diff options
Diffstat (limited to 'lib/CodeGen/README.txt')
-rw-r--r-- | lib/CodeGen/README.txt | 199 |
1 files changed, 199 insertions, 0 deletions
diff --git a/lib/CodeGen/README.txt b/lib/CodeGen/README.txt new file mode 100644 index 00000000000..7f75f65167a --- /dev/null +++ b/lib/CodeGen/README.txt @@ -0,0 +1,199 @@ +//===---------------------------------------------------------------------===// + +Common register allocation / spilling problem: + + mul lr, r4, lr + str lr, [sp, #+52] + ldr lr, [r1, #+32] + sxth r3, r3 + ldr r4, [sp, #+52] + mla r4, r3, lr, r4 + +can be: + + mul lr, r4, lr + mov r4, lr + str lr, [sp, #+52] + ldr lr, [r1, #+32] + sxth r3, r3 + mla r4, r3, lr, r4 + +and then "merge" mul and mov: + + mul r4, r4, lr + str lr, [sp, #+52] + ldr lr, [r1, #+32] + sxth r3, r3 + mla r4, r3, lr, r4 + +It also increase the likelihood the store may become dead. + +//===---------------------------------------------------------------------===// + +bb27 ... + ... + %reg1037 = ADDri %reg1039, 1 + %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 + Successors according to CFG: 0x8b03bf0 (#5) + +bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): + Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) + %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> + +Note ADDri is not a two-address instruction. However, its result %reg1037 is an +operand of the PHI node in bb76 and its operand %reg1039 is the result of the +PHI node. We should treat it as a two-address code and make sure the ADDri is +scheduled after any node that reads %reg1039. + +//===---------------------------------------------------------------------===// + +Use local info (i.e. register scavenger) to assign it a free register to allow +reuse: + ldr r3, [sp, #+4] + add r3, r3, #3 + ldr r2, [sp, #+8] + add r2, r2, #2 + ldr r1, [sp, #+4] <== + add r1, r1, #1 + ldr r0, [sp, #+4] + add r0, r0, #2 + +//===---------------------------------------------------------------------===// + +LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- +effects: + +R1 = X + 4 +R2 = X + 7 +R3 = X + 15 + +loop: +load [i + R1] +... +load [i + R2] +... +load [i + R3] + +Suppose there is high register pressure, R1, R2, R3, can be spilled. We need +to implement proper re-materialization to handle this: + +R1 = X + 4 +R2 = X + 7 +R3 = X + 15 + +loop: +R1 = X + 4 @ re-materialized +load [i + R1] +... +R2 = X + 7 @ re-materialized +load [i + R2] +... +R3 = X + 15 @ re-materialized +load [i + R3] + +Furthermore, with re-association, we can enable sharing: + +R1 = X + 4 +R2 = X + 7 +R3 = X + 15 + +loop: +T = i + X +load [T + 4] +... +load [T + 7] +... +load [T + 15] +//===---------------------------------------------------------------------===// + +It's not always a good idea to choose rematerialization over spilling. If all +the load / store instructions would be folded then spilling is cheaper because +it won't require new live intervals / registers. See 2003-05-31-LongShifts for +an example. + +//===---------------------------------------------------------------------===// + +With a copying garbage collector, derived pointers must not be retained across +collector safe points; the collector could move the objects and invalidate the +derived pointer. This is bad enough in the first place, but safe points can +crop up unpredictably. Consider: + + %array = load { i32, [0 x %obj] }** %array_addr + %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n + %old = load %obj** %nth_el + %z = div i64 %x, %y + store %obj* %new, %obj** %nth_el + +If the i64 division is lowered to a libcall, then a safe point will (must) +appear for the call site. If a collection occurs, %array and %nth_el no longer +point into the correct object. + +The fix for this is to copy address calculations so that dependent pointers +are never live across safe point boundaries. But the loads cannot be copied +like this if there was an intervening store, so may be hard to get right. + +Only a concurrent mutator can trigger a collection at the libcall safe point. +So single-threaded programs do not have this requirement, even with a copying +collector. Still, LLVM optimizations would probably undo a front-end's careful +work. + +//===---------------------------------------------------------------------===// + +The ocaml frametable structure supports liveness information. It would be good +to support it. + +//===---------------------------------------------------------------------===// + +The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be +revisited. The check is there to work around a misuse of directives in inline +assembly. + +//===---------------------------------------------------------------------===// + +It would be good to detect collector/target compatibility instead of silently +doing the wrong thing. + +//===---------------------------------------------------------------------===// + +It would be really nice to be able to write patterns in .td files for copies, +which would eliminate a bunch of explicit predicates on them (e.g. no side +effects). Once this is in place, it would be even better to have tblgen +synthesize the various copy insertion/inspection methods in TargetInstrInfo. + +//===---------------------------------------------------------------------===// + +Stack coloring improvements: + +1. Do proper LiveStackAnalysis on all stack objects including those which are + not spill slots. +2. Reorder objects to fill in gaps between objects. + e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 + +//===---------------------------------------------------------------------===// + +The scheduler should be able to sort nearby instructions by their address. For +example, in an expanded memset sequence it's not uncommon to see code like this: + + movl $0, 4(%rdi) + movl $0, 8(%rdi) + movl $0, 12(%rdi) + movl $0, 0(%rdi) + +Each of the stores is independent, and the scheduler is currently making an +arbitrary decision about the order. + +//===---------------------------------------------------------------------===// + +Another opportunitiy in this code is that the $0 could be moved to a register: + + movl $0, 4(%rdi) + movl $0, 8(%rdi) + movl $0, 12(%rdi) + movl $0, 0(%rdi) + +This would save substantial code size, especially for longer sequences like +this. It would be easy to have a rule telling isel to avoid matching MOV32mi +if the immediate has more than some fixed number of uses. It's more involved +to teach the register allocator how to do late folding to recover from +excessive register pressure. + |