diff options
Diffstat (limited to 'lib/Transforms/Scalar/LoopRotation.cpp')
-rw-r--r-- | lib/Transforms/Scalar/LoopRotation.cpp | 497 |
1 files changed, 497 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp new file mode 100644 index 00000000000..abe07aa9d34 --- /dev/null +++ b/lib/Transforms/Scalar/LoopRotation.cpp @@ -0,0 +1,497 @@ +//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements Loop Rotation Pass. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "loop-rotate" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Function.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +#define MAX_HEADER_SIZE 16 + +STATISTIC(NumRotated, "Number of loops rotated"); +namespace { + + class LoopRotate : public LoopPass { + public: + static char ID; // Pass ID, replacement for typeid + LoopRotate() : LoopPass(ID) { + initializeLoopRotatePass(*PassRegistry::getPassRegistry()); + } + + // LCSSA form makes instruction renaming easier. + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addPreserved<DominatorTree>(); + AU.addRequired<LoopInfo>(); + AU.addPreserved<LoopInfo>(); + AU.addRequiredID(LoopSimplifyID); + AU.addPreservedID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addPreservedID(LCSSAID); + AU.addPreserved<ScalarEvolution>(); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM); + void simplifyLoopLatch(Loop *L); + bool rotateLoop(Loop *L); + + private: + LoopInfo *LI; + }; +} + +char LoopRotate::ID = 0; +INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) + +Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } + +/// Rotate Loop L as many times as possible. Return true if +/// the loop is rotated at least once. +bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { + LI = &getAnalysis<LoopInfo>(); + + // Simplify the loop latch before attempting to rotate the header + // upward. Rotation may not be needed if the loop tail can be folded into the + // loop exit. + simplifyLoopLatch(L); + + // One loop can be rotated multiple times. + bool MadeChange = false; + while (rotateLoop(L)) + MadeChange = true; + + return MadeChange; +} + +/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the +/// old header into the preheader. If there were uses of the values produced by +/// these instruction that were outside of the loop, we have to insert PHI nodes +/// to merge the two values. Do this now. +static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, + BasicBlock *OrigPreheader, + ValueToValueMapTy &ValueMap) { + // Remove PHI node entries that are no longer live. + BasicBlock::iterator I, E = OrigHeader->end(); + for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) + PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); + + // Now fix up users of the instructions in OrigHeader, inserting PHI nodes + // as necessary. + SSAUpdater SSA; + for (I = OrigHeader->begin(); I != E; ++I) { + Value *OrigHeaderVal = I; + + // If there are no uses of the value (e.g. because it returns void), there + // is nothing to rewrite. + if (OrigHeaderVal->use_empty()) + continue; + + Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; + + // The value now exits in two versions: the initial value in the preheader + // and the loop "next" value in the original header. + SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); + SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); + SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); + + // Visit each use of the OrigHeader instruction. + for (Value::use_iterator UI = OrigHeaderVal->use_begin(), + UE = OrigHeaderVal->use_end(); UI != UE; ) { + // Grab the use before incrementing the iterator. + Use &U = UI.getUse(); + + // Increment the iterator before removing the use from the list. + ++UI; + + // SSAUpdater can't handle a non-PHI use in the same block as an + // earlier def. We can easily handle those cases manually. + Instruction *UserInst = cast<Instruction>(U.getUser()); + if (!isa<PHINode>(UserInst)) { + BasicBlock *UserBB = UserInst->getParent(); + + // The original users in the OrigHeader are already using the + // original definitions. + if (UserBB == OrigHeader) + continue; + + // Users in the OrigPreHeader need to use the value to which the + // original definitions are mapped. + if (UserBB == OrigPreheader) { + U = OrigPreHeaderVal; + continue; + } + } + + // Anything else can be handled by SSAUpdater. + SSA.RewriteUse(U); + } + } +} + +/// Determine whether the instructions in this range my be safely and cheaply +/// speculated. This is not an important enough situation to develop complex +/// heuristics. We handle a single arithmetic instruction along with any type +/// conversions. +static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, + BasicBlock::iterator End) { + bool seenIncrement = false; + for (BasicBlock::iterator I = Begin; I != End; ++I) { + + if (!isSafeToSpeculativelyExecute(I)) + return false; + + if (isa<DbgInfoIntrinsic>(I)) + continue; + + switch (I->getOpcode()) { + default: + return false; + case Instruction::GetElementPtr: + // GEPs are cheap if all indices are constant. + if (!cast<GEPOperator>(I)->hasAllConstantIndices()) + return false; + // fall-thru to increment case + case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + if (seenIncrement) + return false; + seenIncrement = true; + break; + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + // ignore type conversions + break; + } + } + return true; +} + +/// Fold the loop tail into the loop exit by speculating the loop tail +/// instructions. Typically, this is a single post-increment. In the case of a +/// simple 2-block loop, hoisting the increment can be much better than +/// duplicating the entire loop header. In the cast of loops with early