summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopRotation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/LoopRotation.cpp')
-rw-r--r--lib/Transforms/Scalar/LoopRotation.cpp497
1 files changed, 497 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp
new file mode 100644
index 00000000000..abe07aa9d34
--- /dev/null
+++ b/lib/Transforms/Scalar/LoopRotation.cpp
@@ -0,0 +1,497 @@
+//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Loop Rotation Pass.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-rotate"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Function.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+#define MAX_HEADER_SIZE 16
+
+STATISTIC(NumRotated, "Number of loops rotated");
+namespace {
+
+ class LoopRotate : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopRotate() : LoopPass(ID) {
+ initializeLoopRotatePass(*PassRegistry::getPassRegistry());
+ }
+
+ // LCSSA form makes instruction renaming easier.
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<ScalarEvolution>();
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+ void simplifyLoopLatch(Loop *L);
+ bool rotateLoop(Loop *L);
+
+ private:
+ LoopInfo *LI;
+ };
+}
+
+char LoopRotate::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
+
+Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
+
+/// Rotate Loop L as many times as possible. Return true if
+/// the loop is rotated at least once.
+bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
+ LI = &getAnalysis<LoopInfo>();
+
+ // Simplify the loop latch before attempting to rotate the header
+ // upward. Rotation may not be needed if the loop tail can be folded into the
+ // loop exit.
+ simplifyLoopLatch(L);
+
+ // One loop can be rotated multiple times.
+ bool MadeChange = false;
+ while (rotateLoop(L))
+ MadeChange = true;
+
+ return MadeChange;
+}
+
+/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
+/// old header into the preheader. If there were uses of the values produced by
+/// these instruction that were outside of the loop, we have to insert PHI nodes
+/// to merge the two values. Do this now.
+static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
+ BasicBlock *OrigPreheader,
+ ValueToValueMapTy &ValueMap) {
+ // Remove PHI node entries that are no longer live.
+ BasicBlock::iterator I, E = OrigHeader->end();
+ for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
+
+ // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
+ // as necessary.
+ SSAUpdater SSA;
+ for (I = OrigHeader->begin(); I != E; ++I) {
+ Value *OrigHeaderVal = I;
+
+ // If there are no uses of the value (e.g. because it returns void), there
+ // is nothing to rewrite.
+ if (OrigHeaderVal->use_empty())
+ continue;
+
+ Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
+
+ // The value now exits in two versions: the initial value in the preheader
+ // and the loop "next" value in the original header.
+ SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
+ SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
+ SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
+
+ // Visit each use of the OrigHeader instruction.
+ for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
+ UE = OrigHeaderVal->use_end(); UI != UE; ) {
+ // Grab the use before incrementing the iterator.
+ Use &U = UI.getUse();
+
+ // Increment the iterator before removing the use from the list.
+ ++UI;
+
+ // SSAUpdater can't handle a non-PHI use in the same block as an
+ // earlier def. We can easily handle those cases manually.
+ Instruction *UserInst = cast<Instruction>(U.getUser());
+ if (!isa<PHINode>(UserInst)) {
+ BasicBlock *UserBB = UserInst->getParent();
+
+ // The original users in the OrigHeader are already using the
+ // original definitions.
+ if (UserBB == OrigHeader)
+ continue;
+
+ // Users in the OrigPreHeader need to use the value to which the
+ // original definitions are mapped.
+ if (UserBB == OrigPreheader) {
+ U = OrigPreHeaderVal;
+ continue;
+ }
+ }
+
+ // Anything else can be handled by SSAUpdater.
+ SSA.RewriteUse(U);
+ }
+ }
+}
+
+/// Determine whether the instructions in this range my be safely and cheaply
+/// speculated. This is not an important enough situation to develop complex
+/// heuristics. We handle a single arithmetic instruction along with any type
+/// conversions.
+static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
+ BasicBlock::iterator End) {
+ bool seenIncrement = false;
+ for (BasicBlock::iterator I = Begin; I != End; ++I) {
+
+ if (!isSafeToSpeculativelyExecute(I))
+ return false;
+
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ switch (I->getOpcode()) {
+ default:
+ return false;
+ case Instruction::GetElementPtr:
+ // GEPs are cheap if all indices are constant.
+ if (!cast<GEPOperator>(I)->hasAllConstantIndices())
+ return false;
+ // fall-thru to increment case
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (seenIncrement)
+ return false;
+ seenIncrement = true;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // ignore type conversions
+ break;
+ }
+ }
+ return true;
+}
+
+/// Fold the loop tail into the loop exit by speculating the loop tail
+/// instructions. Typically, this is a single post-increment. In the case of a
+/// simple 2-block loop, hoisting the increment can be much better than
+/// duplicating the entire loop header. In the cast of loops with early exits,
+/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
+/// canonical form so downstream passes can handle it.
+///
+/// I don't believe this invalidates SCEV.
