summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86VZeroUpper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86VZeroUpper.cpp')
-rw-r--r--lib/Target/X86/X86VZeroUpper.cpp283
1 files changed, 283 insertions, 0 deletions
diff --git a/lib/Target/X86/X86VZeroUpper.cpp b/lib/Target/X86/X86VZeroUpper.cpp
new file mode 100644
index 00000000000..449eed3d8d5
--- /dev/null
+++ b/lib/Target/X86/X86VZeroUpper.cpp
@@ -0,0 +1,283 @@
+//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which inserts x86 AVX vzeroupper instructions
+// before calls to SSE encoded functions. This avoids transition latency
+// penalty when tranfering control between AVX encoded instructions and old
+// SSE encoding mode.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "x86-vzeroupper"
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+using namespace llvm;
+
+STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
+
+namespace {
+ struct VZeroUpperInserter : public MachineFunctionPass {
+ static char ID;
+ VZeroUpperInserter() : MachineFunctionPass(ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+
+ virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
+
+ private:
+ const TargetInstrInfo *TII; // Machine instruction info.
+
+ // Any YMM register live-in to this function?
+ bool FnHasLiveInYmm;
+
+ // BBState - Contains the state of each MBB: unknown, clean, dirty
+ SmallVector<uint8_t, 8> BBState;
+
+ // BBSolved - Keep track of all MBB which had been already analyzed
+ // and there is no further processing required.
+ BitVector BBSolved;
+
+ // Machine Basic Blocks are classified according this pass:
+ //
+ // ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
+ // until the MBB exit there isn't a instruction using YMM to change
+ // the state to dirty, or one of the incoming predecessors is unknown
+ // and there's not a dirty predecessor between them.
+ //
+ // ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
+ // instructions using YMM and be marked ST_CLEAN, as long as the state
+ // is cleaned by a vzeroupper before any call.
+ //
+ // ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
+ // vzeroupper instruction.
+ //
+ // ST_INIT - Placeholder for an empty state set
+ //
+ enum {
+ ST_UNKNOWN = 0,
+ ST_CLEAN = 1,
+ ST_DIRTY = 2,
+ ST_INIT = 3
+ };
+
+ // computeState - Given two states, compute the resulting state, in
+ // the following way
+ //
+ // 1) One dirty state yields another dirty state
+ // 2) All states must be clean for the result to be clean
+ // 3) If none above and one unknown, the result state is also unknown
+ //
+ static unsigned computeState(unsigned PrevState, unsigned CurState) {
+ if (PrevState == ST_INIT)
+ return CurState;
+
+ if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
+ return ST_DIRTY;
+
+ if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
+ return ST_CLEAN;
+
+ return ST_UNKNOWN;
+ }
+
+ };
+ char VZeroUpperInserter::ID = 0;
+}
+
+FunctionPass *llvm::createX86IssueVZeroUpperPass() {
+ return new VZeroUpperInserter();
+}
+
+static bool isYmmReg(unsigned Reg) {
+ if (Reg >= X86::YMM0 && Reg <= X86::YMM15)
+ return true;
+
+ return false;
+}
+
+static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
+ E = MRI.livein_end(); I != E; ++I)
+ if (isYmmReg(I->first))
+ return true;
+
+ return false;
+}
+
+static bool hasYmmReg(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isDebug())
+ continue;
+ if (isYmmReg(MO.getReg()))
+ return true;
+ }
+ return false;
+}
+
+/// runOnMachineFunction - Loop over all of the basic blocks, inserting
+/// vzero upper instructions before function calls.
+bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getTarget().getInstrInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool EverMadeChange = false;
+
+ // Fast check: if the function doesn't use any ymm registers, we don't need
+ // to insert any VZEROUPPER instructions. This is constant-time, so it is
+ // cheap in the common case of no ymm use.
