diff options
Diffstat (limited to 'lib/Target/X86/X86InstrInfo.cpp')
-rw-r--r-- | lib/Target/X86/X86InstrInfo.cpp | 4822 |
1 files changed, 4822 insertions, 0 deletions
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp new file mode 100644 index 00000000000..4a9be39fa51 --- /dev/null +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -0,0 +1,4822 @@ +//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "X86InstrInfo.h" +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86MachineFunctionInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/DerivedTypes.h" +#include "llvm/LLVMContext.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +#include <limits> + +#define GET_INSTRINFO_CTOR +#include "X86GenInstrInfo.inc" + +using namespace llvm; + +static cl::opt<bool> +NoFusing("disable-spill-fusing", + cl::desc("Disable fusing of spill code into instructions")); +static cl::opt<bool> +PrintFailedFusing("print-failed-fuse-candidates", + cl::desc("Print instructions that the allocator wants to" + " fuse, but the X86 backend currently can't"), + cl::Hidden); +static cl::opt<bool> +ReMatPICStubLoad("remat-pic-stub-load", + cl::desc("Re-materialize load from stub in PIC mode"), + cl::init(false), cl::Hidden); + +enum { + // Select which memory operand is being unfolded. + // (stored in bits 0 - 3) + TB_INDEX_0 = 0, + TB_INDEX_1 = 1, + TB_INDEX_2 = 2, + TB_INDEX_3 = 3, + TB_INDEX_MASK = 0xf, + + // Do not insert the reverse map (MemOp -> RegOp) into the table. + // This may be needed because there is a many -> one mapping. + TB_NO_REVERSE = 1 << 4, + + // Do not insert the forward map (RegOp -> MemOp) into the table. + // This is needed for Native Client, which prohibits branch + // instructions from using a memory operand. + TB_NO_FORWARD = 1 << 5, + + TB_FOLDED_LOAD = 1 << 6, + TB_FOLDED_STORE = 1 << 7, + + // Minimum alignment required for load/store. + // Used for RegOp->MemOp conversion. + // (stored in bits 8 - 15) + TB_ALIGN_SHIFT = 8, + TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, + TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, + TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, + TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT +}; + +struct X86OpTblEntry { + uint16_t RegOp; + uint16_t MemOp; + uint16_t Flags; +}; + +X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) + : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() + ? X86::ADJCALLSTACKDOWN64 + : X86::ADJCALLSTACKDOWN32), + (tm.getSubtarget<X86Subtarget>().is64Bit() + ? X86::ADJCALLSTACKUP64 + : X86::ADJCALLSTACKUP32)), + TM(tm), RI(tm, *this) { + + static const X86OpTblEntry OpTbl2Addr[] = { + { X86::ADC32ri, X86::ADC32mi, 0 }, + { X86::ADC32ri8, X86::ADC32mi8, 0 }, + { X86::ADC32rr, X86::ADC32mr, 0 }, + { X86::ADC64ri32, X86::ADC64mi32, 0 }, + { X86::ADC64ri8, X86::ADC64mi8, 0 }, + { X86::ADC64rr, X86::ADC64mr, 0 }, + { X86::ADD16ri, X86::ADD16mi, 0 }, + { X86::ADD16ri8, X86::ADD16mi8, 0 }, + { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, + { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, + { X86::ADD16rr, X86::ADD16mr, 0 }, + { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, + { X86::ADD32ri, X86::ADD32mi, 0 }, + { X86::ADD32ri8, X86::ADD32mi8, 0 }, + { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, + { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, + { X86::ADD32rr, X86::ADD32mr, 0 }, + { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, + { X86::ADD64ri32, X86::ADD64mi32, 0 }, + { X86::ADD64ri8, X86::ADD64mi8, 0 }, + { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, + { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, + { X86::ADD64rr, X86::ADD64mr, 0 }, + { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, + { X86::ADD8ri, X86::ADD8mi, 0 }, + { X86::ADD8rr, X86::ADD8mr, 0 }, + { X86::AND16ri, X86::AND16mi, 0 }, + { X86::AND16ri8, X86::AND16mi8, 0 }, + { X86::AND16rr, X86::AND16mr, 0 }, + { X86::AND32ri, X86::AND32mi, 0 }, + { X86::AND32ri8, X86::AND32mi8, 0 }, + { X86::AND32rr, X86::AND32mr, 0 }, + { X86::AND64ri32, X86::AND64mi32, 0 }, + { X86::AND64ri8, X86::AND64mi8, 0 }, + { X86::AND64rr, X86::AND64mr, 0 }, + { X86::AND8ri, X86::AND8mi, 0 }, + { X86::AND8rr, X86::AND8mr, 0 }, + { X86::DEC16r, X86::DEC16m, 0 }, + { X86::DEC32r, X86::DEC32m, 0 }, + { X86::DEC64_16r, X86::DEC64_16m, 0 }, + { X86::DEC64_32r, X86::DEC64_32m, 0 }, + { X86::DEC64r, X86::DEC64m, 0 }, + { X86::DEC8r, X86::DEC8m, 0 }, + { X86::INC16r, X86::INC16m, 0 }, + { X86::INC32r, X86::INC32m, 0 }, + { X86::INC64_16r, X86::INC64_16m, 0 }, + { X86::INC64_32r, X86::INC64_32m, 0 }, + { X86::INC64r, X86::INC64m, 0 }, + { X86::INC8r, X86::INC8m, 0 }, + { X86::NEG16r, X86::NEG16m, 0 }, + { X86::NEG32r, X86::NEG32m, 0 }, + { X86::NEG64r, X86::NEG64m, 0 }, + { X86::NEG8r, X86::NEG8m, 0 }, + { X86::NOT16r, X86::NOT16m, 0 }, + { X86::NOT32r, X86::NOT32m, 0 }, + { X86::NOT64r, X86::NOT64m, 0 }, + { X86::NOT8r, X86::NOT8m, 0 }, + { X86::OR16ri, X86::OR16mi, 0 }, + { X86::OR16ri8, X86::OR16mi8, 0 }, + { X86::OR16rr, X86::OR16mr, 0 }, + { X86::OR32ri, X86::OR32mi, 0 }, + { X86::OR32ri8, X86::OR32mi8, 0 }, + { X86::OR32rr, X86::OR32mr, 0 }, + { X86::OR64ri32, X86::OR64mi32, 0 }, + { X86::OR64ri8, X86::OR64mi8, 0 }, + { X86::OR64rr, X86::OR64mr, 0 }, + { X86::OR8ri, X86::OR8mi, 0 }, + { X86::OR8rr, X86::OR8mr, 0 }, + { X86::ROL16r1, X86::ROL16m1, 0 }, + { X86::ROL16rCL, X86::ROL16mCL, 0 }, + { X86::ROL16ri, X86::ROL16mi, 0 }, + { X86::ROL32r1, X86::ROL32m1, 0 }, + { X86::ROL32rCL, X86::ROL32mCL, 0 }, + { X86::ROL32ri, X86::ROL32mi, 0 }, + { X86::ROL64r1, X86::ROL64m1, 0 }, + { X86::ROL64rCL, X86::ROL64mCL, 0 }, + { X86::ROL64ri, X86::ROL64mi, 0 }, + { X86::ROL8r1, X86::ROL8m1, 0 }, + { X86::ROL8rCL, X86::ROL8mCL, 0 }, + { X86::ROL8ri, X86::ROL8mi, 0 }, + { X86::ROR16r1, X86::ROR16m1, 0 }, + { X86::ROR16rCL, X86::ROR16mCL, 0 }, + { X86::ROR16ri, X86::ROR16mi, 0 }, + { X86::ROR32r1, X86::ROR32m1, 0 }, + { X86::ROR32rCL, X86::ROR32mCL, 0 }, + { X86::ROR32ri, X86::ROR32mi, 0 }, + { X86::ROR64r1, X86::ROR64m1, 0 }, + { X86::ROR64rCL, X86::ROR64mCL, 0 }, + { X86::ROR64ri, X86::ROR64mi, 0 }, + { X86::ROR8r1, X86::ROR8m1, 0 }, + { X86::ROR8rCL, X86::ROR8mCL, 0 }, + { X86::ROR8ri, X86::ROR8mi, 0 }, + { X86::SAR16r1, X86::SAR16m1, 0 }, + { X86::SAR16rCL, X86::SAR16mCL, 0 }, + { X86::SAR16ri, X86::SAR16mi, 0 }, + { X86::SAR32r1, X86::SAR32m1, 0 }, + { X86::SAR32rCL, X86::SAR32mCL, 0 }, + { X86::SAR32ri, X86::SAR32mi, 0 }, + { X86::SAR64r1, X86::SAR64m1, 0 }, + { X86::SAR64rCL, X86::SAR64mCL, 0 }, + { X86::SAR64ri, X86::SAR64mi, 0 }, + { X86::SAR8r1, X86::SAR8m1, 0 }, + { X86::SAR8rCL, X86::SAR8mCL, 0 }, + { X86::SAR8ri, X86::SAR8mi, 0 }, + { X86::SBB32ri, X86::SBB32mi, 0 }, + { X86::SBB32ri8, X86::SBB32mi8, 0 }, + { X86::SBB32rr, X86::SBB32mr, 0 }, + { X86::SBB64ri32, X86::SBB64mi32, 0 }, + { X86::SBB64ri8, X86::SBB64mi8, 0 }, + { X86::SBB64rr, X86::SBB64mr, 0 }, + { X86::SHL16rCL, X86::SHL16mCL, 0 }, + { X86::SHL16ri, X86::SHL16mi, 0 }, + { X86::SHL32rCL, X86::SHL32mCL, 0 }, + { X86::SHL32ri, X86::SHL32mi, 0 }, + { X86::SHL64rCL, X86::SHL64mCL, 0 }, + { X86::SHL64ri, X86::SHL64mi, 0 }, + { X86::SHL8rCL, X86::SHL8mCL, 0 }, + { X86::SHL8ri, X86::SHL8mi, 0 }, + { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, + { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, + { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, + { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, + { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, + { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, + { X86::SHR16r1, X86::SHR16m1, 0 }, + { X86::SHR16rCL, X86::SHR16mCL, 0 }, + { X86::SHR16ri, X86::SHR16mi, 0 }, + { X86::SHR32r1, X86::SHR32m1, 0 }, + { X86::SHR32rCL, X86::SHR32mCL, 0 }, + { X86::SHR32ri, X86::SHR32mi, 0 }, + { X86::SHR64r1, X86::SHR64m1, 0 }, + { X86::SHR64rCL, X86::SHR64mCL, 0 }, + { X86::SHR64ri, X86::SHR64mi, 0 }, + { X86::SHR8r1, X86::SHR8m1, 0 }, + { X86::SHR8rCL, X86::SHR8mCL, 0 }, + { X86::SHR8ri, X86::SHR8mi, 0 }, + { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, + { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, + { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, + { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, + { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, + { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, + { X86::SUB16ri, X86::SUB16mi, 0 }, + { X86::SUB16ri8, X86::SUB16mi8, 0 }, + { X86::SUB16rr, X86::SUB16mr, 0 }, + { X86::SUB32ri, X86::SUB32mi, 0 }, + { X86::SUB32ri8, X86::SUB32mi8, 0 }, + { X86::SUB32rr, X86::SUB32mr, 0 }, + { X86::SUB64ri32, X86::SUB64mi32, 0 }, + { X86::SUB64ri8, X86::SUB64mi8, 0 }, + { X86::SUB64rr, X86::SUB64mr, 0 }, + { X86::SUB8ri, X86::SUB8mi, 0 }, + { X86::SUB8rr, X86::SUB8mr, 0 }, + { X86::XOR16ri, X86::XOR16mi, 0 }, + { X86::XOR16ri8, X86::XOR16mi8, 0 }, + { X86::XOR16rr, X86::XOR16mr, 0 }, + { X86::XOR32ri, X86::XOR32mi, 0 }, + { X86::XOR32ri8, X86::XOR32mi8, 0 }, + { X86::XOR32rr, X86::XOR32mr, 0 }, + { X86::XOR64ri32, X86::XOR64mi32, 0 }, + { X86::XOR64ri8, X86::XOR64mi8, 0 }, + { X86::XOR64rr, X86::XOR64mr, 0 }, + { X86::XOR8ri, X86::XOR8mi, 0 }, + { X86::XOR8rr, X86::XOR8mr, 0 } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { + unsigned RegOp = OpTbl2Addr[i].RegOp; + unsigned MemOp = OpTbl2Addr[i].MemOp; + unsigned Flags = OpTbl2Addr[i].Flags; + AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, + RegOp, MemOp, + // Index 0, folded load and store, no alignment requirement. + Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); + } + + static const X86OpTblEntry OpTbl0[] = { + { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, + { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, + { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, + { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, + { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, + { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, + { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, + { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, + { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, + { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, + { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, + { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, + { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, + { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, + { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, + { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, + { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, + { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, + { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, + { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, + { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, + { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, + { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, + { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, + { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, + { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, + { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, + { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, + { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, + { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, + { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, + { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, + { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, + { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, + { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, + { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, + { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, + { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, + { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, + { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, + { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, + { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, + { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, + { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, + { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, + { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, + { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, + { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, + { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, + { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, + { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, + { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, + { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, + { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, + { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, + { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, + { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, + { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, + { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, + { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, + { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, + { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, + { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, + { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, + { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, + { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, + { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, + { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, + { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, + { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, + { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, + { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, + { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, + // AVX 128-bit versions of foldable instructions + { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, + { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, + { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, + { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, + { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, + { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, + { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, + { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, + // AVX 256-bit foldable instructions + { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, + { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, + { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, + { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, + { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { + unsigned RegOp = OpTbl0[i].RegOp; + unsigned MemOp = OpTbl0[i].MemOp; + unsigned Flags = OpTbl0[i].Flags; + AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, + RegOp, MemOp, TB_INDEX_0 | Flags); + } + + static const X86OpTblEntry OpTbl1[] = { + { X86::CMP16rr, X86::CMP16rm, 0 }, + { X86::CMP32rr, X86::CMP32rm, 0 }, + { X86::CMP64rr, X86::CMP64rm, 0 }, + { X86::CMP8rr, X86::CMP8rm, 0 }, + { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, + { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, + { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, + { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, + { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, + { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, + { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, + { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, + { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, + { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, + { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE }, + { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE }, + { X86::IMUL16rri, X86::IMUL16rmi, 0 }, + { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, + { X86::IMUL32rri, X86::IMUL32rmi, 0 }, + { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, + { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, + { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, + { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, + { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, + { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, + { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, + { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 }, + { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 }, + { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, + { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, + { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, + { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, + { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, + { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, + { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, + { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, + { X86::MOV16rr, X86::MOV16rm, 0 }, + { X86::MOV32rr, X86::MOV32rm, 0 }, + { X86::MOV64rr, X86::MOV64rm, 0 }, + { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, + { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, + { X86::MOV8rr, X86::MOV8rm, 0 }, + { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, + { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, + { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, + { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, + { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, + { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, + { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, + { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, + { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, + { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, + { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, + { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, + { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, + { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, + { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, + { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, + { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, + { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, + { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, + { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, + { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, + { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, + { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, + { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, + { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, + { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, + { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 }, + { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 }, + { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 }, + { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, + { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, + { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, + { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, + { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, + { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, + { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, + { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, + { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, + { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, + { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 }, + { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, + { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 }, + { X86::SQRTSDr, X86::SQRTSDm, 0 }, + { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, + { X86::SQRTSSr, X86::SQRTSSm, 0 }, + { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, + { X86::TEST16rr, X86::TEST16rm, 0 }, + { X86::TEST32rr, X86::TEST32rm, 0 }, + { X86::TEST64rr, X86::TEST64rm, 0 }, + { X86::TEST8rr, X86::TEST8rm, 0 }, + // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 + { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, + { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, + // AVX 128-bit versions of foldable instructions + { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, + { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, + { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, + { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, + { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, + { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 }, + { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, + { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 }, + { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, + { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 }, + { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, + { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 }, + { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, + { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, + { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 }, + { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 }, + { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE }, + { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE }, + { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, + { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, + { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, + { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, + { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, + { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, + { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, + { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, + { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, + { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, + { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 }, + { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, + { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 }, + { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, + { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, + { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 }, + { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 }, + { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 }, + { X86::VPERMILPDri, X86::VPERMILPDmi, TB_ALIGN_16 }, + { X86::VPERMILPSri, X86::VPERMILPSmi, TB_ALIGN_16 }, + { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 }, + { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 }, + { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 }, + { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 }, + { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 }, + { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 }, + { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 }, + { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 }, + { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 }, + { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 }, + { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 }, + { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, + { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, + { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, + + // AVX 256-bit foldable instructions + { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, + { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, + { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, + { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, + { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, + { X86::VPERMILPDYri, X86::VPERMILPDYmi, TB_ALIGN_32 }, + { X86::VPERMILPSYri, X86::VPERMILPSYmi, TB_ALIGN_32 }, + + // AVX2 foldable instructions + { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_32 }, + { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_32 }, + { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_32 }, + { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_32 }, + { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_32 }, + { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_32 }, + { X86::VRCPPSYr, X86::VRCPPSYm, TB_ALIGN_32 }, + { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, TB_ALIGN_32 }, + { X86::VRSQRTPSYr, X86::VRSQRTPSYm, TB_ALIGN_32 }, + { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, TB_ALIGN_32 }, + { X86::VSQRTPDYr, X86::VSQRTPDYm, TB_ALIGN_32 }, + { X86::VSQRTPDYr_Int, X86::VSQRTPDYm_Int, TB_ALIGN_32 }, + { X86::VSQRTPSYr, X86::VSQRTPSYm, TB_ALIGN_32 }, + { X86::VSQRTPSYr_Int, X86::VSQRTPSYm_Int, TB_ALIGN_32 }, + { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, + { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { + unsigned RegOp = OpTbl1[i].RegOp; + unsigned MemOp = OpTbl1[i].MemOp; + unsigned Flags = OpTbl1[i].Flags; + AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, + RegOp, MemOp, + // Index 1, folded load + Flags | TB_INDEX_1 | TB_FOLDED_LOAD); + } + + static const X86OpTblEntry OpTbl2[] = { + { X86::ADC32rr, X86::ADC32rm, 0 }, + { X86::ADC64rr, X86::ADC64rm, 0 }, + { X86::ADD16rr, X86::ADD16rm, 0 }, + { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, + { X86::ADD32rr, X86::ADD32rm, 0 }, + { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, + { X86::ADD64rr, X86::ADD64rm, 0 }, + { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, + { X86::ADD8rr, X86::ADD8rm, 0 }, + { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, + { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, + { X86::ADDSDrr, X86::ADDSDrm, 0 }, + { X86::ADDSSrr, X86::ADDSSrm, 0 }, + { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, + { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, + { X86::AND16rr, X86::AND16rm, 0 }, + { X86::AND32rr, X86::AND32rm, 0 }, + { X86::AND64rr, X86::AND64rm, 0 }, + { X86::AND8rr, X86::AND8rm, 0 }, + { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, + { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, + { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, + { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, + { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 }, + { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 }, + { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 }, + { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 }, + { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, + { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, + { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, + { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, + { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, + { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, + { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, + { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, + { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, + { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, + { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, + { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, + { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, + { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, + { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, + { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, + { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, + { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, + { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, + { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, + { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, + { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, + { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, + { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, + { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, + { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, + { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, + { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, + { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, + { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, + { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, + { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, + { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, + { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, + { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, + { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, + { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, + { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, + { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, + { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, + { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, + { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, + { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, + { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, + { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, + { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, + { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, + { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, + { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, + { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, + { X86::CMPSDrr, X86::CMPSDrm, 0 }, + { X86::CMPSSrr, X86::CMPSSrm, 0 }, + { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, + { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, + { X86::DIVSDrr, X86::DIVSDrm, 0 }, + { X86::DIVSSrr, X86::DIVSSrm, 0 }, + { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, + { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, + { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, + { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 }, + { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 }, + { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, + { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, + { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, + { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, + { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, + { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, + { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, + { X86::IMUL16rr, X86::IMUL16rm, 0 }, + { X86::IMUL32rr, X86::IMUL32rm, 0 }, + { X86::IMUL64rr, X86::IMUL64rm, 0 }, + { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, + { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, + { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, + { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, + { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, + { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, + { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, + { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, + { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, + { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 }, + { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, + { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 }, + { X86::MAXSDrr, X86::MAXSDrm, 0 }, + { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, + { X86::MAXSSrr, X86::MAXSSrm, 0 }, + { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, + { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, + { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 }, + { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, + { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 }, + { X86::MINSDrr, X86::MINSDrm, 0 }, + { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, + { X86::MINSSrr, X86::MINSSrm, 0 }, + { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, + { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, + { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, + { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, + { X86::MULSDrr, X86::MULSDrm, 0 }, + { X86::MULSSrr, X86::MULSSrm, 0 }, + { X86::OR16rr, X86::OR16rm, 0 }, + { X86::OR32rr, X86::OR32rm, 0 }, + { X86::OR64rr, X86::OR64rm, 0 }, + { X86::OR8rr, X86::OR8rm, 0 }, + { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, + { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, + { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, + { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, + { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 }, + { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, + { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, + { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, + { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, + { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, + { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, + { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 }, + { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 }, + { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, + { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 }, + { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, + { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, + { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, + { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, + { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 }, + { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, + { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, + { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 }, + { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, + { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, + { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, + { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 }, + { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, + { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 }, + { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 }, + { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 }, + { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 }, + { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 }, + { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 }, + { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 }, + { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 }, + { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, + { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, + { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, + { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, + { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, + { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, + { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, + { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, + { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, + { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, + { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, + { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, + { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, + { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, + { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 }, + { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 }, + { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 }, + { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 }, + { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, + { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, + { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, + { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, + { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, + { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, + { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, + { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, + { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, + { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, + { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, + { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, + { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, + { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, + { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, + { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, + { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, + { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, + { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, + { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, + { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, + { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, + { X86::SBB32rr, X86::SBB32rm, 0 }, + { X86::SBB64rr, X86::SBB64rm, 0 }, + { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, + { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, + { X86::SUB16rr, X86::SUB16rm, 0 }, + { X86::SUB32rr, X86::SUB32rm, 0 }, + { X86::SUB64rr, X86::SUB64rm, 0 }, + { X86::SUB8rr, X86::SUB8rm, 0 }, + { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, + { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, + { X86::SUBSDrr, X86::SUBSDrm, 0 }, + { X86::SUBSSrr, X86::SUBSSrm, 0 }, + // FIXME: TEST*rr -> swapped operand of TEST*mr. + { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, + { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, + { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, + { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, + { X86::XOR16rr, X86::XOR16rm, 0 }, + { X86::XOR32rr, X86::XOR32rm, 0 }, + { X86::XOR64rr, X86::XOR64rm, 0 }, + { X86::XOR8rr, X86::XOR8rm, 0 }, + { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, + { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, + // AVX 128-bit versions of foldable instructions + { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, + { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, + { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, + { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, + { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, + { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, + { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, + { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, + { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, + { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, + { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, + { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, + { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, TB_ALIGN_16 }, + { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 }, + { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, + { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, + { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, + { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 }, + { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 }, + { X86::VADDSDrr, X86::VADDSDrm, 0 }, + { X86::VADDSSrr, X86::VADDSSrm, 0 }, + { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 }, + { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 }, + { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 }, + { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 }, + { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 }, + { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 }, + { X86::VBLENDPDrri, X86::VBLENDPDrmi, TB_ALIGN_16 }, + { X86::VBLENDPSrri, X86::VBLENDPSrmi, TB_ALIGN_16 }, + { X86::VBLENDVPDrr, X86::VBLENDVPDrm, TB_ALIGN_16 }, + { X86::VBLENDVPSrr, X86::VBLENDVPSrm, TB_ALIGN_16 }, + { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 }, + { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 }, + { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, + { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, + { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 }, + { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 }, + { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, + { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, + { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, + { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 }, + { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 }, + { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 }, + { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 }, + { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, + { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, + { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, + { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 }, + { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 }, + { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 }, + { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 }, + { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, + { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, + { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 }, + { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 }, + { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 }, + { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 }, + { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, + { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, + { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, + { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, + { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 }, + { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 }, + { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 }, + { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 }, + { X86::VMINSDrr, X86::VMINSDrm, 0 }, + { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, + { X86::VMINSSrr, X86::VMINSSrm, 0 }, + { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, + { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 }, + { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 }, + { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 }, + { X86::VMULSDrr, X86::VMULSDrm, 0 }, + { X86::VMULSSrr, X86::VMULSSrm, 0 }, + { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 }, + { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 }, + { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 }, + { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 }, + { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 }, + { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 }, + { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 }, + { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 }, + { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 }, + { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 }, + { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 }, + { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 }, + { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 }, + { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 }, + { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 }, + { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 }, + { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 }, + { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 }, + { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 }, + { X86::VPBLENDWrri, X86::VPBLENDWrmi, TB_ALIGN_16 }, + { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 }, + { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 }, + { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 }, + { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 }, + { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 }, + { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 }, + { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 }, + { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 }, + { X86::VPHADDDrr, X86::VPHADDDrm, TB_ALIGN_16 }, + { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 }, + { X86::VPHADDWrr, X86::VPHADDWrm, TB_ALIGN_16 }, + { X86::VPHSUBDrr, X86::VPHSUBDrm, TB_ALIGN_16 }, + { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 }, + { X86::VPHSUBWrr, X86::VPHSUBWrm, TB_ALIGN_16 }, + { X86::VPERMILPDrr, X86::VPERMILPDrm, TB_ALIGN_16 }, + { X86::VPERMILPSrr, X86::VPERMILPSrm, TB_ALIGN_16 }, + { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 }, + { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 }, + { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 }, + { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 }, + { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 }, + { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 }, + { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 }, + { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 }, + { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 }, + { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 }, + { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 }, + { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 }, + { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 }, + { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 }, + { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 }, + { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 }, + { X86::VPSHUFBrr, X86::VPSHUFBrm, TB_ALIGN_16 }, + { X86::VPSIGNBrr, X86::VPSIGNBrm, TB_ALIGN_16 }, + { X86::VPSIGNWrr, X86::VPSIGNWrm, TB_ALIGN_16 }, + { X86::VPSIGNDrr, X86::VPSIGNDrm, TB_ALIGN_16 }, + { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 }, + { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 }, + { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 }, + { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 }, + { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 }, + { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 }, + { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 }, + { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 }, + { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 }, + { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 }, + { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 }, + { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 }, + { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 }, + { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 }, + { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 }, + { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 }, + { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 }, + { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 }, + { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 }, + { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 }, + { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 }, + { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 }, + { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 }, + { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 }, + { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 }, + { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 }, + { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, + { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, + { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 }, + { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 }, + { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 }, + { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 }, + { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 }, + { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 }, + // AVX 256-bit foldable instructions + { X86::VADDPDYrr, X86::VADDPDYrm, TB_ALIGN_32 }, + { X86::VADDPSYrr, X86::VADDPSYrm, TB_ALIGN_32 }, + { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, TB_ALIGN_32 }, + { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, TB_ALIGN_32 }, + { X86::VANDNPDYrr, X86::VANDNPDYrm, TB_ALIGN_32 }, + { X86::VANDNPSYrr, X86::VANDNPSYrm, TB_ALIGN_32 }, + { X86::VANDPDYrr, X86::VANDPDYrm, TB_ALIGN_32 }, + { X86::VANDPSYrr, X86::VANDPSYrm, TB_ALIGN_32 }, + { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, TB_ALIGN_32 }, + { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, TB_ALIGN_32 }, + { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, TB_ALIGN_32 }, + { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, TB_ALIGN_32 }, + { X86::VCMPPDYrri, X86::VCMPPDYrmi, TB_ALIGN_32 }, + { X86::VCMPPSYrri, X86::VCMPPSYrmi, TB_ALIGN_32 }, + { X86::VDIVPDYrr, X86::VDIVPDYrm, TB_ALIGN_32 }, + { X86::VDIVPSYrr, X86::VDIVPSYrm, TB_ALIGN_32 }, + { X86::VHADDPDYrr, X86::VHADDPDYrm, TB_ALIGN_32 }, + { X86::VHADDPSYrr, X86::VHADDPSYrm, TB_ALIGN_32 }, + { X86::VHSUBPDYrr, X86::VHSUBPDYrm, TB_ALIGN_32 }, + { X86::VHSUBPSYrr, X86::VHSUBPSYrm, TB_ALIGN_32 }, + { X86::VINSERTF128rr, X86::VINSERTF128rm, TB_ALIGN_32 }, + { X86::VMAXPDYrr, X86::VMAXPDYrm, TB_ALIGN_32 }, + { X86::VMAXPDYrr_Int, X86::VMAXPDYrm_Int, TB_ALIGN_32 }, + { X86::VMAXPSYrr, X86::VMAXPSYrm, TB_ALIGN_32 }, + { X86::VMAXPSYrr_Int, X86::VMAXPSYrm_Int, TB_ALIGN_32 }, + { X86::VMINPDYrr, X86::VMINPDYrm, TB_ALIGN_32 }, + { X86::VMINPDYrr_Int, X86::VMINPDYrm_Int, TB_ALIGN_32 }, + { X86::VMINPSYrr, X86::VMINPSYrm, TB_ALIGN_32 }, + { X86::VMINPSYrr_Int, X86::VMINPSYrm_Int, TB_ALIGN_32 }, + { X86::VMULPDYrr, X86::VMULPDYrm, TB_ALIGN_32 }, + { X86::VMULPSYrr, X86::VMULPSYrm, TB_ALIGN_32 }, + { X86::VORPDYrr, X86::VORPDYrm, TB_ALIGN_32 }, + { X86::VORPSYrr, X86::VORPSYrm, TB_ALIGN_32 }, + { X86::VPERM2F128rr, X86::VPERM2F128rm, TB_ALIGN_32 }, + { X86::VPERMILPDYrr, X86::VPERMILPDYrm, TB_ALIGN_32 }, + { X86::VPERMILPSYrr, X86::VPERMILPSYrm, TB_ALIGN_32 }, + { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, TB_ALIGN_32 }, + { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, TB_ALIGN_32 }, + { X86::VSUBPDYrr, X86::VSUBPDYrm, TB_ALIGN_32 }, + { X86::VSUBPSYrr, X86::VSUBPSYrm, TB_ALIGN_32 }, + { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, TB_ALIGN_32 }, + { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, TB_ALIGN_32 }, + { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, TB_ALIGN_32 }, + { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, TB_ALIGN_32 }, + { X86::VXORPDYrr, X86::VXORPDYrm, TB_ALIGN_32 }, + { X86::VXORPSYrr, X86::VXORPSYrm, TB_ALIGN_32 }, + // AVX2 foldable instructions + { X86::VINSERTI128rr, X86::VINSERTI128rm, TB_ALIGN_16 }, + { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_32 }, + { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_32 }, + { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_32 }, + { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_32 }, + { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_32 }, + { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_32 }, + { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_32 }, + { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_32 }, + { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_32 }, + { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_32 }, + { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_32 }, + { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_32 }, + { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_32 }, + { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_32 }, + { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_32 }, + { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_32 }, + { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_32 }, + { X86::VPBLENDDrri, X86::VPBLENDDrmi, TB_ALIGN_32 }, + { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, TB_ALIGN_32 }, + { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, TB_ALIGN_32 }, + { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_32 }, + { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_32 }, + { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_32 }, + { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_32 }, + { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_32 }, + { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_32 }, + { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_32 }, + { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_32 }, + { X86::VPERM2I128rr, X86::VPERM2I128rm, TB_ALIGN_32 }, + { X86::VPERMDYrr, X86::VPERMDYrm, TB_ALIGN_32 }, + { X86::VPERMPDYri, X86::VPERMPDYmi, TB_ALIGN_32 }, + { X86::VPERMPSYrr, X86::VPERMPSYrm, TB_ALIGN_32 }, + { X86::VPERMQYri, X86::VPERMQYmi, TB_ALIGN_32 }, + { X86::VPHADDDYrr, X86::VPHADDDYrm, TB_ALIGN_32 }, + { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_32 }, + { X86::VPHADDWYrr, X86::VPHADDWYrm, TB_ALIGN_32 }, + { X86::VPHSUBDYrr, X86::VPHSUBDYrm, TB_ALIGN_32 }, + { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_32 }, + { X86::VPHSUBWYrr, X86::VPHSUBWYrm, TB_ALIGN_32 }, + { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_32 }, + { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_32 }, + { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_32 }, + { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_32 }, + { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_32 }, + { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_32 }, + { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_32 }, + { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_32 }, + { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_32 }, + { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_32 }, + { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_32 }, + { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_32 }, + { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_32 }, + { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_32 }, + { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_32 }, + { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_32 }, + { X86::VPSHUFBYrr, X86::VPSHUFBYrm, TB_ALIGN_32 }, + { X86::VPSIGNBYrr, X86::VPSIGNBYrm, TB_ALIGN_32 }, + { X86::VPSIGNWYrr, X86::VPSIGNWYrm, TB_ALIGN_32 }, + { X86::VPSIGNDYrr, X86::VPSIGNDYrm, TB_ALIGN_32 }, + { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 }, + { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 }, + { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 }, + { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 }, + { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_32 }, + { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 }, + { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_32 }, + { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 }, + { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 }, + { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 }, + { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_32 }, + { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 }, + { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 }, + { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 }, + { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 }, + { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_32 }, + { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 }, + { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_32 }, + { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_32 }, + { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_32 }, + { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_32 }, + { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_32 }, + { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_32 }, + { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_32 }, + { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_32 }, + { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 }, + { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_32 }, + { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_32 }, + { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_32 }, + { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_32 }, + { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_32 }, + { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_32 }, + // FIXME: add AVX 256-bit foldable instructions + + // FMA4 foldable patterns + { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_16 }, + { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_16 }, + { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_16 }, + { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_16 }, + { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_32 }, + { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_32 }, + { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_16 }, + { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_16 }, + { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_32 }, + { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_32 }, + { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_16 }, + { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_16 }, + { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_16 }, + { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_16 }, + { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_32 }, + { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_32 }, + { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_16 }, + { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_16 }, + { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_32 }, + { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_32 }, + { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_16 }, + { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_16 }, + { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_32 }, + { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_32 }, + { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_16 }, + { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_16 }, + { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_32 }, + { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 }, + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { + unsigned RegOp = OpTbl2[i].RegOp; + unsigned MemOp = OpTbl2[i].MemOp; + unsigned Flags = OpTbl2[i].Flags; + AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, + RegOp, MemOp, + // Index 2, folded load + Flags | TB_INDEX_2 | TB_FOLDED_LOAD); + } + + static const X86OpTblEntry OpTbl3[] = { + // FMA foldable instructions + { X86::VFMADDSSr231r, X86::VFMADDSSr231m, 0 }, + { X86::VFMADDSDr231r, X86::VFMADDSDr231m, 0 }, + { X86::VFMADDSSr132r, X86::VFMADDSSr132m, 0 }, + { X86::VFMADDSDr132r, X86::VFMADDSDr132m, 0 }, + { X86::VFMADDSSr213r, X86::VFMADDSSr213m, 0 }, + { X86::VFMADDSDr213r, X86::VFMADDSDr213m, 0 }, + { X86::VFMADDSSr213r_Int, X86::VFMADDSSr213m_Int, 0 }, + { X86::VFMADDSDr213r_Int, X86::VFMADDSDr213m_Int, 0 }, + + { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_16 }, + { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_16 }, + { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_16 }, + { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_16 }, + { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_16 }, + { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_16 }, + { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_32 }, + { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_32 }, + { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_32 }, + { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_32 }, + { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_32 }, + { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_32 }, + + { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, 0 }, + { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, 0 }, + { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, 0 }, + { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, 0 }, + { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, 0 }, + { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, 0 }, + { X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr213m_Int, 0 }, + { X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr213m_Int, 0 }, + + { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_16 }, + { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_16 }, + { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_16 }, + { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_16 }, + { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_16 }, + { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_16 }, + { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_32 }, + { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_32 }, + { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_32 }, + { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_32 }, + { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_32 }, + { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_32 }, + + { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, 0 }, + { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, 0 }, + { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, 0 }, + { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, 0 }, + { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, 0 }, + { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, 0 }, + { X86::VFMSUBSSr213r_Int, X86::VFMSUBSSr213m_Int, 0 }, + { X86::VFMSUBSDr213r_Int, X86::VFMSUBSDr213m_Int, 0 }, + + { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_16 }, + { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_16 }, + { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_16 }, + { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_16 }, + { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_16 }, + { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_16 }, + { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_32 }, + { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_32 }, + { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_32 }, + { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_32 }, + { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_32 }, + { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_32 }, + + { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, 0 }, + { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, 0 }, + { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, 0 }, + { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, 0 }, + { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, 0 }, + { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, 0 }, + { X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr213m_Int, 0 }, + { X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr213m_Int, 0 }, + + { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_16 }, + { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_16 }, + { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_16 }, + { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_16 }, + { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_16 }, + { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_16 }, + { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_32 }, + { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_32 }, + { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_32 }, + { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_32 }, + { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_32 }, + { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_32 }, + + { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_16 }, + { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_16 }, + { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_16 }, + { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_16 }, + { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_16 }, + { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_16 }, + { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_32 }, + { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_32 }, + { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_32 }, + { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_32 }, + { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_32 }, + { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_32 }, + + { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_16 }, + { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_16 }, + { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_16 }, + { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_16 }, + { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_16 }, + { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_16 }, + { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_32 }, + { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_32 }, + { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_32 }, + { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_32 }, + { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_32 }, + { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_32 }, + + // FMA4 foldable patterns + { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_16 }, + { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_16 }, + { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 }, + { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 }, + { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 }, + { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 }, + { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 }, + { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 }, + { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 }, + { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 }, + { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_16 }, + { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_16 }, + { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 }, + { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 }, + { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 }, + { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 }, + { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 }, + { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 }, + { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 }, + { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 }, + { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 }, + { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 }, + { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 }, + { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 }, + { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 }, + { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 }, + { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 }, + { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 }, + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) { + unsigned RegOp = OpTbl3[i].RegOp; + unsigned MemOp = OpTbl3[i].MemOp; + unsigned Flags = OpTbl3[i].Flags; + AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, + RegOp, MemOp, + // Index 3, folded load + Flags | TB_INDEX_3 | TB_FOLDED_LOAD); + } + +} + +void +X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, + MemOp2RegOpTableType &M2RTable, + unsigned RegOp, unsigned MemOp, unsigned Flags) { + if ((Flags & TB_NO_FORWARD) == 0) { + assert(!R2MTable.count(RegOp) && "Duplicate entry!"); + R2MTable[RegOp] = std::make_pair(MemOp, Flags); + } + if ((Flags & TB_NO_REVERSE) == 0) { + assert(!M2RTable.count(MemOp) && + "Duplicated entries in unfolding maps?"); + M2RTable[MemOp] = std::make_pair(RegOp, Flags); + } +} + +bool +X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SubIdx) const { + switch (MI.getOpcode()) { + default: break; + case X86::MOVSX16rr8: + case X86::MOVZX16rr8: + case X86::MOVSX32rr8: + case X86::MOVZX32rr8: + case X86::MOVSX64rr8: + case X86::MOVZX64rr8: + if (!TM.getSubtarget<X86Subtarget>().is64Bit()) + // It's not always legal to reference the low 8-bit of the larger + // register in 32-bit mode. + return false; + case X86::MOVSX32rr16: + case X86::MOVZX32rr16: + case X86::MOVSX64rr16: + case X86::MOVZX64rr16: + case X86::MOVSX64rr32: + case X86::MOVZX64rr32: { + if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) + // Be conservative. + return false; + SrcReg = MI.getOperand(1).getReg(); + DstReg = MI.getOperand(0).getReg(); + switch (MI.getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::MOVSX16rr8: + case X86::MOVZX16rr8: + case X86::MOVSX32rr8: + case X86::MOVZX32rr8: + case X86::MOVSX64rr8: + case X86::MOVZX64rr8: + SubIdx = X86::sub_8bit; + break; + case X86::MOVSX32rr16: + case X86::MOVZX32rr16: + case X86::MOVSX64rr16: + case X86::MOVZX64rr16: + SubIdx = X86::sub_16bit; + break; + case X86::MOVSX64rr32: + case X86::MOVZX64rr32: + SubIdx = X86::sub_32bit; + break; + } + return true; + } + } + return false; +} + +/// isFrameOperand - Return true and the FrameIndex if the specified +/// operand and follow operands form a reference to the stack frame. +bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, + int &FrameIndex) const { + if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && + MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && + MI->getOperand(Op+1).getImm() == 1 && + MI->getOperand(Op+2).getReg() == 0 && + MI->getOperand(Op+3).getImm() == 0) { + FrameIndex = MI->getOperand(Op).getIndex(); + return true; + } + return false; +} + +static bool isFrameLoadOpcode(int Opcode) { + switch (Opcode) { + default: + return false; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp64m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MOVAPSrm: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::VMOVSSrm: + case X86::VMOVSDrm: + case X86::VMOVAPSrm: + case X86::VMOVAPDrm: + case X86::VMOVDQArm: + case X86::VMOVAPSYrm: + case X86::VMOVAPDYrm: + case X86::VMOVDQAYrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + return true; + } +} + +static bool isFrameStoreOpcode(int Opcode) { + switch (Opcode) { + default: break; + case X86::MOV8mr: + case X86::MOV16mr: + case X86::MOV32mr: + case X86::MOV64mr: + case X86::ST_FpP64m: + case X86::MOVSSmr: + case X86::MOVSDmr: + case X86::MOVAPSmr: + case X86::MOVAPDmr: + case X86::MOVDQAmr: + case X86::VMOVSSmr: + case X86::VMOVSDmr: + case X86::VMOVAPSmr: + case X86::VMOVAPDmr: + case X86::VMOVDQAmr: + case X86::VMOVAPSYmr: + case X86::VMOVAPDYmr: + case X86::VMOVDQAYmr: + case X86::MMX_MOVD64mr: + case X86::MMX_MOVQ64mr: + case X86::MMX_MOVNTQmr: + return true; + } + return false; +} + +unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameLoadOpcode(MI->getOpcode())) + if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) + return MI->getOperand(0).getReg(); + return 0; +} + +unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameLoadOpcode(MI->getOpcode())) { + unsigned Reg; + if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) + return Reg; + // Check for post-frame index elimination operations + const MachineMemOperand *Dummy; + return hasLoadFromStackSlot(MI, Dummy, FrameIndex); + } + return 0; +} + +unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameStoreOpcode(MI->getOpcode())) + if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && + isFrameOperand(MI, 0, FrameIndex)) + return MI->getOperand(X86::AddrNumOperands).getReg(); + return 0; +} + +unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameStoreOpcode(MI->getOpcode())) { + unsigned Reg; + if ((Reg = isStoreToStackSlot(MI, FrameIndex))) + return Reg; + // Check for post-frame index elimination operations + const MachineMemOperand *Dummy; + return hasStoreToStackSlot(MI, Dummy, FrameIndex); + } + return 0; +} + +/// regIsPICBase - Return true if register is PIC base (i.e.g defined by +/// X86::MOVPC32r. +static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { + // Don't waste compile time scanning use-def chains of physregs. + if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) + return false; + bool isPICBase = false; + for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), + E = MRI.def_end(); I != E; ++I) { + MachineInstr *DefMI = I.getOperand().getParent(); + if (DefMI->getOpcode() != X86::MOVPC32r) + return false; + assert(!isPICBase && "More than one PIC base?"); + isPICBase = true; + } + return isPICBase; +} + +bool +X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, + AliasAnalysis *AA) const { + switch (MI->getOpcode()) { + default: break; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp64m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::VMOVSSrm: + case X86::VMOVSDrm: + case X86::VMOVAPSrm: + case X86::VMOVUPSrm: + case X86::VMOVAPDrm: + case X86::VMOVDQArm: + case X86::VMOVAPSYrm: + case X86::VMOVUPSYrm: + case X86::VMOVAPDYrm: + case X86::VMOVDQAYrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsVMOVAPSrm: + case X86::FsVMOVAPDrm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: { + // Loads from constant pools are trivially rematerializable. + if (MI->getOperand(1).isReg() && + MI->getOperand(2).isImm() && + MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && + MI->isInvariantLoad(AA)) { + unsigned BaseReg = MI->getOperand(1).getReg(); + if (BaseReg == 0 || BaseReg == X86::RIP) + return true; + // Allow re-materialization of PIC load. + if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) + return false; + const MachineFunction &MF = *MI->getParent()->getParent(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + return regIsPICBase(BaseReg, MRI); + } + return false; + } + + case X86::LEA32r: + case X86::LEA64r: { + if (MI->getOperand(2).isImm() && + MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && + !MI->getOperand(4).isReg()) { + // lea fi#, lea GV, etc. are all rematerializable. + if (!MI->getOperand(1).isReg()) + return true; + unsigned BaseReg = MI->getOperand(1).getReg(); + if (BaseReg == 0) + return true; + // Allow re-materialization of lea PICBase + x. + const MachineFunction &MF = *MI->getParent()->getParent(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + return regIsPICBase(BaseReg, MRI); + } + return false; + } + } + + // All other instructions marked M_REMATERIALIZABLE are always trivially + // rematerializable. + return true; +} + +/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that +/// would clobber the EFLAGS condition register. Note the result may be +/// conservative. If it cannot definitely determine the safety after visiting +/// a few instructions in each direction it assumes it's not safe. +static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + MachineBasicBlock::iterator E = MBB.end(); + + // For compile time consideration, if we are not able to determine the + // safety after visiting 4 instructions in each direction, we will assume + // it's not safe. + MachineBasicBlock::iterator Iter = I; + for (unsigned i = 0; Iter != E && i < 4; ++i) { + bool SeenDef = false; + for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { + MachineOperand &MO = Iter->getOperand(j); + if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) + SeenDef = true; + if (!MO.isReg()) + continue; + if (MO.getReg() == X86::EFLAGS) { + if (MO.isUse()) + return false; + SeenDef = true; + } + } + + if (SeenDef) + // This instruction defines EFLAGS, no need to look any further. + return true; + ++Iter; + // Skip over DBG_VALUE. + while (Iter != E && Iter->isDebugValue()) + ++Iter; + } + + // It is safe to clobber EFLAGS at the end of a block of no successor has it + // live in. + if (Iter == E) { + for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), + SE = MBB.succ_end(); SI != SE; ++SI) + if ((*SI)->isLiveIn(X86::EFLAGS)) + return false; + return true; + } + + MachineBasicBlock::iterator B = MBB.begin(); + Iter = I; + for (unsigned i = 0; i < 4; ++i) { + // If we make it to the beginning of the block, it's safe to clobber + // EFLAGS iff EFLAGS is not live-in. + if (Iter == B) + return !MBB.isLiveIn(X86::EFLAGS); + + --Iter; + // Skip over DBG_VALUE. + while (Iter != B && Iter->isDebugValue()) + --Iter; + + bool SawKill = false; + for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { + MachineOperand &MO = Iter->getOperand(j); + // A register mask may clobber EFLAGS, but we should still look for a + // live EFLAGS def. + if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) + SawKill = true; + if (MO.isReg() && MO.getReg() == X86::EFLAGS) { + if (MO.isDef()) return MO.isDead(); + if (MO.isKill()) SawKill = true; + } + } + + if (SawKill) + // This instruction kills EFLAGS and doesn't redefine it, so + // there's no need to look further. + return true; + } + + // Conservative answer. + return false; +} + +void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned DestReg, unsigned SubIdx, + const MachineInstr *Orig, + const TargetRegisterInfo &TRI) const { + DebugLoc DL = Orig->getDebugLoc(); + + // MOV32r0 etc. are implemented with xor which clobbers condition code. + // Re-materialize them as movri instructions to avoid side effects. + bool Clone = true; + unsigned Opc = Orig->getOpcode(); + switch (Opc) { + default: break; + case X86::MOV8r0: + case X86::MOV16r0: + case X86::MOV32r0: + case X86::MOV64r0: { + if (!isSafeToClobberEFLAGS(MBB, I)) { + switch (Opc) { + default: llvm_unreachable("Unreachable!"); + case X86::MOV8r0: Opc = X86::MOV8ri; break; + case X86::MOV16r0: Opc = X86::MOV16ri; break; + case X86::MOV32r0: Opc = X86::MOV32ri; break; + case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; + } + Clone = false; + } + break; + } + } + + if (Clone) { + MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); + MBB.insert(I, MI); + } else { + BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); + } + + MachineInstr *NewMI = prior(I); + NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); +} + +/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that +/// is not marked dead. +static bool hasLiveCondCodeDef(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && + MO.getReg() == X86::EFLAGS && !MO.isDead()) { + return true; + } + } + return false; +} + +/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when +/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting +/// to a 32-bit superregister and then truncating back down to a 16-bit +/// subregister. +MachineInstr * +X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, + MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const { + MachineInstr *MI = MBBI; + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Src = MI->getOperand(1).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isKill = MI->getOperand(1).isKill(); + + unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() + ? X86::LEA64_32r : X86::LEA32r; + MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); + unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); + unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); + + // Build and insert into an implicit UNDEF value. This is OK because + // well be shifting and then extracting the lower 16-bits. + // This has the potential to cause partial register stall. e.g. + // movw (%rbp,%rcx,2), %dx + // leal -65(%rdx), %esi + // But testing has shown this *does* help performance in 64-bit mode (at + // least on modern x86 machines). + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); + MachineInstr *InsMI = + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) + .addReg(leaInReg, RegState::Define, X86::sub_16bit) + .addReg(Src, getKillRegState(isKill)); + + MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), + get(Opc), leaOutReg); + switch (MIOpc) { + default: llvm_unreachable("Unreachable!"); + case X86::SHL16ri: { + unsigned ShAmt = MI->getOperand(2).getImm(); + MIB.addReg(0).addImm(1 << ShAmt) + .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); + break; + } + case X86::INC16r: + case X86::INC64_16r: + addRegOffset(MIB, leaInReg, true, 1); + break; + case X86::DEC16r: + case X86::DEC64_16r: + addRegOffset(MIB, leaInReg, true, -1); + break; + case X86::ADD16ri: + case X86::ADD16ri8: + case X86::ADD16ri_DB: + case X86::ADD16ri8_DB: + addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); + break; + case X86::ADD16rr: + case X86::ADD16rr_DB: { + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + unsigned leaInReg2 = 0; + MachineInstr *InsMI2 = 0; + if (Src == Src2) { + // ADD16rr %reg1028<kill>, %reg1028 + // just a single insert_subreg. + addRegReg(MIB, leaInReg, true, leaInReg, false); + } else { + leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); + // Build and insert into an implicit UNDEF value. This is OK because + // well be shifting and then extracting the lower 16-bits. + BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2); + InsMI2 = + BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) + .addReg(leaInReg2, RegState::Define, X86::sub_16bit) + .addReg(Src2, getKillRegState(isKill2)); + addRegReg(MIB, leaInReg, true, leaInReg2, true); + } + if (LV && isKill2 && InsMI2) + LV->replaceKillInstruction(Src2, MI, InsMI2); + break; + } + } + + MachineInstr *NewMI = MIB; + MachineInstr *ExtMI = + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) + .addReg(Dest, RegState::Define | getDeadRegState(isDead)) + .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); + + if (LV) { + // Update live variables + LV->getVarInfo(leaInReg).Kills.push_back(NewMI); + LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); + if (isKill) + LV->replaceKillInstruction(Src, MI, InsMI); + if (isDead) + LV->replaceKillInstruction(Dest, MI, ExtMI); + } + + return ExtMI; +} + +/// convertToThreeAddress - This method must be implemented by targets that +/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target +/// may be able to convert a two-address instruction into a true +/// three-address instruction on demand. This allows the X86 target (for +/// example) to convert ADD and SHL instructions into LEA instructions if they +/// would require register copies due to two-addressness. +/// +/// This method returns a null pointer if the transformation cannot be +/// performed, otherwise it returns the new instruction. +/// +MachineInstr * +X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const { + MachineInstr *MI = MBBI; + MachineFunction &MF = *MI->getParent()->getParent(); + // All instructions input are two-addr instructions. Get the known operands. + const MachineOperand &Dest = MI->getOperand(0); + const MachineOperand &Src = MI->getOperand(1); + + MachineInstr *NewMI = NULL; + // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When + // we have better subtarget support, enable the 16-bit LEA generation here. + // 16-bit LEA is also slow on Core2. + bool DisableLEA16 = true; + bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); + + unsigned MIOpc = MI->getOpcode(); + switch (MIOpc) { + case X86::SHUFPSrri: { + assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); + if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; + + unsigned B = MI->getOperand(1).getReg(); + unsigned C = MI->getOperand(2).getReg(); + if (B != C) return 0; + unsigned M = MI->getOperand(3).getImm(); + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) + .addOperand(Dest).addOperand(Src).addImm(M); + break; + } + case X86::SHUFPDrri: { + assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!"); + if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; + + unsigned B = MI->getOperand(1).getReg(); + unsigned C = MI->getOperand(2).getReg(); + if (B != C) return 0; + unsigned M = MI->getOperand(3).getImm(); + + // Convert to PSHUFD mask. + M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44; + + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) + .addOperand(Dest).addOperand(Src).addImm(M); + break; + } + case X86::SHL64ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + // LEA can't handle RSP. + if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && + !MF.getRegInfo().constrainRegClass(Src.getReg(), + &X86::GR64_NOSPRegClass)) + return 0; + + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) + .addOperand(Dest) + .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); + break; + } + case X86::SHL32ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + // LEA can't handle ESP. + if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && + !MF.getRegInfo().constrainRegClass(Src.getReg(), + &X86::GR32_NOSPRegClass)) + return 0; + + unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; + NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addOperand(Dest) + .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); + break; + } + case X86::SHL16ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addOperand(Dest) + .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0); + break; + } + default: { + // The following opcodes also sets the condition code register(s). Only + // convert them to equivalent lea if the condition code register def's + // are dead! + if (hasLiveCondCodeDef(MI)) + return 0; + + switch (MIOpc) { + default: return 0; + case X86::INC64r: + case X86::INC32r: + case X86::INC64_32r: { + assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); + unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r + : (is64Bit ? X86::LEA64_32r : X86::LEA32r); + const TargetRegisterClass *RC = MIOpc == X86::INC64r ? + (const TargetRegisterClass*)&X86::GR64_NOSPRegClass : + (const TargetRegisterClass*)&X86::GR32_NOSPRegClass; + + // LEA can't handle RSP. + if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && + !MF.getRegInfo().constrainRegClass(Src.getReg(), RC)) + return 0; + + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addOperand(Dest).addOperand(Src), 1); + break; + } + case X86::INC16r: + case X86::INC64_16r: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addOperand(Dest).addOperand(Src), 1); + break; + case X86::DEC64r: + case X86::DEC32r: + case X86::DEC64_32r: { + assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); + unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r + : (is64Bit ? X86::LEA64_32r : X86::LEA32r); + const TargetRegisterClass *RC = MIOpc == X86::DEC64r ? + (const TargetRegisterClass*)&X86::GR64_NOSPRegClass : + (const TargetRegisterClass*)&X86::GR32_NOSPRegClass; + // LEA can't handle RSP. + if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && + !MF.getRegInfo().constrainRegClass(Src.getReg(), RC)) + return 0; + + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addOperand(Dest).addOperand(Src), -1); + break; + } + case X86::DEC16r: + case X86::DEC64_16r: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addOperand(Dest).addOperand(Src), -1); + break; + case X86::ADD64rr: + case X86::ADD64rr_DB: + case X86::ADD32rr: + case X86::ADD32rr_DB: { + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Opc; + const TargetRegisterClass *RC; + if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { + Opc = X86::LEA64r; + RC = &X86::GR64_NOSPRegClass; + } else { + Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; + RC = &X86::GR32_NOSPRegClass; + } + + + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + + // LEA can't handle RSP. + if (TargetRegisterInfo::isVirtualRegister(Src2) && + !MF.getRegInfo().constrainRegClass(Src2, RC)) + return 0; + + NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addOperand(Dest), + Src.getReg(), Src.isKill(), Src2, isKill2); + + // Preserve undefness of the operands. + bool isUndef = MI->getOperand(1).isUndef(); + bool isUndef2 = MI->getOperand(2).isUndef(); + NewMI->getOperand(1).setIsUndef(isUndef); + NewMI->getOperand(3).setIsUndef(isUndef2); + + if (LV && isKill2) + LV->replaceKillInstruction(Src2, MI, NewMI); + break; + } + case X86::ADD16rr: + case X86::ADD16rr_DB: { + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addOperand(Dest), + Src.getReg(), Src.isKill(), Src2, isKill2); + + // Preserve undefness of the operands. + bool isUndef = MI->getOperand(1).isUndef(); + bool isUndef2 = MI->getOperand(2).isUndef(); + NewMI->getOperand(1).setIsUndef(isUndef); + NewMI->getOperand(3).setIsUndef(isUndef2); + + if (LV && isKill2) + LV->replaceKillInstruction(Src2, MI, NewMI); + break; + } + case X86::ADD64ri32: + case X86::ADD64ri8: + case X86::ADD64ri32_DB: + case X86::ADD64ri8_DB: + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) + .addOperand(Dest).addOperand(Src), + MI->getOperand(2).getImm()); + break; + case X86::ADD32ri: + case X86::ADD32ri8: + case X86::ADD32ri_DB: + case X86::ADD32ri8_DB: { + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addOperand(Dest).addOperand(Src), + MI->getOperand(2).getImm()); + break; + } + case X86::ADD16ri: + case X86::ADD16ri8: + case X86::ADD16ri_DB: + case X86::ADD16ri8_DB: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addOperand(Dest).addOperand(Src), + MI->getOperand(2).getImm()); + break; + } + } + } + + if (!NewMI) return 0; + + if (LV) { // Update live variables + if (Src.isKill()) + LV->replaceKillInstruction(Src.getReg(), MI, NewMI); + if (Dest.isDead()) + LV->replaceKillInstruction(Dest.getReg(), MI, NewMI); + } + + MFI->insert(MBBI, NewMI); // Insert the new inst + return NewMI; +} + +/// commuteInstruction - We have a few instructions that must be hacked on to +/// commute them. +/// +MachineInstr * +X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { + switch (MI->getOpcode()) { + case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) + case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) + case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) + case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) + case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) + case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) + unsigned Opc; + unsigned Size; + switch (MI->getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; + case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; + case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; + case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; + case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; + case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; + } + unsigned Amt = MI->getOperand(3).getImm(); + if (NewMI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MI = MF.CloneMachineInstr(MI); + NewMI = false; + } + MI->setDesc(get(Opc)); + MI->getOperand(3).setImm(Size-Amt); + return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + } + case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: + case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: + case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: + case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: + case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: + case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: + case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: + case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: + case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: + case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: + case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: + case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: + case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: + case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: + case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: + case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; + case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; + case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; + case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; + case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; + case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; + case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; + case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; + case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; + case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; + case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; + case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; + case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; + case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; + case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; + case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; + case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; + case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; + case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; + case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; + case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; + case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; + case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; + case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; + case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; + case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; + case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; + case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; + case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; + case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; + case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; + case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; + case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; + case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; + case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; + case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; + case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; + case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; + case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; + case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; + case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; + case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; + case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; + case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; + case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; + case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; + case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; + case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; + } + if (NewMI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MI = MF.CloneMachineInstr(MI); + NewMI = false; + } + MI->setDesc(get(Opc)); + // Fallthrough intended. + } + default: + return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + } +} + +static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { + switch (BrOpc) { + default: return X86::COND_INVALID; + case X86::JE_4: return X86::COND_E; + case X86::JNE_4: return X86::COND_NE; + case X86::JL_4: return X86::COND_L; + case X86::JLE_4: return X86::COND_LE; + case X86::JG_4: return X86::COND_G; + case X86::JGE_4: return X86::COND_GE; + case X86::JB_4: return X86::COND_B; + case X86::JBE_4: return X86::COND_BE; + case X86::JA_4: return X86::COND_A; + case X86::JAE_4: return X86::COND_AE; + case X86::JS_4: return X86::COND_S; + case X86::JNS_4: return X86::COND_NS; + case X86::JP_4: return X86::COND_P; + case X86::JNP_4: return X86::COND_NP; + case X86::JO_4: return X86::COND_O; + case X86::JNO_4: return X86::COND_NO; + } +} + +/// getCondFromSETOpc - return condition code of a SET opcode. +static X86::CondCode getCondFromSETOpc(unsigned Opc) { + switch (Opc) { + default: return X86::COND_INVALID; + case X86::SETAr: case X86::SETAm: return X86::COND_A; + case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; + case X86::SETBr: case X86::SETBm: return X86::COND_B; + case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; + case X86::SETEr: case X86::SETEm: return X86::COND_E; + case X86::SETGr: case X86::SETGm: return X86::COND_G; + case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; + case X86::SETLr: case X86::SETLm: return X86::COND_L; + case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; + case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; + case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; + case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; + case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; + case X86::SETOr: case X86::SETOm: return X86::COND_O; + case X86::SETPr: case X86::SETPm: return X86::COND_P; + case X86::SETSr: case X86::SETSm: return X86::COND_S; + } +} + +/// getCondFromCmovOpc - return condition code of a CMov opcode. +static X86::CondCode getCondFromCMovOpc(unsigned Opc) { + switch (Opc) { + default: return X86::COND_INVALID; + case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: + case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: + return X86::COND_A; + case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: + case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: + return X86::COND_AE; + case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: + case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: + return X86::COND_B; + case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: + case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: + return X86::COND_BE; + case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: + case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: + return X86::COND_E; + case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: + case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: + return X86::COND_G; + case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: + case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: + return X86::COND_GE; + case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: + case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: + return X86::COND_L; + case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: + case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: + return X86::COND_LE; + case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: + case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: + return X86::COND_NE; + case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: + case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: + return X86::COND_NO; + case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: + case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: + return X86::COND_NP; + case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: + case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: + return X86::COND_NS; + case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: + case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: + return X86::COND_O; + case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: + case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: + return X86::COND_P; + case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: + case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: + return X86::COND_S; + } +} + +unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Illegal condition code!"); + case X86::COND_E: return X86::JE_4; + case X86::COND_NE: return X86::JNE_4; + case X86::COND_L: return X86::JL_4; + case X86::COND_LE: return X86::JLE_4; + case X86::COND_G: return X86::JG_4; + case X86::COND_GE: return X86::JGE_4; + case X86::COND_B: return X86::JB_4; + case X86::COND_BE: return X86::JBE_4; + case X86::COND_A: return X86::JA_4; + case X86::COND_AE: return X86::JAE_4; + case X86::COND_S: return X86::JS_4; + case X86::COND_NS: return X86::JNS_4; + case X86::COND_P: return X86::JP_4; + case X86::COND_NP: return X86::JNP_4; + case X86::COND_O: return X86::JO_4; + case X86::COND_NO: return X86::JNO_4; + } +} + +/// GetOppositeBranchCondition - Return the inverse of the specified condition, +/// e.g. turning COND_E to COND_NE. +X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Illegal condition code!"); + case X86::COND_E: return X86::COND_NE; + case X86::COND_NE: return X86::COND_E; + case X86::COND_L: return X86::COND_GE; + case X86::COND_LE: return X86::COND_G; + case X86::COND_G: return X86::COND_LE; + case X86::COND_GE: return X86::COND_L; + case X86::COND_B: return X86::COND_AE; + case X86::COND_BE: return X86::COND_A; + case X86::COND_A: return X86::COND_BE; + case X86::COND_AE: return X86::COND_B; + case X86::COND_S: return X86::COND_NS; + case X86::COND_NS: return X86::COND_S; + case X86::COND_P: return X86::COND_NP; + case X86::COND_NP: return X86::COND_P; + case X86::COND_O: return X86::COND_NO; + case X86::COND_NO: return X86::COND_O; + } +} + +/// getSwappedCondition - assume the flags are set by MI(a,b), return +/// the condition code if we modify the instructions such that flags are +/// set by MI(b,a). +static X86::CondCode getSwappedCondition(X86::CondCode CC) { + switch (CC) { + default: return X86::COND_INVALID; + case X86::COND_E: return X86::COND_E; + case X86::COND_NE: return X86::COND_NE; + case X86::COND_L: return X86::COND_G; + case X86::COND_LE: return X86::COND_GE; + case X86::COND_G: return X86::COND_L; + case X86::COND_GE: return X86::COND_LE; + case X86::COND_B: return X86::COND_A; + case X86::COND_BE: return X86::COND_AE; + case X86::COND_A: return X86::COND_B; + case X86::COND_AE: return X86::COND_BE; + } +} + +/// getSETFromCond - Return a set opcode for the given condition and +/// whether it has memory operand. +static unsigned getSETFromCond(X86::CondCode CC, + bool HasMemoryOperand) { + static const uint16_t Opc[16][2] = { + { X86::SETAr, X86::SETAm }, + { X86::SETAEr, X86::SETAEm }, + { X86::SETBr, X86::SETBm }, + { X86::SETBEr, X86::SETBEm }, + { X86::SETEr, X86::SETEm }, + { X86::SETGr, X86::SETGm }, + { X86::SETGEr, X86::SETGEm }, + { X86::SETLr, X86::SETLm }, + { X86::SETLEr, X86::SETLEm }, + { X86::SETNEr, X86::SETNEm }, + { X86::SETNOr, X86::SETNOm }, + { X86::SETNPr, X86::SETNPm }, + { X86::SETNSr, X86::SETNSm }, + { X86::SETOr, X86::SETOm }, + { X86::SETPr, X86::SETPm }, + { X86::SETSr, X86::SETSm } + }; + + assert(CC < 16 && "Can only handle standard cond codes"); + return Opc[CC][HasMemoryOperand ? 1 : 0]; +} + +/// getCMovFromCond - Return a cmov opcode for the given condition, +/// register size in bytes, and operand type. +static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes, + bool HasMemoryOperand) { + static const uint16_t Opc[32][3] = { + { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, + { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, + { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, + { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, + { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, + { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, + { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, + { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, + { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, + { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, + { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, + { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, + { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, + { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, + { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, + { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, + { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, + { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, + { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, + { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, + { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, + { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, + { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, + { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, + { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, + { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, + { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, + { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, + { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, + { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, + { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, + { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } + }; + + assert(CC < 16 && "Can only handle standard cond codes"); + unsigned Idx = HasMemoryOperand ? 16+CC : CC; + switch(RegBytes) { + default: llvm_unreachable("Illegal register size!"); + case 2: return Opc[Idx][0]; + case 4: return Opc[Idx][1]; + case 8: return Opc[Idx][2]; + } +} + +bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { + if (!MI->isTerminator()) return false; + + // Conditional branch is a special case. + if (MI->isBranch() && !MI->isBarrier()) + return true; + if (!MI->isPredicable()) + return true; + return !isPredicated(MI); +} + +bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + // Start from the bottom of the block and work up, examining the + // terminator instructions. + MachineBasicBlock::iterator I = MBB.end(); + MachineBasicBlock::iterator UnCondBrIter = MBB.end(); + while (I != MBB.begin()) { + --I; + if (I->isDebugValue()) + continue; + + // Working from the bottom, when we see a non-terminator instruction, we're + // done. + if (!isUnpredicatedTerminator(I)) + break; + + // A terminator that isn't a branch can't easily be handled by this + // analysis. + if (!I->isBranch()) + return true; + + // Handle unconditional branches. + if (I->getOpcode() == X86::JMP_4) { + UnCondBrIter = I; + + if (!AllowModify) { + TBB = I->getOperand(0).getMBB(); + continue; + } + + // If the block has any instructions after a JMP, delete them. + while (llvm::next(I) != MBB.end()) + llvm::next(I)->eraseFromParent(); + + Cond.clear(); + FBB = 0; + + // Delete the JMP if it's equivalent to a fall-through. + if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { + TBB = 0; + I->eraseFromParent(); + I = MBB.end(); + UnCondBrIter = MBB.end(); + continue; + } + + // TBB is used to indicate the unconditional destination. + TBB = I->getOperand(0).getMBB(); + continue; + } + + // Handle conditional branches. + X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode()); + if (BranchCode == X86::COND_INVALID) + return true; // Can't handle indirect branch. + + // Working from the bottom, handle the first conditional branch. + if (Cond.empty()) { + MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); + if (AllowModify && UnCondBrIter != MBB.end() && + MBB.isLayoutSuccessor(TargetBB)) { + // If we can modify the code and it ends in something like: + // + // jCC L1 + // jmp L2 + // L1: + // ... + // L2: + // + // Then we can change this to: + // + // jnCC L2 + // L1: + // ... + // L2: + // + // Which is a bit more efficient. + // We conditionally jump to the fall-through block. + BranchCode = GetOppositeBranchCondition(BranchCode); + unsigned JNCC = GetCondBranchFromCond(BranchCode); + MachineBasicBlock::iterator OldInst = I; + + BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) + .addMBB(UnCondBrIter->getOperand(0).getMBB()); + BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) + .addMBB(TargetBB); + + OldInst->eraseFromParent(); + UnCondBrIter->eraseFromParent(); + + // Restart the analysis. + UnCondBrIter = MBB.end(); + I = MBB.end(); + continue; + } + + FBB = TBB; + TBB = I->getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(BranchCode)); + continue; + } + + // Handle subsequent conditional branches. Only handle the case where all + // conditional branches branch to the same destination and their condition + // opcodes fit one of the special multi-branch idioms. + assert(Cond.size() == 1); + assert(TBB); + + // Only handle the case where all conditional branches branch to the same + // destination. + if (TBB != I->getOperand(0).getMBB()) + return true; + + // If the conditions are the same, we can leave them alone. + X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); + if (OldBranchCode == BranchCode) + continue; + + // If they differ, see if they fit one of the known patterns. Theoretically, + // we could handle more patterns here, but we shouldn't expect to see them + // if instruction selection has done a reasonable job. + if ((OldBranchCode == X86::COND_NP && + BranchCode == X86::COND_E) || + (OldBranchCode == X86::COND_E && + BranchCode == X86::COND_NP)) + BranchCode = X86::COND_NP_OR_E; + else if ((OldBranchCode == X86::COND_P && + BranchCode == X86::COND_NE) || + (OldBranchCode == X86::COND_NE && + BranchCode == X86::COND_P)) + BranchCode = X86::COND_NE_OR_P; + else + return true; + + // Update the MachineOperand. + Cond[0].setImm(BranchCode); + } + + return false; +} + +unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { + MachineBasicBlock::iterator I = MBB.end(); + unsigned Count = 0; + + while (I != MBB.begin()) { + --I; + if (I->isDebugValue()) + continue; + if (I->getOpcode() != X86::JMP_4 && + getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) + break; + // Remove the branch. + I->eraseFromParent(); + I = MBB.end(); + ++Count; + } + + return Count; +} + +unsigned +X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond, + DebugLoc DL) const { + // Shouldn't be a fall through. + assert(TBB && "InsertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 1 || Cond.size() == 0) && + "X86 branch conditions have one component!"); + + if (Cond.empty()) { + // Unconditional branch? + assert(!FBB && "Unconditional branch with multiple successors!"); + BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); + return 1; + } + + // Conditional branch. + unsigned Count = 0; + X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); + switch (CC) { + case X86::COND_NP_OR_E: + // Synthesize NP_OR_E with two branches. + BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); + ++Count; + BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); + ++Count; + break; + case X86::COND_NE_OR_P: + // Synthesize NE_OR_P with two branches. + BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); + ++Count; + BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); + ++Count; + break; + default: { + unsigned Opc = GetCondBranchFromCond(CC); + BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); + ++Count; + } + } + if (FBB) { + // Two-way Conditional branch. Insert the second branch. + BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); + ++Count; + } + return Count; +} + +bool X86InstrInfo:: +canInsertSelect(const MachineBasicBlock &MBB, + const SmallVectorImpl<MachineOperand> &Cond, + unsigned TrueReg, unsigned FalseReg, + int &CondCycles, int &TrueCycles, int &FalseCycles) const { + // Not all subtargets have cmov instructions. + if (!TM.getSubtarget<X86Subtarget>().hasCMov()) + return false; + if (Cond.size() != 1) + return false; + // We cannot do the composite conditions, at least not in SSA form. + if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) + return false; + + // Check register classes. + const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + const TargetRegisterClass *RC = + RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); + if (!RC) + return false; + + // We have cmov instructions for 16, 32, and 64 bit general purpose registers. + if (X86::GR16RegClass.hasSubClassEq(RC) || + X86::GR32RegClass.hasSubClassEq(RC) || + X86::GR64RegClass.hasSubClassEq(RC)) { + // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy + // Bridge. Probably Ivy Bridge as well. + CondCycles = 2; + TrueCycles = 2; + FalseCycles = 2; + return true; + } + + // Can't do vectors. + return