter interface
+//
+// Allows using a custom command for compiling the bitcode, thus allows, for
+// example, to compile a bitcode fragment without linking or executing, then
+// using a custom wrapper script to check for compiler errors.
+namespace {
+ class CustomCompiler : public AbstractInterpreter {
+ std::string CompilerCommand;
+ std::vector<std::string> CompilerArgs;
+ public:
+ CustomCompiler(
+ const std::string &CompilerCmd, std::vector<std::string> CompArgs) :
+ CompilerCommand(CompilerCmd), CompilerArgs(CompArgs) {}
+
+ virtual void compileProgram(const std::string &Bitcode,
+ std::string *Error,
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0) {
+ *Error = "Execution not supported with -compile-custom";
+ return -1;
+ }
+ };
+}
+
+void CustomCompiler::compileProgram(const std::string &Bitcode,
+ std::string *Error,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+
+ std::vector<const char*> ProgramArgs;
+ ProgramArgs.push_back(CompilerCommand.c_str());
+
+ for (std::size_t i = 0; i < CompilerArgs.size(); ++i)
+ ProgramArgs.push_back(CompilerArgs.at(i).c_str());
+ ProgramArgs.push_back(Bitcode.c_str());
+ ProgramArgs.push_back(0);
+
+ // Add optional parameters to the running program from Argv
+ for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i)
+ ProgramArgs.push_back(CompilerArgs[i].c_str());
+
+ if (RunProgramWithTimeout( sys::Path(CompilerCommand), &ProgramArgs[0],
+ sys::Path(), sys::Path(), sys::Path(),
+ Timeout, MemoryLimit, Error))
+ *Error = ProcessFailure(sys::Path(CompilerCommand), &ProgramArgs[0],
+ Timeout, MemoryLimit);
+}
+
+//===---------------------------------------------------------------------===//
+// Custom execution command implementation of AbstractIntepreter interface
+//
+// Allows using a custom command for executing the bitcode, thus allows,
+// for example, to invoke a cross compiler for code generation followed by
+// a simulator that executes the generated binary.
+namespace {
+ class CustomExecutor : public AbstractInterpreter {
+ std::string ExecutionCommand;
+ std::vector<std::string> ExecutorArgs;
+ public:
+ CustomExecutor(
+ const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) :
+ ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {}
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+ };
+}
+
+int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+
+ std::vector<const char*> ProgramArgs;
+ ProgramArgs.push_back(ExecutionCommand.c_str());
+
+ for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
+ ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
+ ProgramArgs.push_back(Bitcode.c_str());
+ ProgramArgs.push_back(0);
+
+ // Add optional parameters to the running program from Argv
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ ProgramArgs.push_back(Args[i].c_str());
+
+ return RunProgramWithTimeout(
+ sys::Path(ExecutionCommand),
+ &ProgramArgs[0], sys::Path(InputFile), sys::Path(OutputFile),
+ sys::Path(OutputFile), Timeout, MemoryLimit, Error);
+}
+
+// Tokenize the CommandLine to the command and the args to allow
+// defining a full command line as the command instead of just the
+// executed program. We cannot just pass the whole string after the command
+// as a single argument because then program sees only a single
+// command line argument (with spaces in it: "foo bar" instead
+// of "foo" and "bar").
+//
+// code borrowed from:
+// http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
+static void lexCommand(std::string &Message, const std::string &CommandLine,
+ std::string &CmdPath, std::vector<std::string> Args) {
+
+ std::string Command = "";
+ std::string delimiters = " ";
+
+ std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0);
+ std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos);
+
+ while (std::string::npos != pos || std::string::npos != lastPos) {
+ std::string token = CommandLine.substr(lastPos, pos - lastPos);
+ if (Command == "")
+ Command = token;
+ else
+ Args.push_back(token);
+ // Skip delimiters. Note the "not_of"
+ lastPos = CommandLine.find_first_not_of(delimiters, pos);
+ // Find next "non-delimiter"
+ pos = CommandLine.find_first_of(delimiters, lastPos);
+ }
+
+ CmdPath = sys::Program::FindProgramByName(Command).str();
+ if (CmdPath.empty()) {
+ Message =
+ std::string("Cannot find '") + Command +
+ "' in PATH!\n";
+ return;
+ }
+
+ Message = "Found command in: " + CmdPath + "\n";
+}
+
+// Custom execution environment create method, takes the execution command
+// as arguments
+AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
+ std::string &Message,
+ const std::string &CompileCommandLine) {
+
+ std::string CmdPath;
+ std::vector<std::string> Args;
+ lexCommand(Message, CompileCommandLine, CmdPath, Args);
+ if (CmdPath.empty())
+ return 0;
+
+ return new CustomCompiler(CmdPath, Args);
+}
+
+// Custom execution environment create method, takes the execution command
+// as arguments
+AbstractInterpreter *AbstractInterpreter::createCustomExecutor(
+ std::string &Message,
+ const std::string &ExecCommandLine) {
+
+
+ std::string CmdPath;
+ std::vector<std::string> Args;
+ lexCommand(Message, ExecCommandLine, CmdPath, Args);
+ if (CmdPath.empty())
+ return 0;
+
+ return new CustomExecutor(CmdPath, Args);
+}
+
+//===----------------------------------------------------------------------===//
+// LLC Implementation of AbstractIntepreter interface
+//
+GCC::FileType LLC::OutputCode(const std::string &Bitcode,
+ sys::Path &OutputAsmFile, std::string &Error,
+ unsigned Timeout, unsigned MemoryLimit) {
+ const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");
+ sys::Path uniqueFile(Bitcode + Suffix);
+ std::string ErrMsg;
+ if (uniqueFile.makeUnique(true, &ErrMsg)) {
+ errs() << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputAsmFile = uniqueFile;
+ std::vector<const char *> LLCArgs;
+ LLCArgs.push_back(LLCPath.c_str());
+
+ // Add any extra LLC args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ LLCArgs.push_back(ToolArgs[i].c_str());
+
+ LLCArgs.push_back("-o");
+ LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file
+ LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode
+
+ if (UseIntegratedAssembler)
+ LLCArgs.push_back("-filetype=obj");
+
+ LLCArgs.push_back (0);
+
+ outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
+ outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i)
+ errs() << " " << LLCArgs[i];
+ errs() << "\n";
+ );
+ if (RunProgramWithTimeout(sys::Path(LLCPath), &LLCArgs[0],
+ sys::Path(), sys::Path(), sys::Path(),
+ Timeout, MemoryLimit))
+ Error = ProcessFailure(sys::Path(LLCPath), &LLCArgs[0],
+ Timeout, MemoryLimit);
+ return UseIntegratedAssembler ? GCC::ObjectFile : GCC::AsmFile;
+}
+
+void LLC::compileProgram(const std::string &Bitcode, std::string *Error,
+ unsigned Timeout, unsigned MemoryLimit) {
+ sys::Path OutputAsmFile;
+ OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit);
+ OutputAsmFile.eraseFromDisk();
+}
+
+int LLC::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &ArgsForGCC,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+
+ sys::Path OutputAsmFile;
+ GCC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout,
+ MemoryLimit);
+ FileRemover OutFileRemover(OutputAsmFile.str(), !SaveTemps);
+
+ std::vector<std::string> GCCArgs(ArgsForGCC);
+ GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());
+
+ // Assuming LLC worked, compile the result with GCC and run it.