+ bool YMMUsed = false;
+ const TargetRegisterClass *RC = &X86::VR256RegClass;
+ for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
+ i != e; i++) {
+ if (MRI.isPhysRegUsed(*i)) {
+ YMMUsed = true;
+ break;
+ }
+ }
+ if (!YMMUsed)
+ return EverMadeChange;
+
+ // Pre-compute the existence of any live-in YMM registers to this function
+ FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
+
+ assert(BBState.empty());
+ BBState.resize(MF.getNumBlockIDs(), 0);
+ BBSolved.resize(MF.getNumBlockIDs(), 0);
+
+ // Each BB state depends on all predecessors, loop over until everything
+ // converges. (Once we converge, we can implicitly mark everything that is
+ // still ST_UNKNOWN as ST_CLEAN.)
+ while (1) {
+ bool MadeChange = false;
+
+ // Process all basic blocks.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ MadeChange |= processBasicBlock(MF, *I);
+
+ // If this iteration over the code changed anything, keep iterating.
+ if (!MadeChange) break;
+ EverMadeChange = true;
+ }
+
+ BBState.clear();
+ BBSolved.clear();
+ return EverMadeChange;
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// inserting vzero upper instructions before function calls.
+bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
+ MachineBasicBlock &BB) {
+ bool Changed = false;
+ unsigned BBNum = BB.getNumber();
+
+ // Don't process already solved BBs
+ if (BBSolved[BBNum])
+ return false; // No changes
+
+ // Check the state of all predecessors
+ unsigned EntryState = ST_INIT;
+ for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
+ PE = BB.pred_end(); PI != PE; ++PI) {
+ EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
+ if (EntryState == ST_DIRTY)
+ break;
+ }
+
+
+ // The entry MBB for the function may set the initial state to dirty if
+ // the function receives any YMM incoming arguments
+ if (&BB == MF.begin()) {
+ EntryState = ST_CLEAN;
+ if (FnHasLiveInYmm)
+ EntryState = ST_DIRTY;
+ }
+
+ // The current state is initialized according to the predecessors
+ unsigned CurState = EntryState;
+ bool BBHasCall = false;
+
+ for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
+ MachineInstr *MI = I;
+ DebugLoc dl = I->getDebugLoc();
+ bool isControlFlow = MI->isCall() || MI->isReturn();
+
+ // Shortcut: don't need to check regular instructions in dirty state.
+ if (!isControlFlow && CurState == ST_DIRTY)
+ continue;
+
+ if (hasYmmReg(MI)) {
+ // We found a ymm-using instruction; this could be an AVX instruction,
+ // or it could be control flow.
+ CurState = ST_DIRTY;
+ continue;
+ }
+
+ // Check for control-flow out of the current function (which might
+ // indirectly execute SSE instructions).
+ if (!isControlFlow)
+ continue;
+
+ BBHasCall = true;
+
+ // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
+ // registers. This instruction has zero latency. In addition, the processor
+ // changes back to Clean state, after which execution of Intel SSE
+ // instructions or Intel AVX instructions has no transition penalty. Add
+ // the VZEROUPPER instruction before any function call/return that might
+ // execute SSE code.
+ // FIXME: In some cases, we may want to move the VZEROUPPER into a
+ // predecessor block.
+ if (CurState == ST_DIRTY) {
+ // Only insert the VZEROUPPER in case the entry state isn't unknown.
+ // When unknown, only compute the information within the block to have
+ // it available in the exit if possible, but don't change the block.
+ if (EntryState != ST_UNKNOWN) {
+ BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
+ ++NumVZU;
+ }
+
+ // After the inserted VZEROUPPER the state becomes clean again, but
+ // other YMM may appear before other subsequent calls or even before
+ // the end of the BB.
+ CurState = ST_CLEAN;
+ }
+ }
+
+ DEBUG(dbgs() << "MBB #" << BBNum
+ << ", current state: " << CurState << '\n');
+
+ // A BB can only be considered solved when we both have done all the
+ // necessary transformations, and have computed the exit state. This happens
+ // in two cases:
+ // 1) We know the entry state: this immediately implies the exit state and
+ // all the necessary transformations.
+ // 2) There are no calls, and and a non-call instruction marks this block:
+ // no transformations are necessary, and we know the exit state.
+ if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
+ BBSolved[BBNum] = true;
+
+ if (CurState != BBState[BBNum])
+ Changed = true;
+
+ BBState[BBNum] = CurState;
+ return Changed;
+}