false; +} + +void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, DebugLoc DL, + unsigned DstReg, + const SmallVectorImpl<MachineOperand> &Cond, + unsigned TrueReg, unsigned FalseReg) const { + MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + assert(Cond.size() == 1 && "Invalid Cond array"); + unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), + MRI.getRegClass(DstReg)->getSize(), + false/*HasMemoryOperand*/); + BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); +} + +/// isHReg - Test if the given register is a physical h register. +static bool isHReg(unsigned Reg) { + return X86::GR8_ABCD_HRegClass.contains(Reg); +} + +// Try and copy between VR128/VR64 and GR64 registers. +static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, + bool HasAVX) { + // SrcReg(VR128) -> DestReg(GR64) + // SrcReg(VR64) -> DestReg(GR64) + // SrcReg(GR64) -> DestReg(VR128) + // SrcReg(GR64) -> DestReg(VR64) + + if (X86::GR64RegClass.contains(DestReg)) { + if (X86::VR128RegClass.contains(SrcReg)) + // Copy from a VR128 register to a GR64 register. + return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; + if (X86::VR64RegClass.contains(SrcReg)) + // Copy from a VR64 register to a GR64 register. + return X86::MOVSDto64rr; + } else if (X86::GR64RegClass.contains(SrcReg)) { + // Copy from a GR64 register to a VR128 register. + if (X86::VR128RegClass.contains(DestReg)) + return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; + // Copy from a GR64 register to a VR64 register. + if (X86::VR64RegClass.contains(DestReg)) + return X86::MOV64toSDrr; + } + + // SrcReg(FR32) -> DestReg(GR32) + // SrcReg(GR32) -> DestReg(FR32) + + if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg)) + // Copy from a FR32 register to a GR32 register. + return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; + + if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) + // Copy from a GR32 register to a FR32 register. + return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; + + return 0; +} + +void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, DebugLoc DL, + unsigned DestReg, unsigned SrcReg, + bool KillSrc) const { + // First deal with the normal symmetric copies. + bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); + unsigned Opc; + if (X86::GR64RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV64rr; + else if (X86::GR32RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV32rr; + else if (X86::GR16RegClass.contains(DestReg, SrcReg)) + Opc = X86::MOV16rr; + else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if ((isHReg(DestReg) || isHReg(SrcReg)) && + TM.getSubtarget<X86Subtarget>().is64Bit()) { + Opc = X86::MOV8rr_NOREX; + // Both operands must be encodable without an REX prefix. + assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && + "8-bit H register can not be copied outside GR8_NOREX"); + } else + Opc = X86::MOV8rr; + } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) + Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; + else if (X86::VR256RegClass.contains(DestReg, SrcReg)) + Opc = X86::VMOVAPSYrr; + else if (X86::VR64RegClass.contains(DestReg, SrcReg)) + Opc = X86::MMX_MOVQ64rr; + else + Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX); + + if (Opc) { + BuildMI(MBB, MI, DL, get(Opc), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)); + return; + } + + // Moving EFLAGS to / from another register requires a push and a pop. + if (SrcReg == X86::EFLAGS) { + if (X86::GR64RegClass.contains(DestReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSHF64)); + BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); + return; + } + if (X86::GR32RegClass.contains(DestReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSHF32)); + BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); + return; + } + } + if (DestReg == X86::EFLAGS) { + if (X86::GR64RegClass.contains(SrcReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSH64r)) + .addReg(SrcReg, getKillRegState(KillSrc)); + BuildMI(MBB, MI, DL, get(X86::POPF64)); + return; + } + if (X86::GR32RegClass.contains(SrcReg)) { + BuildMI(MBB, MI, DL, get(X86::PUSH32r)) + .addReg(SrcReg, getKillRegState(KillSrc)); + BuildMI(MBB, MI, DL, get(X86::POPF32)); + return; + } + } + + DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) + << " to " << RI.getName(DestReg) << '\n'); + llvm_unreachable("Cannot emit physreg copy instruction"); +} + +static unsigned getLoadStoreRegOpcode(unsigned Reg, + const TargetRegisterClass *RC, + bool isStackAligned, + const TargetMachine &TM, + bool load) { + bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); + switch (RC->getSize()) { + default: + llvm_unreachable("Unknown spill size"); + case 1: + assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) + return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; + return load ? X86::MOV8rm : X86::MOV8mr; + case 2: + assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); + return load ? X86::MOV16rm : X86::MOV16mr; + case 4: + if (X86::GR32RegClass.hasSubClassEq(RC)) + return load ? X86::MOV32rm : X86::MOV32mr; + if (X86::FR32RegClass.hasSubClassEq(RC)) + return load ? + (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : + (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); + if (X86::RFP32RegClass.hasSubClassEq(RC)) + return load ? X86::LD_Fp32m : X86::ST_Fp32m; + llvm_unreachable("Unknown 4-byte regclass"); + case 8: + if (X86::GR64RegClass.hasSubClassEq(RC)) + return load ? X86::MOV64rm : X86::MOV64mr; + if (X86::FR64RegClass.hasSubClassEq(RC)) + return load ? + (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : + (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); + if (X86::VR64RegClass.hasSubClassEq(RC)) + return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; + if (X86::RFP64RegClass.hasSubClassEq(RC)) + return load ? X86::LD_Fp64m : X86::ST_Fp64m; + llvm_unreachable("Unknown 8-byte regclass"); + case 10: + assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); + return load ? X86::LD_Fp80m : X86::ST_FpP80m; + case 16: { + assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); + // If stack is realigned we can use aligned stores. + if (isStackAligned) + return load ? + (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : + (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); + else + return load ? + (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : + (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); + } + case 32: + assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); + // If stack is realigned we can use aligned stores. + if (isStackAligned) + return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; + else + return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; + } +} + +static unsigned getStoreRegOpcode(unsigned SrcReg, + const TargetRegisterClass *RC, + bool isStackAligned, + TargetMachine &TM) { + return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); +} + + +static unsigned getLoadRegOpcode(unsigned DestReg, + const TargetRegisterClass *RC, + bool isStackAligned, + const TargetMachine &TM) { + return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); +} + +void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + const MachineFunction &MF = *MBB.getParent(); + assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && + "Stack slot too small for store"); + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || + RI.canRealignStack(MF); + unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); + DebugLoc DL = MBB.findDebugLoc(MI); + addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) + .addReg(SrcReg, getKillRegState(isKill)); +} + +void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, + bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = MMOBegin != MMOEnd && + (*MMOBegin)->getAlignment() >= Alignment; + unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); + DebugLoc DL; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); + for (unsigned i = 0, e = Addr.size(); i != e; ++i) + MIB.addOperand(Addr[i]); + MIB.addReg(SrcReg, getKillRegState(isKill)); + (*MIB).setMemRefs(MMOBegin, MMOEnd); + NewMIs.push_back(MIB); +} + + +void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + const MachineFunction &MF = *MBB.getParent(); + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || + RI.canRealignStack(MF); + unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); + DebugLoc DL = MBB.findDebugLoc(MI); + addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); +} + +void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = MMOBegin != MMOEnd && + (*MMOBegin)->getAlignment() >= Alignment; + unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); + DebugLoc DL; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); + for (unsigned i = 0, e = Addr.size(); i != e; ++i) + MIB.addOperand(Addr[i]); + (*MIB).setMemRefs(MMOBegin, MMOEnd); + NewMIs.push_back(MIB); +} + +bool X86InstrInfo:: +analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, + int &CmpMask, int &CmpValue) const { + switch (MI->getOpcode()) { + default: break; + case X86::CMP64ri32: + case X86::CMP64ri8: + case X86::CMP32ri: + case X86::CMP32ri8: + case X86::CMP16ri: + case X86::CMP16ri8: + case X86::CMP8ri: + SrcReg = MI->getOperand(0).getReg(); + SrcReg2 = 0; + CmpMask = ~0; + CmpValue = MI->getOperand(1).getImm(); + return true; + // A SUB can be used to perform comparison. + case X86::SUB64rm: + case X86::SUB32rm: + case X86::SUB16rm: + case X86::SUB8rm: + SrcReg = MI->getOperand(1).getReg(); + SrcReg2 = 0; + CmpMask = ~0; + CmpValue = 0; + return true; + case X86::SUB64rr: + case X86::SUB32rr: + case X86::SUB16rr: + case X86::SUB8rr: + SrcReg = MI->getOperand(1).getReg(); + SrcReg2 = MI->getOperand(2).getReg(); + CmpMask = ~0; + CmpValue = 0; + return true; + case X86::SUB64ri32: + case X86::SUB64ri8: + case X86::SUB32ri: + case X86::SUB32ri8: + case X86::SUB16ri: + case X86::SUB16ri8: + case X86::SUB8ri: + SrcReg = MI->getOperand(1).getReg(); + SrcReg2 = 0; + CmpMask = ~0; + CmpValue = MI->getOperand(2).getImm(); + return true; + case X86::CMP64rr: + case X86::CMP32rr: + case X86::CMP16rr: + case X86::CMP8rr: + SrcReg = MI->getOperand(0).getReg(); + SrcReg2 = MI->getOperand(1).getReg(); + CmpMask = ~0; + CmpValue = 0; + return true; + case X86::TEST8rr: + case X86::TEST16rr: + case X86::TEST32rr: + case X86::TEST64rr: + SrcReg = MI->getOperand(0).getReg(); + if (MI->getOperand(1).getReg() != SrcReg) return false; + // Compare against zero. + SrcReg2 = 0; + CmpMask = ~0; + CmpValue = 0; + return true; + } + return false; +} + +/// isRedundantFlagInstr - check whether the first instruction, whose only +/// purpose is to update flags, can be made redundant. +/// CMPrr can be made redundant by SUBrr if the operands are the same. +/// This function can be extended later on. +/// SrcReg, SrcRegs: register operands for FlagI. +/// ImmValue: immediate for FlagI if it takes an immediate. +inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, + unsigned SrcReg2, int ImmValue, + MachineInstr *OI) { + if (((FlagI->getOpcode() == X86::CMP64rr && + OI->getOpcode() == X86::SUB64rr) || + (FlagI->getOpcode() == X86::CMP32rr && + OI->getOpcode() == X86::SUB32rr)|| + (FlagI->getOpcode() == X86::CMP16rr && + OI->getOpcode() == X86::SUB16rr)|| + (FlagI->getOpcode() == X86::CMP8rr && + OI->getOpcode() == X86::SUB8rr)) && + ((OI->getOperand(1).getReg() == SrcReg && + OI->getOperand(2).getReg() == SrcReg2) || + (OI->getOperand(1).getReg() == SrcReg2 && + OI->getOperand(2).getReg() == SrcReg))) + return true; + + if (((FlagI->getOpcode() == X86::CMP64ri32 && + OI->getOpcode() == X86::SUB64ri32) || + (FlagI->getOpcode() == X86::CMP64ri8 && + OI->getOpcode() == X86::SUB64ri8) || + (FlagI->getOpcode() == X86::CMP32ri && + OI->getOpcode() == X86::SUB32ri) || + (FlagI->getOpcode() == X86::CMP32ri8 && + OI->getOpcode() == X86::SUB32ri8) || + (FlagI->getOpcode() == X86::CMP16ri && + OI->getOpcode() == X86::SUB16ri) || + (FlagI->getOpcode() == X86::CMP16ri8 && + OI->getOpcode() == X86::SUB16ri8) || + (FlagI->getOpcode() == X86::CMP8ri && + OI->getOpcode() == X86::SUB8ri)) && + OI->getOperand(1).getReg() == SrcReg && + OI->getOperand(2).getImm() == ImmValue) + return true; + return false; +} + +/// isDefConvertible - check whether the definition can be converted +/// to remove a comparison against zero. +inline static bool isDefConvertible(MachineInstr *MI) { + switch (MI->getOpcode()) { + default: return false; + case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: + case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: + case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: + case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: + case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: + case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: + case X86::DEC64m: case X86::DEC32m: case X86::DEC16m: case X86::DEC8m: + case X86::DEC64_32r: case X86::DEC64_16r: + case X86::DEC64_32m: case X86::DEC64_16m: + case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: + case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: + case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: + case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: + case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: + case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: + case X86::INC64m: case X86::INC32m: case X86::INC16m: case X86::INC8m: + case X86::INC64_32r: case X86::INC64_16r: + case X86::INC64_32m: case X86::INC64_16m: + case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: + case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: + case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: + case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: + case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: + case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: + case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: + case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: + case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: + case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: + case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: + case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: + case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: + case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: + case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: + return true; + } +} + +/// optimizeCompareInstr - Check if there exists an earlier instruction that +/// operates on the same source operands and sets flags in the same way as +/// Compare; remove Compare if possible. +bool X86InstrInfo:: +optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, + int CmpMask, int CmpValue, + const MachineRegisterInfo *MRI) const { + // Check whether we can replace SUB with CMP. + unsigned NewOpcode = 0; + switch (CmpInstr->getOpcode()) { + default: break; + case X86::SUB64ri32: + case X86::SUB64ri8: + case X86::SUB32ri: + case X86::SUB32ri8: + case X86::SUB16ri: + case X86::SUB16ri8: + case X86::SUB8ri: + case X86::SUB64rm: + case X86::SUB32rm: + case X86::SUB16rm: + case X86::SUB8rm: + case X86::SUB64rr: + case X86::SUB32rr: + case X86::SUB16rr: + case X86::SUB8rr: { + if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg())) + return false; + // There is no use of the destination register, we can replace SUB with CMP. + switch (CmpInstr->getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; + case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; + case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; + case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; + case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; + case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; + case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; + case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; + case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; + case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; + case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; + case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; + case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; + case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; + case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; + } + CmpInstr->setDesc(get(NewOpcode)); + CmpInstr->RemoveOperand(0); + // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. + if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || + NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) + return false; + } + } + + // Get the unique definition of SrcReg. + MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); + if (!MI) return false; + + // CmpInstr is the first instruction of the BB. + MachineBasicBlock::iterator I = CmpInstr, Def = MI; + + // If we are comparing against zero, check whether we can use MI to update + // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. + bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0); + if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() || + !isDefConvertible(MI))) + return false; + + // We are searching for an earlier instruction that can make CmpInstr + // redundant and that instruction will be saved in Sub. + MachineInstr *Sub = NULL; + const TargetRegisterInfo *TRI = &getRegisterInfo(); + + // We iterate backward, starting from the instruction before CmpInstr and + // stop when reaching the definition of a source register or done with the BB. + // RI points to the instruction before CmpInstr. + // If the definition is in this basic block, RE points to the definition; + // otherwise, RE is the rend of the basic block. + MachineBasicBlock::reverse_iterator + RI = MachineBasicBlock::reverse_iterator(I), + RE = CmpInstr->getParent() == MI->getParent() ? + MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ : + CmpInstr->getParent()->rend(); + MachineInstr *Movr0Inst = 0; + for (; RI != RE; ++RI) { + MachineInstr *Instr = &*RI; + // Check whether CmpInstr can be made redundant by the current instruction. + if (!IsCmpZero && + isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) { + Sub = Instr; + break; + } + + if (Instr->modifiesRegister(X86::EFLAGS, TRI) || + Instr->readsRegister(X86::EFLAGS, TRI)) { + // This instruction modifies or uses EFLAGS. + + // MOV32r0 etc. are implemented with xor which clobbers condition code. + // They are safe to move up, if the definition to EFLAGS is dead and + // earlier instructions do not read or write EFLAGS. + if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 || + Instr->getOpcode() == X86::MOV16r0 || + Instr->getOpcode() == X86::MOV32r0 || + Instr->getOpcode() == X86::MOV64r0) && + Instr->registerDefIsDead(X86::EFLAGS, TRI)) { + Movr0Inst = Instr; + continue; + } + + // We can't remove CmpInstr. + return false; + } + } + + // Return false if no candidates exist. + if (!IsCmpZero && !Sub) + return false; + + bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && + Sub->getOperand(2).getReg() == SrcReg); + + // Scan forward from the instruction after CmpInstr for uses of EFLAGS. + // It is safe to remove CmpInstr if EFLAGS is redefined or killed. + // If we are done with the basic block, we need to check whether EFLAGS is + // live-out. + bool IsSafe = false; + SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; + MachineBasicBlock::iterator E = CmpInstr->getParent()->end(); + for (++I; I != E; ++I) { + const MachineInstr &Instr = *I; + bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); + bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); + // We should check the usage if this instruction uses and updates EFLAGS. + if (!UseEFLAGS && ModifyEFLAGS) { + // It is safe to remove CmpInstr if EFLAGS is updated again. + IsSafe = true; + break; + } + if (!UseEFLAGS && !ModifyEFLAGS) + continue; + + // EFLAGS is used by this instruction. + X86::CondCode OldCC; + bool OpcIsSET = false; + if (IsCmpZero || IsSwapped) { + // We decode the condition code from opcode. + if (Instr.isBranch()) + OldCC = getCondFromBranchOpc(Instr.getOpcode()); + else { + OldCC = getCondFromSETOpc(Instr.getOpcode()); + if (OldCC != X86::COND_INVALID) + OpcIsSET = true; + else + OldCC = getCondFromCMovOpc(Instr.getOpcode()); + } + if (OldCC == X86::COND_INVALID) return false; + } + if (IsCmpZero) { + switch (OldCC) { + default: break; + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + case X86::COND_G: case X86::COND_GE: + case X86::COND_L: case X86::COND_LE: + case X86::COND_O: case X86::COND_NO: + // CF and OF are used, we can't perform this optimization. + return false; + } + } else if (IsSwapped) { + // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs + // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. + // We swap the condition code and synthesize the new opcode. + X86::CondCode NewCC = getSwappedCondition(OldCC); + if (NewCC == X86::COND_INVALID) return false; + + // Synthesize the new opcode. + bool HasMemoryOperand = Instr.hasOneMemOperand(); + unsigned NewOpc; + if (Instr.isBranch()) + NewOpc = GetCondBranchFromCond(NewCC); + else if(OpcIsSET) + NewOpc = getSETFromCond(NewCC, HasMemoryOperand); + else { + unsigned DstReg = Instr.getOperand(0).getReg(); + NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(), + HasMemoryOperand); + } + + // Push the MachineInstr to OpsToUpdate. + // If it is safe to remove CmpInstr, the condition code of these + // instructions will be modified. + OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); + } + if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { + // It is safe to remove CmpInstr if EFLAGS is updated again or killed. + IsSafe = true; + break; + } + } + + // If EFLAGS is not killed nor re-defined, we should check whether it is + // live-out. If it is live-out, do not optimize. + if ((IsCmpZero || IsSwapped) && !IsSafe) { + MachineBasicBlock *MBB = CmpInstr->getParent(); + for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), + SE = MBB->succ_end(); SI != SE; ++SI) + if ((*SI)->isLiveIn(X86::EFLAGS)) + return