+void LoopRotate::simplifyLoopLatch(Loop *L) {
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch || Latch->hasAddressTaken())
+ return;
+
+ BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!Jmp || !Jmp->isUnconditional())
+ return;
+
+ BasicBlock *LastExit = Latch->getSinglePredecessor();
+ if (!LastExit || !L->isLoopExiting(LastExit))
+ return;
+
+ BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
+ if (!BI)
+ return;
+
+ if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
+ return;
+
+ DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
+ << LastExit->getName() << "\n");
+
+ // Hoist the instructions from Latch into LastExit.
+ LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
+
+ unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
+ BasicBlock *Header = Jmp->getSuccessor(0);
+ assert(Header == L->getHeader() && "expected a backward branch");
+
+ // Remove Latch from the CFG so that LastExit becomes the new Latch.
+ BI->setSuccessor(FallThruPath, Header);
+ Latch->replaceSuccessorsPhiUsesWith(LastExit);
+ Jmp->eraseFromParent();
+
+ // Nuke the Latch block.
+ assert(Latch->empty() && "unable to evacuate Latch");
+ LI->removeBlock(Latch);
+ if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
+ DT->eraseNode(Latch);
+ Latch->eraseFromParent();
+}
+
+/// Rotate loop LP. Return true if the loop is rotated.
+bool LoopRotate::rotateLoop(Loop *L) {
+ // If the loop has only one block then there is not much to rotate.
+ if (L->getBlocks().size() == 1)
+ return false;
+
+ BasicBlock *OrigHeader = L->getHeader();
+ BasicBlock *OrigLatch = L->getLoopLatch();
+
+ BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
+ if (BI == 0 || BI->isUnconditional())
+ return false;
+
+ // If the loop header is not one of the loop exiting blocks then
+ // either this loop is already rotated or it is not
+ // suitable for loop rotation transformations.
+ if (!L->isLoopExiting(OrigHeader))
+ return false;
+
+ // If the loop latch already contains a branch that leaves the loop then the
+ // loop is already rotated.
+ if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
+ return false;
+
+ // Check size of original header and reject loop if it is very big.
+ {
+ CodeMetrics Metrics;
+ Metrics.analyzeBasicBlock(OrigHeader);
+ if (Metrics.NumInsts > MAX_HEADER_SIZE)
+ return false;
+ }
+
+ // Now, this loop is suitable for rotation.
+ BasicBlock *OrigPreheader = L->getLoopPreheader();
+
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (OrigPreheader == 0)
+ return false;
+
+ // Anything ScalarEvolution may know about this loop or the PHI nodes
+ // in its header will soon be invalidated.
+ if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
+ SE->forgetLoop(L);
+
+ DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
+
+ // Find new Loop header. NewHeader is a Header's one and only successor
+ // that is inside loop. Header's other successor is outside the
+ // loop. Otherwise loop is not suitable for rotation.
+ BasicBlock *Exit = BI->getSuccessor(0);
+ BasicBlock *NewHeader = BI->getSuccessor(1);
+ if (L->contains(Exit))
+ std::swap(Exit, NewHeader);
+ assert(NewHeader && "Unable to determine new loop header");
+ assert(L->contains(NewHeader) && !L->contains(Exit) &&
+ "Unable to determine loop header and exit blocks");
+
+ // This code assumes that the new header has exactly one predecessor.
+ // Remove any single-entry PHI nodes in it.
+ assert(NewHeader->getSinglePredecessor() &&
+ "New header doesn't have one pred!");
+ FoldSingleEntryPHINodes(NewHeader);
+
+ // Begin by walking OrigHeader and populating ValueMap with an entry for
+ // each Instruction.
+ BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
+ ValueToValueMapTy ValueMap;
+
+ // For PHI nodes, the value available in OldPreHeader is just the
+ // incoming value from OldPreHeader.
+ for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
+
+ // For the rest of the instructions, either hoist to the OrigPreheader if
+ // possible or create a clone in the OldPreHeader if not.
+ TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
+ while (I != E) {
+ Instruction *Inst = I++;
+
+ // If the instruction's operands are invariant and it doesn't read or write
+ // memory, then it is safe to hoist. Doing this doesn't change the order of
+ // execution in the preheader, but does prevent the instruction from
+ // executing in each iteration of the loop. This means it is safe to hoist
+ // something that might trap, but isn't safe to hoist something that reads
+ // memory (without proving that the loop doesn't write).
+ if (L->hasLoopInvariantOperands(Inst) &&
+ !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
+ !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
+ !isa<AllocaInst>(Inst)) {
+ Inst->moveBefore(LoopEntryBranch);
+ continue;
+ }
+
+ // Otherwise, create a duplicate of the instruction.
+ Instruction *C = Inst->clone();
+
+ // Eagerly remap the operands of the instruction.
+ RemapInstruction(C, ValueMap,
+ RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
+
+ // With the operands remapped, see if the instruction constant folds or is
+ // otherwise simplifyable. This commonly occurs because the entry from PHI
+ // nodes allows icmps and other instructions to fold.