+ return gcc->ExecuteProgram(OutputAsmFile.str(), Args, FileKind,
+ InputFile, OutputFile, Error, GCCArgs,
+ Timeout, MemoryLimit);
+}
+
+/// createLLC - Try to find the LLC executable
+///
+LLC *AbstractInterpreter::createLLC(const char *Argv0,
+ std::string &Message,
+ const std::string &GCCBinary,
+ const std::vector<std::string> *Args,
+ const std::vector<std::string> *GCCArgs,
+ bool UseIntegratedAssembler) {
+ std::string LLCPath =
+ PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t)&createLLC).str();
+ if (LLCPath.empty()) {
+ Message = "Cannot find `llc' in executable directory!\n";
+ return 0;
+ }
+
+ Message = "Found llc: " + LLCPath + "\n";
+ GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs);
+ if (!gcc) {
+ errs() << Message << "\n";
+ exit(1);
+ }
+ return new LLC(LLCPath, gcc, Args, UseIntegratedAssembler);
+}
+
+//===---------------------------------------------------------------------===//
+// JIT Implementation of AbstractIntepreter interface
+//
+namespace {
+ class JIT : public AbstractInterpreter {
+ std::string LLIPath; // The path to the LLI executable
+ std::vector<std::string> ToolArgs; // Args to pass to LLI
+ public:
+ JIT(const std::string &Path, const std::vector<std::string> *Args)
+ : LLIPath(Path) {
+ ToolArgs.clear ();
+ if (Args) { ToolArgs = *Args; }
+ }
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+ };
+}
+
+int JIT::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ // Construct a vector of parameters, incorporating those from the command-line
+ std::vector<const char*> JITArgs;
+ JITArgs.push_back(LLIPath.c_str());
+ JITArgs.push_back("-force-interpreter=false");
+
+ // Add any extra LLI args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ JITArgs.push_back(ToolArgs[i].c_str());
+
+ for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
+ JITArgs.push_back("-load");
+ JITArgs.push_back(SharedLibs[i].c_str());
+ }
+ JITArgs.push_back(Bitcode.c_str());
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ JITArgs.push_back(Args[i].c_str());
+ JITArgs.push_back(0);
+
+ outs() << "<jit>"; outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
+ errs() << " " << JITArgs[i];
+ errs() << "\n";
+ );
+ DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
+ return RunProgramWithTimeout(sys::Path(LLIPath), &JITArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit, Error);
+}
+
+/// createJIT - Try to find the LLI executable
+///
+AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0,
+ std::string &Message, const std::vector<std::string> *Args) {
+ std::string LLIPath =
+ PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t)&createJIT).str();
+ if (!LLIPath.empty()) {
+ Message = "Found lli: " + LLIPath + "\n";
+ return new JIT(LLIPath, Args);
+ }
+
+ Message = "Cannot find `lli' in executable directory!\n";
+ return 0;
+}
+
+//===---------------------------------------------------------------------===//
+// GCC abstraction
+//
+
+static bool IsARMArchitecture(std::vector<const char*> Args) {
+ for (std::vector<const char*>::const_iterator
+ I = Args.begin(), E = Args.end(); I != E; ++I) {
+ if (StringRef(*I).equals_lower("-arch")) {
+ ++I;
+ if (I != E && StringRef(*I).substr(0, strlen("arm")).equals_lower("arm"))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+int GCC::ExecuteProgram(const std::string &ProgramFile,
+ const std::vector<std::string> &Args,
+ FileType fileType,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ std::string *Error,
+ const std::vector<std::string> &ArgsForGCC,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ std::vector<const char*> GCCArgs;
+
+ GCCArgs.push_back(GCCPath.c_str());
+
+ if (TargetTriple.getArch() == Triple::x86)
+ GCCArgs.push_back("-m32");
+
+ for (std::vector<std::string>::const_iterator
+ I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
+ GCCArgs.push_back(I->c_str());
+
+ // Specify -x explicitly in case the extension is wonky
+ if (fileType != ObjectFile) {
+ GCCArgs.push_back("-x");
+ if (fileType == CFile) {
+ GCCArgs.push_back("c");
+ GCCArgs.push_back("-fno-strict-aliasing");
+ } else {
+ GCCArgs.push_back("assembler");
+
+ // For ARM architectures we don't want this flag. bugpoint isn't
+ // explicitly told what architecture it is working on, so we get
+ // it from gcc flags
+ if (TargetTriple.isOSDarwin() && !IsARMArchitecture(GCCArgs))
+ GCCArgs.push_back("-force_cpusubtype_ALL");
+ }
+ }
+
+ GCCArgs.push_back(ProgramFile.c_str()); // Specify the input filename.
+
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back("none");
+ GCCArgs.push_back("-o");
+ sys::Path OutputBinary (ProgramFile+".gcc.exe");
+ std::string ErrMsg;
+ if (OutputBinary.makeUnique(true, &ErrMsg)) {
+ errs() << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file...
+
+ // Add any arguments intended for GCC. We locate them here because this is
+ // most likely -L and -l options that need to come before other libraries but
+ // after the source. Other options won't be sensitive to placement on the
+ // command line, so this should be safe.
+ for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
+ GCCArgs.push_back(ArgsForGCC[i].c_str());
+
+ GCCArgs.push_back("-lm"); // Hard-code the math library...
+ GCCArgs.push_back("-O2"); // Optimize the program a bit...
+#if defined (HAVE_LINK_R)
+ GCCArgs.push_back("-Wl,-R."); // Search this dir for .so files
+#endif
+ if (TargetTriple.getArch() == Triple::sparc)
+ GCCArgs.push_back("-mcpu=v9");
+ GCCArgs.push_back(0); // NULL terminator
+
+ outs() << "<gcc>"; outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
+ errs() << " " << GCCArgs[i];
+ errs() << "\n";
+ );
+ if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
+ sys::Path())) {
+ *Error = ProcessFailure(GCCPath, &GCCArgs[0]);
+ return -1;
+ }
+
+ std::vector<const char*> ProgramArgs;
+
+ // Declared here so that the destructor only runs after
+ // ProgramArgs is used.
+ std::string Exec;
+
+ if (RemoteClientPath.isEmpty())
+ ProgramArgs.push_back(OutputBinary.c_str());
+ else {
+ ProgramArgs.push_back(RemoteClientPath.c_str());
+ ProgramArgs.push_back(RemoteHost.c_str());
+ if (!RemoteUser.empty()) {
+ ProgramArgs.push_back("-l");
+ ProgramArgs.push_back(RemoteUser.c_str());
+ }
+ if (!RemotePort.empty()) {
+ ProgramArgs.push_back("-p");
+ ProgramArgs.push_back(RemotePort.c_str());
+ }
+ if (!RemoteExtra.empty()) {
+ ProgramArgs.push_back(RemoteExtra.c_str());
+ }
+
+ // Full path to the binary. We need to cd to the exec directory because
+ // there is a dylib there that the exec expects to find in the CWD
+ char* env_pwd = getenv("PWD");
+ Exec = "cd ";
+ Exec += env_pwd;
+ Exec += "; ./";
+ Exec += OutputBinary.c_str();
+ ProgramArgs.push_back(Exec.c_str());
+ }
+
+ // Add optional parameters to the running program from Argv
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ ProgramArgs.push_back(Args[i].c_str());
+ ProgramArgs.push_back(0); // NULL terminator
+
+ // Now that we have a binary, run it!
+ outs() << "<program>"; outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i)
+ errs() << " " << ProgramArgs[i];
+ errs() << "\n";
+ );
+
+ FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);
+
+ if (RemoteClientPath.isEmpty()) {
+ DEBUG(errs() << "<run locally>");
+ int ExitCode = RunProgramWithTimeout(OutputBinary, &ProgramArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit, Error);
+ // Treat a signal (usually SIGSEGV) or timeout as part of the program output
+ // so that crash-causing miscompilation is handled seamlessly.
+ if (ExitCode < -1) {
+ std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
+ outFile << *Error << '\n';
+ outFile.close();
+ Error->clear();
+ }
+ return ExitCode;
+ } else {
+ outs() << "<run remotely>"; outs().flush();
+ return RunProgramRemotelyWithTimeout(sys::Path(RemoteClientPath),
+ &ProgramArgs[0], sys::Path(InputFile), sys::Path(OutputFile),
+ sys::Path(OutputFile), Timeout, MemoryLimit);
+ }
+}
+
+int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType,
+ std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC,
+ std::string &Error) {
+ sys::Path uniqueFilename(InputFile+LTDL_SHLIB_EXT);
+ std::string ErrMsg;
+ if (uniqueFilename.makeUnique(true, &ErrMsg)) {
+ errs() << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputFile = uniqueFilename.str();
+
+ std::vector<const char*> GCCArgs;
+
+ GCCArgs.push_back(GCCPath.c_str());
+
+ if (TargetTriple.getArch() == Triple::x86)
+ GCCArgs.push_back("-m32");
+
+ for (std::vector<std::string>::const_iterator
+ I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
+ GCCArgs.push_back(I->c_str());
+
+ // Compile the C/asm file into a shared object
+ if (fileType != ObjectFile) {
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
+ }
+ GCCArgs.push_back("-fno-strict-aliasing");
+ GCCArgs.push_back(InputFile.c_str()); // Specify the input filename.
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back("none");
+ if (TargetTriple.getArch() == Triple::sparc)
+ GCCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
+ else if (TargetTriple.isOSDarwin()) {
+ // link all source files into a single module in data segment, rather than
+ // generating blocks. dynamic_lookup requires that you set
+ // MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for
+ // bugpoint to just pass that in the environment of GCC.
+ GCCArgs.push_back("-single_module");
+ GCCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
+ GCCArgs.push_back("-undefined");
+ GCCArgs.push_back("dynamic_lookup");
+ } else
+ GCCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others
+
+ if (TargetTriple.getArch() == Triple::x86_64)
+ GCCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC
+
+ if (TargetTriple.getArch() == Triple::sparc)
+ GCCArgs.push_back("-mcpu=v9");
+
+ GCCArgs.push_back("-o");
+ GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
+ GCCArgs.push_back("-O2"); // Optimize the program a bit.
+
+
+
+ // Add any arguments intended for GCC. We locate them here because this is
+ // most likely -L and -l options that need to come before other libraries but
+ // after the source. Other options won't be sensitive to placement on the
+ // command line, so this should be safe.
+ for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
+ GCCArgs.push_back(ArgsForGCC[i].c_str());
+ GCCArgs.push_back(0); // NULL terminator
+
+
+
+ outs() << "<gcc>"; outs().flush();
+ DEBUG(errs() << "\nAbout to run:\t";
+ for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i)
+ errs() << " " << GCCArgs[i];
+ errs() << "\n";
+ );
+ if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
+ sys::Path())) {
+ Error = ProcessFailure(GCCPath, &GCCArgs[0]);
+ return 1;
+ }
+ return 0;
+}
+
+/// create - Try to find the `gcc' executable
+///
+GCC *GCC::create(std::string &Message,
+ const std::string &GCCBinary,
+ const std::vector<std::string> *Args) {
+ sys::Path GCCPath = sys::Program::FindProgramByName(GCCBinary);
+ if (GCCPath.isEmpty()) {
+ Message = "Cannot find `"+ GCCBinary +"' in PATH!\n";
+ return 0;
+ }
+
+ sys::Path RemoteClientPath;
+ if (!RemoteClient.empty())
+ RemoteClientPath = sys::Program::FindProgramByName(RemoteClient);
+
+ Message = "Found gcc: " + GCCPath.str() + "\n";
+ return new GCC(GCCPath, RemoteClientPath, Args);
+}