false; + } + + // The instruction to be updated is either Sub or MI. + Sub = IsCmpZero ? MI : Sub; + // Move Movr0Inst to the place right before Sub. + if (Movr0Inst) { + Sub->getParent()->remove(Movr0Inst); + Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst); + } + + // Make sure Sub instruction defines EFLAGS and mark the def live. + unsigned LastOperand = Sub->getNumOperands() - 1; + assert(Sub->getNumOperands() >= 2 && + Sub->getOperand(LastOperand).isReg() && + Sub->getOperand(LastOperand).getReg() == X86::EFLAGS && + "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND"); + Sub->getOperand(LastOperand).setIsDef(true); + Sub->getOperand(LastOperand).setIsDead(false); + CmpInstr->eraseFromParent(); + + // Modify the condition code of instructions in OpsToUpdate. + for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++) + OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second)); + return true; +} + +/// optimizeLoadInstr - Try to remove the load by folding it to a register +/// operand at the use. We fold the load instructions if load defines a virtual +/// register, the virtual register is used once in the same BB, and the +/// instructions in-between do not load or store, and have no side effects. +MachineInstr* X86InstrInfo:: +optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, + unsigned &FoldAsLoadDefReg, + MachineInstr *&DefMI) const { + if (FoldAsLoadDefReg == 0) + return 0; + // To be conservative, if there exists another load, clear the load candidate. + if (MI->mayLoad()) { + FoldAsLoadDefReg = 0; + return 0; + } + + // Check whether we can move DefMI here. + DefMI = MRI->getVRegDef(FoldAsLoadDefReg); + assert(DefMI); + bool SawStore = false; + if (!DefMI->isSafeToMove(this, 0, SawStore)) + return 0; + + // We try to commute MI if possible. + unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1; + for (unsigned Idx = 0; Idx < IdxEnd; Idx++) { + // Collect information about virtual register operands of MI. + unsigned SrcOperandId = 0; + bool FoundSrcOperand = false; + for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) + continue; + unsigned Reg = MO.getReg(); + if (Reg != FoldAsLoadDefReg) + continue; + // Do not fold if we have a subreg use or a def or multiple uses. + if (MO.getSubReg() || MO.isDef() || FoundSrcOperand) + return 0; + + SrcOperandId = i; + FoundSrcOperand = true; + } + if (!FoundSrcOperand) return 0; + + // Check whether we can fold the def into SrcOperandId. + SmallVector<unsigned, 8> Ops; + Ops.push_back(SrcOperandId); + MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI); + if (FoldMI) { + FoldAsLoadDefReg = 0; + return FoldMI; + } + + if (Idx == 1) { + // MI was changed but it didn't help, commute it back! + commuteInstruction(MI, false); + return 0; + } + + // Check whether we can commute MI and enable folding. + if (MI->isCommutable()) { + MachineInstr *NewMI = commuteInstruction(MI, false); + // Unable to commute. + if (!NewMI) return 0; + if (NewMI != MI) { + // New instruction. It doesn't need to be kept. + NewMI->eraseFromParent(); + return 0; + } + } + } + return 0; +} + +/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr +/// instruction with two undef reads of the register being defined. This is +/// used for mapping: +/// %xmm4 = V_SET0 +/// to: +/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> +/// +static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) { + assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); + unsigned Reg = MI->getOperand(0).getReg(); + MI->setDesc(Desc); + + // MachineInstr::addOperand() will insert explicit operands before any + // implicit operands. + MachineInstrBuilder(MI).addReg(Reg, RegState::Undef) + .addReg(Reg, RegState::Undef); + // But we don't trust that. + assert(MI->getOperand(1).getReg() == Reg && + MI->getOperand(2).getReg() == Reg && "Misplaced operand"); + return true; +} + +bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { + bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); + switch (MI->getOpcode()) { + case X86::V_SET0: + case X86::FsFLD0SS: + case X86::FsFLD0SD: + return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); + case X86::AVX_SET0: + assert(HasAVX && "AVX not supported"); + return Expand2AddrUndef(MI, get(X86::VXORPSYrr)); + case X86::V_SETALLONES: + return Expand2AddrUndef(MI, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); + case X86::AVX2_SETALLONES: + return Expand2AddrUndef(MI, get(X86::VPCMPEQDYrr)); + case X86::TEST8ri_NOREX: + MI->setDesc(get(X86::TEST8ri)); + return true; + } + return false; +} + +MachineInstr* +X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, + int FrameIx, uint64_t Offset, + const MDNode *MDPtr, + DebugLoc DL) const { + X86AddressMode AM; + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = FrameIx; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); + addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); + return &*MIB; +} + +static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI, + const TargetInstrInfo &TII) { + // Create the base instruction with the memory operand as the first part. + MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), + MI->getDebugLoc(), true); + MachineInstrBuilder MIB(NewMI); + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + + // Loop over the rest of the ri operands, converting them over. + unsigned NumOps = MI->getDesc().getNumOperands()-2; + for (unsigned i = 0; i != NumOps; ++i) { + MachineOperand &MO = MI->getOperand(i+2); + MIB.addOperand(MO); + } + for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + MIB.addOperand(MO); + } + return MIB; +} + +static MachineInstr *FuseInst(MachineFunction &MF, + unsigned Opcode, unsigned OpNo, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI, const TargetInstrInfo &TII) { + MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), + MI->getDebugLoc(), true); + MachineInstrBuilder MIB(NewMI); + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (i == OpNo) { + assert(MO.isReg() && "Expected to fold into reg operand!"); + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + } else { + MIB.addOperand(MO); + } + } + return MIB; +} + +static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); + + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + return MIB.addImm(0); +} + +MachineInstr* +X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, unsigned i, + const SmallVectorImpl<MachineOperand> &MOs, + unsigned Size, unsigned Align) const { + const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; + bool isTwoAddrFold = false; + unsigned NumOps = MI->getDesc().getNumOperands(); + bool isTwoAddr = NumOps > 1 && + MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; + + // FIXME: AsmPrinter doesn't know how to handle + // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. + if (MI->getOpcode() == X86::ADD32ri && + MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) + return NULL; + + MachineInstr *NewMI = NULL; + // Folding a memory location into the two-address part of a two-address + // instruction is different than folding it other places. It requires + // replacing the *two* registers with the memory location. + if (isTwoAddr && NumOps >= 2 && i < 2 && + MI->getOperand(0).isReg() && + MI->getOperand(1).isReg() && + MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { + OpcodeTablePtr = &RegOp2MemOpTable2Addr; + isTwoAddrFold = true; + } else if (i == 0) { // If operand 0 + unsigned Opc = 0; + switch (MI->getOpcode()) { + default: break; + case X86::MOV64r0: Opc = X86::MOV64mi32; break; + case X86::MOV32r0: Opc = X86::MOV32mi; break; + case X86::MOV16r0: Opc = X86::MOV16mi; break; + case X86::MOV8r0: Opc = X86::MOV8mi; break; + } + if (Opc) + NewMI = MakeM0Inst(*this, Opc, MOs, MI); + if (NewMI) + return NewMI; + + OpcodeTablePtr = &RegOp2MemOpTable0; + } else if (i == 1) { + OpcodeTablePtr = &RegOp2MemOpTable1; + } else if (i == 2) { + OpcodeTablePtr = &RegOp2MemOpTable2; + } else if (i == 3) { + OpcodeTablePtr = &RegOp2MemOpTable3; + } + + // If table selected... + if (OpcodeTablePtr) { + // Find the Opcode to fuse + DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = + OpcodeTablePtr->find(MI->getOpcode()); + if (I != OpcodeTablePtr->end()) { + unsigned Opcode = I->second.first; + unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; + if (Align < MinAlign) + return NULL; + bool NarrowToMOV32rm = false; + if (Size) { + unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize(); + if (Size < RCSize) { + // Check if it's safe to fold the load. If the size of the object is + // narrower than the load width, then it's not. + if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) + return NULL; + // If this is a 64-bit load, but the spill slot is 32, then we can do + // a 32-bit load which is implicitly zero-extended. This likely is due + // to liveintervalanalysis remat'ing a load from stack slot. + if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) + return NULL; + Opcode = X86::MOV32rm; + NarrowToMOV32rm = true; + } + } + + if (isTwoAddrFold) + NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); + else + NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); + + if (NarrowToMOV32rm) { + // If this is the special case where we use a MOV32rm to load a 32-bit + // value and zero-extend the top bits. Change the destination register + // to a 32-bit one. + unsigned DstReg = NewMI->getOperand(0).getReg(); + if (TargetRegisterInfo::isPhysicalRegister(DstReg)) + NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, + X86::sub_32bit)); + else + NewMI->getOperand(0).setSubReg(X86::sub_32bit); + } + return NewMI; + } + } + + // No fusion + if (PrintFailedFusing && !MI->isCopy()) + dbgs() << "We failed to fuse operand " << i << " in " << *MI; + return NULL; +} + +/// hasPartialRegUpdate - Return true for all instructions that only update +/// the first 32 or 64-bits of the destination register and leave the rest +/// unmodified. This can be used to avoid folding loads if the instructions +/// only update part of the destination register, and the non-updated part is +/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these +/// instructions breaks the partial register dependency and it can improve +/// performance. e.g.: +/// +/// movss (%rdi), %xmm0 +/// cvtss2sd %xmm0, %xmm0 +/// +/// Instead of +/// cvtss2sd (%rdi), %xmm0 +/// +/// FIXME: This should be turned into a TSFlags. +/// +static bool hasPartialRegUpdate(unsigned Opcode) { + switch (Opcode) { + case X86::CVTSI2SSrr: + case X86::CVTSI2SS64rr: + case X86::CVTSI2SDrr: + case X86::CVTSI2SD64rr: + case X86::CVTSD2SSrr: + case X86::Int_CVTSD2SSrr: + case X86::CVTSS2SDrr: + case X86::Int_CVTSS2SDrr: + case X86::RCPSSr: + case X86::RCPSSr_Int: + case X86::ROUNDSDr: + case X86::ROUNDSDr_Int: + case X86::ROUNDSSr: + case X86::ROUNDSSr_Int: + case X86::RSQRTSSr: + case X86::RSQRTSSr_Int: + case X86::SQRTSSr: + case X86::SQRTSSr_Int: + // AVX encoded versions + case X86::VCVTSD2SSrr: + case X86::Int_VCVTSD2SSrr: + case X86::VCVTSS2SDrr: + case X86::Int_VCVTSS2SDrr: + case X86::VRCPSSr: + case X86::VROUNDSDr: + case X86::VROUNDSDr_Int: + case X86::VROUNDSSr: + case X86::VROUNDSSr_Int: + case X86::VRSQRTSSr: + case X86::VSQRTSSr: + return true; + } + + return false; +} + +/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle +/// instructions we would like before a partial register update. +unsigned X86InstrInfo:: +getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, + const TargetRegisterInfo *TRI) const { + if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode())) + return 0; + + // If MI is marked as reading Reg, the partial register update is wanted. + const MachineOperand &MO = MI->getOperand(0); + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + if (MO.readsReg() || MI->readsVirtualRegister(Reg)) + return 0; + } else { + if (MI->readsRegister(Reg, TRI)) + return 0; + } + + // If any of the preceding 16 instructions are reading Reg, insert a + // dependency breaking instruction. The magic number is based on a few + // Nehalem experiments. + return 16; +} + +void X86InstrInfo:: +breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, + const TargetRegisterInfo *TRI) const { + unsigned Reg = MI->getOperand(OpNum).getReg(); + if (X86::VR128RegClass.contains(Reg)) { + // These instructions are all floating point domain, so xorps is the best + // choice. + bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); + unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr; + BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg) + .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); + } else if (X86::VR256RegClass.contains(Reg)) { + // Use vxorps to clear the full ymm register. + // It wants to read and write the xmm sub-register. + unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); + BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg) + .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef) + .addReg(Reg, RegState::ImplicitDefine); + } else + return; + MI->addRegisterKilled(Reg, TRI, true); +} + +MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const { + // Check switch flag + if (NoFusing) return NULL; + + // Unless optimizing for size, don't fold to avoid partial + // register update stalls + if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && + hasPartialRegUpdate(MI->getOpcode())) + return 0; + + const MachineFrameInfo *MFI = MF.getFrameInfo(); + unsigned Size = MFI->getObjectSize(FrameIndex); + unsigned Alignment = MFI->getObjectAlignment(FrameIndex); + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + unsigned NewOpc = 0; + unsigned RCSize = 0; + switch (MI->getOpcode()) { + default: return NULL; + case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; + case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; + case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; + case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; + } + // Check if it's safe to fold the load. If the size of the object is + // narrower than the load width, then it's not. + if (Size < RCSize) + return NULL; + // Change to CMPXXri r, 0 first. + MI->setDesc(get(NewOpc)); + MI->getOperand(1).ChangeToImmediate(0); + } else if (Ops.size() != 1) + return NULL; + + SmallVector<MachineOperand,4> MOs; + MOs.push_back(MachineOperand::CreateFI(FrameIndex)); + return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); +} + +MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr *LoadMI) const { + // Check switch flag + if (NoFusing) return NULL; + + // Unless optimizing for size, don't fold to avoid partial + // register update stalls + if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && + hasPartialRegUpdate(MI->getOpcode())) + return 0; + + // Determine the alignment of the load. + unsigned Alignment = 0; + if (LoadMI->hasOneMemOperand()) + Alignment = (*LoadMI->memoperands_begin())->getAlignment(); + else + switch (LoadMI->getOpcode()) { + case X86::AVX2_SETALLONES: + case X86::AVX_SET0: + Alignment = 32; + break; + case X86::V_SET0: + case X86::V_SETALLONES: + Alignment = 16; + break; + case X86::FsFLD0SD: + Alignment = 8; + break; + case X86::FsFLD0SS: + Alignment = 4; + break; + default: + return 0; + } + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + unsigned NewOpc = 0; + switch (MI->getOpcode()) { + default: return NULL; + case X86::TEST8rr: NewOpc = X86::CMP8ri; break; + case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; + case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; + case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; + } + // Change to CMPXXri r, 0 first. + MI->setDesc(get(NewOpc)); + MI->getOperand(1).ChangeToImmediate(0); + } else if (Ops.size() != 1) + return NULL; + + // Make sure the subregisters match. + // Otherwise we risk changing the size of the load. + if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) + return NULL; + + SmallVector<MachineOperand,X86::AddrNumOperands> MOs; + switch (LoadMI->getOpcode()) { + case X86::V_SET0: + case X86::V_SETALLONES: + case X86::AVX2_SETALLONES: + case X86::AVX_SET0: + case X86::FsFLD0SD: + case X86::FsFLD0SS: { + // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. + // Create a constant-pool entry and operands to load from it. + + // Medium and large mode can't fold loads this way. + if (TM.getCodeModel() != CodeModel::Small && + TM.getCodeModel() != CodeModel::Kernel) + return NULL; + + // x86-32 PIC requires a PIC base register for constant pools. + unsigned PICBase = 0; + if (TM.getRelocationModel() == Reloc::PIC_) { + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + PICBase = X86::RIP; + else + // FIXME: PICBase = getGlobalBaseReg(&MF); + // This doesn't work for several reasons. + // 1. GlobalBaseReg may have been spilled. + // 2. It may not be live at MI. + return NULL; + } + + // Create a constant-pool entry. + MachineConstantPool &MCP = *MF.getConstantPool(); + Type *Ty; + unsigned Opc = LoadMI->getOpcode(); + if (Opc == X86::FsFLD0SS) + Ty = Type::getFloatTy(MF.getFunction()->getContext()); + else if (Opc == X86::FsFLD0SD) + Ty = Type::getDoubleTy(MF.getFunction()->getContext()); + else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0) + Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8); + else + Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); + + bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES); + const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : + Constant::getNullValue(Ty); + unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); + + // Create operands to load from the constant pool entry. + MOs.push_back(MachineOperand::CreateReg(PICBase, false)); + MOs.push_back(MachineOperand::CreateImm(1)); + MOs.push_back(MachineOperand::CreateReg(0, false)); + MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); + MOs.push_back(MachineOperand::CreateReg(0, false)); + break; + } + default: { + // Folding a normal load. Just copy the load's address operands. + unsigned NumOps = LoadMI->getDesc().getNumOperands(); + for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) + MOs.push_back(LoadMI->getOperand(i)); + break; + } + } + return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); +} + + +bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops) const { + // Check switch flag + if (NoFusing) return 0; + + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + switch (MI->getOpcode()) { + default: return false; + case X86::TEST8rr: + case X86::TEST16rr: + case X86::TEST32rr: + case X86::TEST64rr: + return true; + case X86::ADD32ri: + // FIXME: AsmPrinter doesn't know how to handle + // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. + if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) + return false; + break; + } + } + + if (Ops.size() != 1) + return false; + + unsigned OpNum = Ops[0]; + unsigned Opc = MI->getOpcode(); + unsigned NumOps = MI->getDesc().getNumOperands(); + bool isTwoAddr = NumOps > 1 && + MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; + + // Folding a memory location into the two-address part of a two-address + // instruction is different than folding it other places. It requires + // replacing the *two* registers with the memory location. + const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; + if (isTwoAddr && NumOps >= 2 && OpNum < 2) { + OpcodeTablePtr = &RegOp2MemOpTable2Addr; + } else if (OpNum == 0) { // If operand 0 + switch (Opc) { + case X86::MOV8r0: + case X86::MOV16r0: + case X86::MOV32r0: + case X86::MOV64r0: return true; + default: break; + } + OpcodeTablePtr = &RegOp2MemOpTable0; + } else if (OpNum == 1) { + OpcodeTablePtr = &RegOp2MemOpTable1; + } else if (OpNum == 2) { + OpcodeTablePtr = &RegOp2MemOpTable2; + } else if (OpNum == 3) { + OpcodeTablePtr = &RegOp2MemOpTable3; + } + + if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) + return true; + return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); +} + +bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, + unsigned Reg, bool UnfoldLoad, bool UnfoldStore, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find(MI->getOpcode()); + if (I == MemOp2RegOpTable.end()) + return false; + unsigned Opc = I->second.first; + unsigned Index = I->second.second & TB_INDEX_MASK; + bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; + bool FoldedStore = I->second.second & TB_FOLDED_STORE; + if (UnfoldLoad && !FoldedLoad) + return false; + UnfoldLoad &= FoldedLoad; + if (UnfoldStore && !FoldedStore) + return false; + UnfoldStore &= FoldedStore; + + const MCInstrDesc &MCID = get(Opc); + const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); + if (!MI->hasOneMemOperand() && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Without memoperands, loadRegFromAddr and storeRegToStackSlot will + // conservatively assume the address is unaligned. That's bad for + // performance. + return false; + SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; + SmallVector<MachineOperand,2> BeforeOps; + SmallVector<MachineOperand,2> AfterOps; + SmallVector<MachineOperand,4> ImpOps; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (i >= Index && i < Index + X86::AddrNumOperands) + AddrOps.push_back(Op); + else if (Op.isReg() && Op.isImplicit()) + ImpOps.push_back(Op); + else if (i < Index) + BeforeOps.push_back(Op); + else if (i > Index) + AfterOps.push_back(Op); + } + + // Emit the load instruction. + if (UnfoldLoad) { + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractLoadMemRefs(MI->memoperands_begin(), + MI->memoperands_end()); + loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); + if (UnfoldStore) { + // Address operands cannot be marked isKill. + for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { + MachineOperand &MO = NewMIs[0]->getOperand(i); + if (MO.isReg()) + MO.setIsKill(false); + } + } + } + + // Emit the data processing instruction. + MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); + MachineInstrBuilder MIB(DataMI); + + if (FoldedStore) + MIB.addReg(Reg, RegState::Define); + for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) + MIB.addOperand(BeforeOps[i]); + if (FoldedLoad) + MIB.addReg(Reg); + for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) + MIB.addOperand(AfterOps[i]); + for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { + MachineOperand &MO = ImpOps[i]; + MIB.addReg(MO.getReg(), + getDefRegState(MO.isDef()) | + RegState::Implicit | + getKillRegState(MO.isKill()) | + getDeadRegState(MO.isDead()) | + getUndefRegState(MO.isUndef())); + } + // Change CMP32ri r, 0 back to TEST32rr r, r, etc. + switch (DataMI->getOpcode()) { + default: break; + case X86::CMP64ri32: + case X86::CMP64ri8: + case X86::CMP32ri: + case X86::CMP32ri8: + case X86::CMP16ri: + case X86::CMP16ri8: + case X86::CMP8ri: { + MachineOperand &MO0 = DataMI->getOperand(0); + MachineOperand &MO1 = DataMI->getOperand(1); + if (MO1.getImm() == 0) { + unsigned NewOpc; + switch (DataMI->getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::CMP64ri8: + case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; + case X86::CMP32ri8: + case X86::CMP32ri: NewOpc = X86::TEST32rr; break; + case X86::CMP16ri8: + case X86::CMP16ri: NewOpc = X86::TEST16rr; break; + case X86::CMP8ri: NewOpc = X86::TEST8rr; break; + } + DataMI->setDesc(get(NewOpc)); + MO1.ChangeToRegister(MO0.getReg(), false); + } + } + } + NewMIs.push_back(DataMI); + + // Emit the store instruction. + if (UnfoldStore) { + const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractStoreMemRefs(MI->memoperands_begin(), + MI->memoperands_end()); + storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); + } + + return true; +} + +bool +X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, + SmallVectorImpl<SDNode*> &NewNodes) const { + if (!N->isMachineOpcode()) + return false; + + DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find(N->getMachineOpcode()); + if (I == MemOp2RegOpTable.end()) + return false; + unsigned Opc = I->second.first; + unsigned Index = I->second.second & TB_INDEX_MASK; + bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; + bool FoldedStore = I->second.second & TB_FOLDED_STORE; + const MCInstrDesc &MCID = get(Opc); + MachineFunction &MF = DAG.getMachineFunction(); + const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); + unsigned NumDefs = MCID.NumDefs; + std::vector<SDValue> AddrOps; + std::vector<SDValue> BeforeOps; + std::vector<SDValue> AfterOps; + DebugLoc dl = N->getDebugLoc(); + unsigned NumOps = N->getNumOperands(); + for (unsigned i = 0; i != NumOps-1; ++i) { + SDValue Op = N->getOperand(i); + if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) + AddrOps.push_back(Op); + else if (i < Index-NumDefs) + BeforeOps.push_back(Op); + else if (i > Index-NumDefs) + AfterOps.push_back(Op); + } + SDValue Chain = N->getOperand(NumOps-1); + AddrOps.push_back(Chain); + + // Emit the load instruction. + SDNode *Load = 0; + if (FoldedLoad) { + EVT VT = *RC->vt_begin(); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), + cast<MachineSDNode>(N)->memoperands_end()); + if (!