+ Value *V = SimplifyInstruction(C);
+ if (V && LI->replacementPreservesLCSSAForm(C, V)) {
+ // If so, then delete the temporary instruction and stick the folded value
+ // in the map.
+ delete C;
+ ValueMap[Inst] = V;
+ } else {
+ // Otherwise, stick the new instruction into the new block!
+ C->setName(Inst->getName());
+ C->insertBefore(LoopEntryBranch);
+ ValueMap[Inst] = C;
+ }
+ }
+
+ // Along with all the other instructions, we just cloned OrigHeader's
+ // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
+ // successors by duplicating their incoming values for OrigHeader.
+ TerminatorInst *TI = OrigHeader->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
+ PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
+
+ // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
+ // OrigPreHeader's old terminator (the original branch into the loop), and
+ // remove the corresponding incoming values from the PHI nodes in OrigHeader.
+ LoopEntryBranch->eraseFromParent();
+
+ // If there were any uses of instructions in the duplicated block outside the
+ // loop, update them, inserting PHI nodes as required
+ RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
+
+ // NewHeader is now the header of the loop.
+ L->moveToHeader(NewHeader);
+ assert(L->getHeader() == NewHeader && "Latch block is our new header");
+
+
+ // At this point, we've finished our major CFG changes. As part of cloning
+ // the loop into the preheader we've simplified instructions and the
+ // duplicated conditional branch may now be branching on a constant. If it is
+ // branching on a constant and if that constant means that we enter the loop,
+ // then we fold away the cond branch to an uncond branch. This simplifies the
+ // loop in cases important for nested loops, and it also means we don't have
+ // to split as many edges.
+ BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
+ assert(PHBI->isConditional() && "Should be clone of BI condbr!");
+ if (!isa<ConstantInt>(PHBI->getCondition()) ||
+ PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
+ != NewHeader) {
+ // The conditional branch can't be folded, handle the general case.
+ // Update DominatorTree to reflect the CFG change we just made. Then split
+ // edges as necessary to preserve LoopSimplify form.
+ if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
+ // Everything that was dominated by the old loop header is now dominated
+ // by the original loop preheader. Conceptually the header was merged
+ // into the preheader, even though we reuse the actual block as a new
+ // loop latch.
+ DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
+ SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
+ OrigHeaderNode->end());
+ DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
+ for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
+ DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
+
+ assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
+ assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
+
+ // Update OrigHeader to be dominated by the new header block.
+ DT->changeImmediateDominator(OrigHeader, OrigLatch);
+ }
+
+ // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
+ // thus is not a preheader anymore.
+ // Split the edge to form a real preheader.
+ BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
+ NewPH->setName(NewHeader->getName() + ".lr.ph");
+
+ // Preserve canonical loop form, which means that 'Exit' should have only
+ // one predecessor.
+ BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
+ ExitSplit->moveBefore(Exit);
+ } else {
+ // We can fold the conditional branch in the preheader, this makes things
+ // simpler. The first step is to remove the extra edge to the Exit block.
+ Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
+ BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
+ NewBI->setDebugLoc(PHBI->getDebugLoc());
+ PHBI->eraseFromParent();
+
+ // With our CFG finalized, update DomTree if it is available.
+ if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
+ // Update OrigHeader to be dominated by the new header block.
+ DT->changeImmediateDominator(NewHeader, OrigPreheader);
+ DT->changeImmediateDominator(OrigHeader, OrigLatch);
+
+ // Brute force incremental dominator tree update. Call
+ // findNearestCommonDominator on all CFG predecessors of each child of the
+ // original header.
+ DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
+ SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
+ OrigHeaderNode->end());
+ bool Changed;
+ do {
+ Changed = false;
+ for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
+ DomTreeNode *Node = HeaderChildren[I];
+ BasicBlock *BB = Node->getBlock();
+
+ pred_iterator PI = pred_begin(BB);
+ BasicBlock *NearestDom = *PI;
+ for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
+ NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
+
+ // Remember if this changes the DomTree.
+ if (Node->getIDom()->getBlock() != NearestDom) {
+ DT->changeImmediateDominator(BB, NearestDom);
+ Changed = true;
+ }
+ }
+
+ // If the dominator changed, this may have an effect on other
+ // predecessors, continue until we reach a fixpoint.
+ } while (Changed);
+ }
+ }
+
+ assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
+ assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
+
+ // Now that the CFG and DomTree are in a consistent state again, try to merge
+ // the OrigHeader block into OrigLatch. This will succeed if they are
+ // connected by an unconditional branch. This is just a cleanup so the
+ // emitted code isn't too gross in this common case.
+ MergeBlockIntoPredecessor(OrigHeader, this);
+
+ DEBUG(dbgs() << "LoopRotation: into "; L->dump());
+
+ ++NumRotated;
+ return true;
+}
+