exits, +/// rotation will not work anyway, but simplifyLoopLatch will put the loop in +/// canonical form so downstream passes can handle it. +/// +/// I don't believe this invalidates SCEV. +void LoopRotate::simplifyLoopLatch(Loop *L) { + BasicBlock *Latch = L->getLoopLatch(); + if (!Latch || Latch->hasAddressTaken()) + return; + + BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); + if (!Jmp || !Jmp->isUnconditional()) + return; + + BasicBlock *LastExit = Latch->getSinglePredecessor(); + if (!LastExit || !L->isLoopExiting(LastExit)) + return; + + BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); + if (!BI) + return; + + if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) + return; + + DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " + << LastExit->getName() << "\n"); + + // Hoist the instructions from Latch into LastExit. + LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); + + unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; + BasicBlock *Header = Jmp->getSuccessor(0); + assert(Header == L->getHeader() && "expected a backward branch"); + + // Remove Latch from the CFG so that LastExit becomes the new Latch. + BI->setSuccessor(FallThruPath, Header); + Latch->replaceSuccessorsPhiUsesWith(LastExit); + Jmp->eraseFromParent(); + + // Nuke the Latch block. + assert(Latch->empty() && "unable to evacuate Latch"); + LI->removeBlock(Latch); + if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) + DT->eraseNode(Latch); + Latch->eraseFromParent(); +} + +/// Rotate loop LP. Return true if the loop is rotated. +bool LoopRotate::rotateLoop(Loop *L) { + // If the loop has only one block then there is not much to rotate. + if (L->getBlocks().size() == 1) + return false; + + BasicBlock *OrigHeader = L->getHeader(); + BasicBlock *OrigLatch = L->getLoopLatch(); + + BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); + if (BI == 0 || BI->isUnconditional()) + return false; + + // If the loop header is not one of the loop exiting blocks then + // either this loop is already rotated or it is not + // suitable for loop rotation transformations. + if (!L->isLoopExiting(OrigHeader)) + return false; + + // If the loop latch already contains a branch that leaves the loop then the + // loop is already rotated. + if (OrigLatch == 0 || L->isLoopExiting(OrigLatch)) + return false; + + // Check size of original header and reject loop if it is very big. + { + CodeMetrics Metrics; + Metrics.analyzeBasicBlock(OrigHeader); + if (Metrics.NumInsts > MAX_HEADER_SIZE) + return false; + } + + // Now, this loop is suitable for rotation. + BasicBlock *OrigPreheader = L->getLoopPreheader(); + + // If the loop could not be converted to canonical form, it must have an + // indirectbr in it, just give up. + if (OrigPreheader == 0) + return false; + + // Anything ScalarEvolution may know about this loop or the PHI nodes + // in its header will soon be invalidated. + if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) + SE->forgetLoop(L); + + DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); + + // Find new Loop header. NewHeader is a Header's one and only successor + // that is inside loop. Header's other successor is outside the + // loop. Otherwise loop is not suitable for rotation. + BasicBlock *Exit = BI->getSuccessor(0); + BasicBlock *NewHeader = BI->getSuccessor(1); + if (L->contains(Exit)) + std::swap(Exit, NewHeader); + assert(NewHeader && "Unable to determine new loop header"); + assert(L->contains(NewHeader) && !L->contains(Exit) && + "Unable to determine loop header and exit blocks"); + + // This code assumes that the new header has exactly one predecessor. + // Remove any single-entry PHI nodes in it. + assert(NewHeader->getSinglePredecessor() && + "New header doesn't have one pred!"); + FoldSingleEntryPHINodes(NewHeader); + + // Begin by walking OrigHeader and populating ValueMap with an entry for + // each Instruction. + BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); + ValueToValueMapTy ValueMap; + + // For PHI nodes, the value available in OldPreHeader is just the + // incoming value from OldPreHeader. + for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) + ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); + + // For the rest of the instructions, either hoist to the OrigPreheader if + // possible or create a clone in the OldPreHeader if not. + TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); + while (I != E) { + Instruction *Inst = I++; + + // If the instruction's operands are invariant and it doesn't read or write + // memory, then it is safe to hoist. Doing this doesn't change the order of + // execution in the preheader, but does prevent the instruction from + // executing in each iteration of the loop. This means it is safe to hoist + // something that might trap, but isn't safe to hoist something that reads + // memory (without proving that the loop doesn't write). + if (L->hasLoopInvariantOperands(Inst) && + !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && + !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && + !isa<AllocaInst>(Inst)) { + Inst->moveBefore(LoopEntryBranch); + continue; + } + + // Otherwise, create a duplicate of the instruction. + Instruction *C = Inst->clone(); + + // Eagerly remap the operands of the instruction. + RemapInstruction(C, ValueMap, + RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); + + // With the operands remapped, see if the instruction constant folds or is + // otherwise simplifyable. This commonly occurs because the entry from PHI + // nodes allows icmps and other instructions to fold. + Value *V = SimplifyInstruction(C); + if (V && LI->replacementPreservesLCSSAForm(C, V)) { + // If so, then delete the temporary instruction and stick the folded value + // in the map. + delete C; + ValueMap[Inst] = V; + } else { + // Otherwise, stick the new instruction into the new block! + C->setName(Inst->getName()); + C->insertBefore(LoopEntryBranch); + ValueMap[Inst] = C; + } + } + + // Along with all the other instructions, we just cloned OrigHeader's + // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's + // successors by duplicating their incoming values for OrigHeader. + TerminatorInst *TI = OrigHeader->getTerminator(); + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin(); + PHINode *PN = dyn_cast<PHINode>(BI); ++BI) + PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); + + // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove + // OrigPreHeader's old terminator (the original branch into the loop), and + // remove the corresponding incoming values from the PHI nodes in OrigHeader. + LoopEntryBranch->eraseFromParent(); + + // If there were any uses of instructions in the duplicated block outside the + // loop, update them, inserting PHI nodes as required + RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); + + // NewHeader is now the header of the loop. + L->moveToHeader(NewHeader); + assert(L->getHeader() == NewHeader && "Latch block is our new header"); + + + // At this point, we've finished our major CFG changes. As part of cloning + // the loop into the preheader we've simplified instructions and the + // duplicated conditional branch may now be branching on a constant. If it is + // branching on a constant and if that constant means that we enter the loop, + // then we fold away the cond branch to an uncond branch. This simplifies the + // loop in cases important for nested loops, and it also means we don't have + // to split as many edges. + BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); + assert(PHBI->isConditional() && "Should be clone of BI condbr!"); + if (!isa<ConstantInt>(PHBI->getCondition()) || + PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) + != NewHeader) { + // The conditional branch can't be folded, handle the general case. + // Update DominatorTree to reflect the CFG change we just made. Then split + // edges as necessary to preserve LoopSimplify form. + if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { + // Everything that was dominated by the old loop header is now dominated + // by the original loop preheader. Conceptually the header was merged + // into the preheader, even though we reuse the actual block as a new + // loop latch. + DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); + SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), + OrigHeaderNode->end()); + DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); + for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) + DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); + + assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); + assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); + + // Update OrigHeader to be dominated by the new header block. + DT->changeImmediateDominator(OrigHeader, OrigLatch); + } + + // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and + // thus is not a preheader anymore. + // Split the edge to form a real preheader. + BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); + NewPH->setName(NewHeader->getName() + ".lr.ph"); + + // Preserve canonical loop form, which means that 'Exit' should have only + // one predecessor. + BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); + ExitSplit->moveBefore(Exit); + } else { + // We can fold the conditional branch in the preheader, this makes things + // simpler. The first step is to remove the extra edge to the Exit block. + Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); + BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); + NewBI->setDebugLoc(PHBI->getDebugLoc()); + PHBI->eraseFromParent(); + + // With our CFG finalized, update DomTree if it is available. + if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { + // Update OrigHeader to be dominated by the new header block. + DT->changeImmediateDominator(NewHeader, OrigPreheader); + DT->changeImmediateDominator(OrigHeader, OrigLatch); + + // Brute force incremental dominator tree update. Call + // findNearestCommonDominator on all CFG predecessors of each child of the + // original header. + DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); + SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), + OrigHeaderNode->end()); + bool Changed; + do { + Changed = false; + for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { + DomTreeNode *Node = HeaderChildren[I]; + BasicBlock *BB = Node->getBlock(); + + pred_iterator PI = pred_begin(BB); + BasicBlock *NearestDom = *PI; + for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) + NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); + + // Remember if this changes the DomTree. + if (Node->getIDom()->getBlock() != NearestDom) { + DT->changeImmediateDominator(BB, NearestDom); + Changed = true; + } + } + + // If the dominator changed, this may have an effect on other + // predecessors, continue until we reach a fixpoint. + } while (Changed); + } + } + + assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); + assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); + + // Now that the CFG and DomTree are in a consistent state again, try to merge + // the OrigHeader block into OrigLatch. This will succeed if they are + // connected by an unconditional branch. This is just a cleanup so the + // emitted code isn't too gross in this common case. + MergeBlockIntoPredecessor(OrigHeader, this); + + DEBUG(dbgs() << "LoopRotation: into "; L->dump()); + + ++NumRotated; + return true; +} + |