(*MMOs.first) && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Do not introduce a slow unaligned load. + return false; + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = (*MMOs.first) && + (*MMOs.first)->getAlignment() >= Alignment; + Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, + VT, MVT::Other, &AddrOps[0], AddrOps.size()); + NewNodes.push_back(Load); + + // Preserve memory reference information. + cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); + } + + // Emit the data processing instruction. + std::vector<EVT> VTs; + const TargetRegisterClass *DstRC = 0; + if (MCID.getNumDefs() > 0) { + DstRC = getRegClass(MCID, 0, &RI, MF); + VTs.push_back(*DstRC->vt_begin()); + } + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { + EVT VT = N->getValueType(i); + if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) + VTs.push_back(VT); + } + if (Load) + BeforeOps.push_back(SDValue(Load, 0)); + std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); + SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], + BeforeOps.size()); + NewNodes.push_back(NewNode); + + // Emit the store instruction. + if (FoldedStore) { + AddrOps.pop_back(); + AddrOps.push_back(SDValue(NewNode, 0)); + AddrOps.push_back(Chain); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), + cast<MachineSDNode>(N)->memoperands_end()); + if (!(*MMOs.first) && + RC == &X86::VR128RegClass && + !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) + // Do not introduce a slow unaligned store. + return false; + unsigned Alignment = RC->getSize() == 32 ? 32 : 16; + bool isAligned = (*MMOs.first) && + (*MMOs.first)->getAlignment() >= Alignment; + SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, + isAligned, TM), + dl, MVT::Other, + &AddrOps[0], AddrOps.size()); + NewNodes.push_back(Store); + + // Preserve memory reference information. + cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); + } + + return true; +} + +unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, + bool UnfoldLoad, bool UnfoldStore, + unsigned *LoadRegIndex) const { + DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find(Opc); + if (I == MemOp2RegOpTable.end()) + return 0; + bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; + bool FoldedStore = I->second.second & TB_FOLDED_STORE; + if (UnfoldLoad && !FoldedLoad) + return 0; + if (UnfoldStore && !FoldedStore) + return 0; + if (LoadRegIndex) + *LoadRegIndex = I->second.second & TB_INDEX_MASK; + return I->second.first; +} + +bool +X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, + int64_t &Offset1, int64_t &Offset2) const { + if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) + return false; + unsigned Opc1 = Load1->getMachineOpcode(); + unsigned Opc2 = Load2->getMachineOpcode(); + switch (Opc1) { + default: return false; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MOVDQUrm: + // AVX load instructions + case X86::VMOVSSrm: + case X86::VMOVSDrm: + case X86::FsVMOVAPSrm: + case X86::FsVMOVAPDrm: + case X86::VMOVAPSrm: + case X86::VMOVUPSrm: + case X86::VMOVAPDrm: + case X86::VMOVDQArm: + case X86::VMOVDQUrm: + case X86::VMOVAPSYrm: + case X86::VMOVUPSYrm: + case X86::VMOVAPDYrm: + case X86::VMOVDQAYrm: + case X86::VMOVDQUYrm: + break; + } + switch (Opc2) { + default: return false; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MOVDQUrm: + // AVX load instructions + case X86::VMOVSSrm: + case X86::VMOVSDrm: + case X86::FsVMOVAPSrm: + case X86::FsVMOVAPDrm: + case X86::VMOVAPSrm: + case X86::VMOVUPSrm: + case X86::VMOVAPDrm: + case X86::VMOVDQArm: + case X86::VMOVDQUrm: + case X86::VMOVAPSYrm: + case X86::VMOVUPSYrm: + case X86::VMOVAPDYrm: + case X86::VMOVDQAYrm: + case X86::VMOVDQUYrm: + break; + } + + // Check if chain operands and base addresses match. + if (Load1->getOperand(0) != Load2->getOperand(0) || + Load1->getOperand(5) != Load2->getOperand(5)) + return false; + // Segment operands should match as well. + if (Load1->getOperand(4) != Load2->getOperand(4)) + return false; + // Scale should be 1, Index should be Reg0. + if (Load1->getOperand(1) == Load2->getOperand(1) && + Load1->getOperand(2) == Load2->getOperand(2)) { + if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) + return false; + + // Now let's examine the displacements. + if (isa<ConstantSDNode>(Load1->getOperand(3)) && + isa<ConstantSDNode>(Load2->getOperand(3))) { + Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); + Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); + return true; + } + } + return false; +} + +bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, + int64_t Offset1, int64_t Offset2, + unsigned NumLoads) const { + assert(Offset2 > Offset1); + if ((Offset2 - Offset1) / 8 > 64) + return false; + + unsigned Opc1 = Load1->getMachineOpcode(); + unsigned Opc2 = Load2->getMachineOpcode(); + if (Opc1 != Opc2) + return false; // FIXME: overly conservative? + + switch (Opc1) { + default: break; + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + return false; + } + + EVT VT = Load1->getValueType(0); + switch (VT.getSimpleVT().SimpleTy) { + default: + // XMM registers. In 64-bit mode we can be a bit more aggressive since we + // have 16 of them to play with. + if (TM.getSubtargetImpl()->is64Bit()) { + if (NumLoads >= 3) + return false; + } else if (NumLoads) { + return false; + } + break; + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + case MVT::f32: + case MVT::f64: + if (NumLoads) + return false; + break; + } + + return true; +} + + +bool X86InstrInfo:: +ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 1 && "Invalid X86 branch condition!"); + X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); + if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) + return true; + Cond[0].setImm(GetOppositeBranchCondition(CC)); + return false; +} + +bool X86InstrInfo:: +isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { + // FIXME: Return false for x87 stack register classes for now. We can't + // allow any loads of these registers before FpGet_ST0_80. + return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || + RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); +} + +/// getGlobalBaseReg - Return a virtual register initialized with the +/// the global base register value. Output instructions required to +/// initialize the register in the function entry block, if necessary. +/// +/// TODO: Eliminate this and move the code to X86MachineFunctionInfo. +/// +unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { + assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && + "X86-64 PIC uses RIP relative addressing"); + + X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); + unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); + if (GlobalBaseReg != 0) + return GlobalBaseReg; + + // Create the register. The code to initialize it is inserted + // later, by the CGBR pass (below). + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); + X86FI->setGlobalBaseReg(GlobalBaseReg); + return GlobalBaseReg; +} + +// These are the replaceable SSE instructions. Some of these have Int variants +// that we don't include here. We don't want to replace instructions selected +// by intrinsics. +static const uint16_t ReplaceableInstrs[][3] = { + //PackedSingle PackedDouble PackedInt + { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, + { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, + { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, + { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, + { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, + { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, + { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, + { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, + { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, + { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, + { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, + { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, + { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, + { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, + // AVX 128-bit support + { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, + { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, + { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, + { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, + { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, + { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, + { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, + { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, + { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, + { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, + { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, + { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, + { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, + { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, + // AVX 256-bit support + { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, + { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, + { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, + { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, + { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, + { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr } +}; + +static const uint16_t ReplaceableInstrsAVX2[][3] = { + //PackedSingle PackedDouble PackedInt + { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, + { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, + { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, + { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, + { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, + { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, + { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, + { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, + { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, + { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, + { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, + { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, + { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, + { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr } +}; + +// FIXME: Some shuffle and unpack instructions have equivalents in different +// domains, but they require a bit more work than just switching opcodes. + +static const uint16_t *lookup(unsigned opcode, unsigned domain) { + for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) + if (ReplaceableInstrs[i][domain-1] == opcode) + return ReplaceableInstrs[i]; + return 0; +} + +static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) { + for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i) + if (ReplaceableInstrsAVX2[i][domain-1] == opcode) + return ReplaceableInstrsAVX2[i]; + return 0; +} + +std::pair<uint16_t, uint16_t> +X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { + uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; + bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2(); + uint16_t validDomains = 0; + if (domain && lookup(MI->getOpcode(), domain)) + validDomains = 0xe; + else if (domain && lookupAVX2(MI->getOpcode(), domain)) + validDomains = hasAVX2 ? 0xe : 0x6; + return std::make_pair(domain, validDomains); +} + +void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { + assert(Domain>0 && Domain<4 && "Invalid execution domain"); + uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; + assert(dom && "Not an SSE instruction"); + const uint16_t *table = lookup(MI->getOpcode(), dom); + if (!table) { // try the other table + assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) && + "256-bit vector operations only available in AVX2"); + table = lookupAVX2(MI->getOpcode(), dom); + } + assert(table && "Cannot change domain"); + MI->setDesc(get(table[Domain-1])); +} + +/// getNoopForMachoTarget - Return the noop instruction to use for a noop. +void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { + NopInst.setOpcode(X86::NOOP); +} + +bool X86InstrInfo::isHighLatencyDef(int opc) const { + switch (opc) { + default: return false; + case X86::DIVSDrm: + case X86::DIVSDrm_Int: + case X86::DIVSDrr: + case X86::DIVSDrr_Int: + case X86::DIVSSrm: + case X86::DIVSSrm_Int: + case X86::DIVSSrr: + case X86::DIVSSrr_Int: + case X86::SQRTPDm: + case X86::SQRTPDm_Int: + case X86::SQRTPDr: + case X86::SQRTPDr_Int: + case X86::SQRTPSm: + case X86::SQRTPSm_Int: + case X86::SQRTPSr: + case X86::SQRTPSr_Int: + case X86::SQRTSDm: + case X86::SQRTSDm_Int: + case X86::SQRTSDr: + case X86::SQRTSDr_Int: + case X86::SQRTSSm: + case X86::SQRTSSm_Int: + case X86::SQRTSSr: + case X86::SQRTSSr_Int: + // AVX instructions with high latency + case X86::VDIVSDrm: + case X86::VDIVSDrm_Int: + case X86::VDIVSDrr: + case X86::VDIVSDrr_Int: + case X86::VDIVSSrm: + case X86::VDIVSSrm_Int: + case X86::VDIVSSrr: + case X86::VDIVSSrr_Int: + case X86::VSQRTPDm: + case X86::VSQRTPDm_Int: + case X86::VSQRTPDr: + case X86::VSQRTPDr_Int: + case X86::VSQRTPSm: + case X86::VSQRTPSm_Int: + case X86::VSQRTPSr: + case X86::VSQRTPSr_Int: + case X86::VSQRTSDm: + case X86::VSQRTSDm_Int: + case X86::VSQRTSDr: + case X86::VSQRTSSm: + case X86::VSQRTSSm_Int: + case X86::VSQRTSSr: + return true; + } +} + +bool X86InstrInfo:: +hasHighOperandLatency(const InstrItineraryData *ItinData, + const MachineRegisterInfo *MRI, + const MachineInstr *DefMI, unsigned DefIdx, + const MachineInstr *UseMI, unsigned UseIdx) const { + return isHighLatencyDef(DefMI->getOpcode()); +} + +namespace { + /// CGBR - Create Global Base Reg pass. This initializes the PIC + /// global base register for x86-32. + struct CGBR : public MachineFunctionPass { + static char ID; + CGBR() : MachineFunctionPass(ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF) { + const X86TargetMachine *TM = + static_cast<const X86TargetMachine *>(&MF.getTarget()); + + assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && + "X86-64 PIC uses RIP relative addressing"); + + // Only emit a global base reg in PIC mode. + if (TM->getRelocationModel() != Reloc::PIC_) + return false; + + X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); + unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); + + // If we didn't need a GlobalBaseReg, don't insert code. + if (GlobalBaseReg == 0) + return false; + + // Insert the set of GlobalBaseReg into the first MBB of the function + MachineBasicBlock &FirstMBB = MF.front(); + MachineBasicBlock::iterator MBBI = FirstMBB.begin(); + DebugLoc DL = FirstMBB.findDebugLoc(MBBI); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + const X86InstrInfo *TII = TM->getInstrInfo(); + + unsigned PC; + if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) + PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); + else + PC = GlobalBaseReg; + + // Operand of MovePCtoStack is completely ignored by asm printer. It's + // only used in JIT code emission as displacement to pc. + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); + + // If we're using vanilla 'GOT' PIC style, we should use relative addressing + // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. + if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { + // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) + .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", + X86II::MO_GOT_ABSOLUTE_ADDRESS); + } + + return true; + } + + virtual const char *getPassName() const { + return "X86 PIC Global Base Reg Initialization"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + }; +} + +char CGBR::ID = 0; +FunctionPass* +llvm::createGlobalBaseRegPass() { return new CGBR(); } + +namespace { + struct LDTLSCleanup : public MachineFunctionPass { + static char ID; + LDTLSCleanup() : MachineFunctionPass(ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF) { + X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>(); + if (MFI->getNumLocalDynamicTLSAccesses() < 2) { + // No point folding accesses if there isn't at least two. + return false; + } + + MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); + return VisitNode(DT->getRootNode(), 0); + } + + // Visit the dominator subtree rooted at Node in pre-order. + // If TLSBaseAddrReg is non-null, then use that to replace any + // TLS_base_addr instructions. Otherwise, create the register + // when the first such instruction is seen, and then use it + // as we encounter more instructions. + bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { + MachineBasicBlock *BB = Node->getBlock(); + bool Changed = false; + + // Traverse the current block. + for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + switch (I->getOpcode()) { + case X86::TLS_base_addr32: + case X86::TLS_base_addr64: + if (TLSBaseAddrReg) + I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg); + else + I = SetRegister(I, &TLSBaseAddrReg); + Changed = true; + break; + default: + break; + } + } + + // Visit the children of this block in the dominator tree. + for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); + I != E; ++I) { + Changed |= VisitNode(*I, TLSBaseAddrReg); + } + + return Changed; + } + + // Replace the TLS_base_addr instruction I with a copy from + // TLSBaseAddrReg, returning the new instruction. + MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I, + unsigned TLSBaseAddrReg) { + MachineFunction *MF = I->getParent()->getParent(); + const X86TargetMachine *TM = + static_cast<const X86TargetMachine *>(&MF->getTarget()); + const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); + const X86InstrInfo *TII = TM->getInstrInfo(); + + // Insert a Copy from TLSBaseAddrReg to RAX/EAX. + MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(), + TII->get(TargetOpcode::COPY), + is64Bit ? X86::RAX : X86::EAX) + .addReg(TLSBaseAddrReg); + + // Erase the TLS_base_addr instruction. + I->eraseFromParent(); + + return Copy; + } + + // Create a virtal register in *TLSBaseAddrReg, and populate it by + // inserting a copy instruction after I. Returns the new instruction. + MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) { + MachineFunction *MF = I->getParent()->getParent(); + const X86TargetMachine *TM = + static_cast<const X86TargetMachine *>(&MF->getTarget()); + const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit(); + const X86InstrInfo *TII = TM->getInstrInfo(); + + // Create a virtual register for the TLS base address. + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit + ? &X86::GR64RegClass + : &X86::GR32RegClass); + + // Insert a copy from RAX/EAX to TLSBaseAddrReg. + MachineInstr *Next = I->getNextNode(); + MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(), + TII->get(TargetOpcode::COPY), + *TLSBaseAddrReg) + .addReg(is64Bit ? X86::RAX : X86::EAX); + + return Copy; + } + + virtual const char *getPassName() const { + return "Local Dynamic TLS Access Clean-up"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<MachineDominatorTree>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + }; +} + +char LDTLSCleanup::ID = 0; +FunctionPass* +llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } |