1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
|
/*
* clk-dfll.c - Tegra DFLL clock source common code
*
* Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
*
* Aleksandr Frid <afrid@nvidia.com>
* Paul Walmsley <pwalmsley@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* This library is for the DVCO and DFLL IP blocks on the Tegra124
* SoC. These IP blocks together are also known at NVIDIA as
* "CL-DVFS". To try to avoid confusion, this code refers to them
* collectively as the "DFLL."
*
* The DFLL is a root clocksource which tolerates some amount of
* supply voltage noise. Tegra124 uses it to clock the fast CPU
* complex when the target CPU speed is above a particular rate. The
* DFLL can be operated in either open-loop mode or closed-loop mode.
* In open-loop mode, the DFLL generates an output clock appropriate
* to the supply voltage. In closed-loop mode, when configured with a
* target frequency, the DFLL minimizes supply voltage while
* delivering an average frequency equal to the target.
*
* Devices clocked by the DFLL must be able to tolerate frequency
* variation. In the case of the CPU, it's important to note that the
* CPU cycle time will vary. This has implications for
* performance-measurement code and any code that relies on the CPU
* cycle time to delay for a certain length of time.
*
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/seq_file.h>
#include "clk-dfll.h"
#include "cvb.h"
/*
* DFLL control registers - access via dfll_{readl,writel}
*/
/* DFLL_CTRL: DFLL control register */
#define DFLL_CTRL 0x00
#define DFLL_CTRL_MODE_MASK 0x03
/* DFLL_CONFIG: DFLL sample rate control */
#define DFLL_CONFIG 0x04
#define DFLL_CONFIG_DIV_MASK 0xff
#define DFLL_CONFIG_DIV_PRESCALE 32
/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
#define DFLL_PARAMS 0x08
#define DFLL_PARAMS_CG_SCALE (0x1 << 24)
#define DFLL_PARAMS_FORCE_MODE_SHIFT 22
#define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
#define DFLL_PARAMS_CF_PARAM_SHIFT 16
#define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
#define DFLL_PARAMS_CI_PARAM_SHIFT 8
#define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
#define DFLL_PARAMS_CG_PARAM_SHIFT 0
#define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
/* DFLL_TUNE0: delay line configuration register 0 */
#define DFLL_TUNE0 0x0c
/* DFLL_TUNE1: delay line configuration register 1 */
#define DFLL_TUNE1 0x10
/* DFLL_FREQ_REQ: target DFLL frequency control */
#define DFLL_FREQ_REQ 0x14
#define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28)
#define DFLL_FREQ_REQ_FORCE_SHIFT 16
#define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
#define FORCE_MAX 2047
#define FORCE_MIN -2048
#define DFLL_FREQ_REQ_SCALE_SHIFT 8
#define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
#define DFLL_FREQ_REQ_SCALE_MAX 256
#define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7)
#define DFLL_FREQ_REQ_MULT_SHIFT 0
#define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
#define FREQ_MAX 127
/* DFLL_DROOP_CTRL: droop prevention control */
#define DFLL_DROOP_CTRL 0x1c
/* DFLL_OUTPUT_CFG: closed loop mode control registers */
/* NOTE: access via dfll_i2c_{readl,writel} */
#define DFLL_OUTPUT_CFG 0x20
#define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30)
#define OUT_MASK 0x3f
#define DFLL_OUTPUT_CFG_SAFE_SHIFT 24
#define DFLL_OUTPUT_CFG_SAFE_MASK \
(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
#define DFLL_OUTPUT_CFG_MAX_SHIFT 16
#define DFLL_OUTPUT_CFG_MAX_MASK \
(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
#define DFLL_OUTPUT_CFG_MIN_SHIFT 8
#define DFLL_OUTPUT_CFG_MIN_MASK \
(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
#define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7)
#define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6)
#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0
#define DFLL_OUTPUT_CFG_PWM_DIV_MASK \
(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
#define DFLL_OUTPUT_FORCE 0x24
#define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6)
#define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0
#define DFLL_OUTPUT_FORCE_VALUE_MASK \
(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
/* DFLL_MONITOR_CTRL: internal monitor data source control */
#define DFLL_MONITOR_CTRL 0x28
#define DFLL_MONITOR_CTRL_FREQ 6
/* DFLL_MONITOR_DATA: internal monitor data output */
#define DFLL_MONITOR_DATA 0x2c
#define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16)
#define DFLL_MONITOR_DATA_VAL_SHIFT 0
#define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
/*
* I2C output control registers - access via dfll_i2c_{readl,writel}
*/
/* DFLL_I2C_CFG: I2C controller configuration register */
#define DFLL_I2C_CFG 0x40
#define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20)
#define DFLL_I2C_CFG_HS_CODE_SHIFT 16
#define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
#define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15)
#define DFLL_I2C_CFG_SIZE_SHIFT 12
#define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
#define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10)
#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1
#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0
/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
#define DFLL_I2C_VDD_REG_ADDR 0x44
/* DFLL_I2C_STS: I2C controller status */
#define DFLL_I2C_STS 0x48
#define DFLL_I2C_STS_I2C_LAST_SHIFT 1
#define DFLL_I2C_STS_I2C_REQ_PENDING 0x1
/* DFLL_INTR_STS: DFLL interrupt status register */
#define DFLL_INTR_STS 0x5c
/* DFLL_INTR_EN: DFLL interrupt enable register */
#define DFLL_INTR_EN 0x60
#define DFLL_INTR_MIN_MASK 0x1
#define DFLL_INTR_MAX_MASK 0x2
/*
* Integrated I2C controller registers - relative to td->i2c_controller_base
*/
/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
#define DFLL_I2C_CLK_DIVISOR 0x6c
#define DFLL_I2C_CLK_DIVISOR_MASK 0xffff
#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16
#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0
#define DFLL_I2C_CLK_DIVISOR_PREDIV 8
#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12
/*
* Other constants
*/
/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
#define MAX_DFLL_VOLTAGES 33
/*
* REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
* integrates the DVCO counter over - used for debug rate monitoring and
* droop control
*/
#define REF_CLK_CYC_PER_DVCO_SAMPLE 4
/*
* REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
* driver, in Hz
*/
#define REF_CLOCK_RATE 51000000UL
#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2))
#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2))
/**
* enum dfll_ctrl_mode - DFLL hardware operating mode
* @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
* @DFLL_DISABLED: DFLL not generating an output clock
* @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
* @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
* the requested rate
*
* The integer corresponding to the last two states, minus one, is
* written to the DFLL hardware to change operating modes.
*/
enum dfll_ctrl_mode {
DFLL_UNINITIALIZED = 0,
DFLL_DISABLED = 1,
DFLL_OPEN_LOOP = 2,
DFLL_CLOSED_LOOP = 3,
};
/**
* enum dfll_tune_range - voltage range that the driver believes it's in
* @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
* @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
*
* Some DFLL tuning parameters may need to change depending on the
* DVCO's voltage; these states represent the ranges that the driver
* supports. These are software states; these values are never
* written into registers.
*/
enum dfll_tune_range {
DFLL_TUNE_UNINITIALIZED = 0,
DFLL_TUNE_LOW = 1,
};
/**
* struct dfll_rate_req - target DFLL rate request data
* @rate: target frequency, after the postscaling
* @dvco_target_rate: target frequency, after the postscaling
* @lut_index: LUT index at which voltage the dvco_target_rate will be reached
* @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
* @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
*/
struct dfll_rate_req {
unsigned long rate;
unsigned long dvco_target_rate;
int lut_index;
u8 mult_bits;
u8 scale_bits;
};
struct tegra_dfll {
struct device *dev;
struct tegra_dfll_soc_data *soc;
void __iomem *base;
void __iomem *i2c_base;
void __iomem *i2c_controller_base;
void __iomem *lut_base;
struct regulator *vdd_reg;
struct clk *soc_clk;
struct clk *ref_clk;
struct clk *i2c_clk;
struct clk *dfll_clk;
struct reset_control *dvco_rst;
unsigned long ref_rate;
unsigned long i2c_clk_rate;
unsigned long dvco_rate_min;
enum dfll_ctrl_mode mode;
enum dfll_tune_range tune_range;
struct dentry *debugfs_dir;
struct clk_hw dfll_clk_hw;
const char *output_clock_name;
struct dfll_rate_req last_req;
unsigned long last_unrounded_rate;
/* Parameters from DT */
u32 droop_ctrl;
u32 sample_rate;
u32 force_mode;
u32 cf;
u32 ci;
u32 cg;
bool cg_scale;
/* I2C interface parameters */
u32 i2c_fs_rate;
u32 i2c_reg;
u32 i2c_slave_addr;
/* i2c_lut array entries are regulator framework selectors */
unsigned i2c_lut[MAX_DFLL_VOLTAGES];
int i2c_lut_size;
u8 lut_min, lut_max, lut_safe;
};
#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
/* mode_name: map numeric DFLL modes to names for friendly console messages */
static const char * const mode_name[] = {
[DFLL_UNINITIALIZED] = "uninitialized",
[DFLL_DISABLED] = "disabled",
[DFLL_OPEN_LOOP] = "open_loop",
[DFLL_CLOSED_LOOP] = "closed_loop",
};
/*
* Register accessors
*/
static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
{
return __raw_readl(td->base + offs);
}
static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
{
WARN_ON(offs >= DFLL_I2C_CFG);
__raw_writel(val, td->base + offs);
}
static inline void dfll_wmb(struct tegra_dfll *td)
{
dfll_readl(td, DFLL_CTRL);
}
/* I2C output control registers - for addresses above DFLL_I2C_CFG */
static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
{
return __raw_readl(td->i2c_base + offs);
}
static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
{
__raw_writel(val, td->i2c_base + offs);
}
static inline void dfll_i2c_wmb(struct tegra_dfll *td)
{
dfll_i2c_readl(td, DFLL_I2C_CFG);
}
/**
* dfll_is_running - is the DFLL currently generating a clock?
* @td: DFLL instance
*
* If the DFLL is currently generating an output clock signal, return
* true; otherwise return false.
*/
static bool dfll_is_running(struct tegra_dfll *td)
{
return td->mode >= DFLL_OPEN_LOOP;
}
/*
* Runtime PM suspend/resume callbacks
*/
/**
* tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
* @dev: DFLL device *
*
* Enable all clocks needed by the DFLL. Assumes that clk_prepare()
* has already been called on all the clocks.
*
* XXX Should also handle context restore when returning from off.
*/
int tegra_dfll_runtime_resume(struct device *dev)
{
struct tegra_dfll *td = dev_get_drvdata(dev);
int ret;
ret = clk_enable(td->ref_clk);
if (ret) {
dev_err(dev, "could not enable ref clock: %d\n", ret);
return ret;
}
ret = clk_enable(td->soc_clk);
if (ret) {
dev_err(dev, "could not enable register clock: %d\n", ret);
clk_disable(td->ref_clk);
return ret;
}
ret = clk_enable(td->i2c_clk);
if (ret) {
dev_err(dev, "could not enable i2c clock: %d\n", ret);
clk_disable(td->soc_clk);
clk_disable(td->ref_clk);
return ret;
}
return 0;
}
EXPORT_SYMBOL(tegra_dfll_runtime_resume);
/**
* tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
* @dev: DFLL device *
*
* Disable all clocks needed by the DFLL. Assumes that other code
* will later call clk_unprepare().
*/
int tegra_dfll_runtime_suspend(struct device *dev)
{
struct tegra_dfll *td = dev_get_drvdata(dev);
clk_disable(td->ref_clk);
clk_disable(td->soc_clk);
clk_disable(td->i2c_clk);
return 0;
}
EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
/*
* DFLL tuning operations (per-voltage-range tuning settings)
*/
/**
* dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
* @td: DFLL instance
*
* Tune the DFLL oscillator parameters and the CPU clock shaper for
* the low-voltage range. These settings are valid for any voltage,
* but may not be optimal.
*/
static void dfll_tune_low(struct tegra_dfll *td)
{
td->tune_range = DFLL_TUNE_LOW;
dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
dfll_wmb(td);
if (td->soc->set_clock_trimmers_low)
td->soc->set_clock_trimmers_low();
}
/*
* Output clock scaler helpers
*/
/**
* dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
* @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
* @dvco_rate: the DVCO rate
*
* Apply the same scaling formula that the DFLL hardware uses to scale
* the DVCO rate.
*/
static unsigned long dfll_scale_dvco_rate(int scale_bits,
unsigned long dvco_rate)
{
return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
}
/*
* DFLL mode switching
*/
/**
* dfll_set_mode - change the DFLL control mode
* @td: DFLL instance
* @mode: DFLL control mode (see enum dfll_ctrl_mode)
*
* Change the DFLL's operating mode between disabled, open-loop mode,
* and closed-loop mode, or vice versa.
*/
static void dfll_set_mode(struct tegra_dfll *td,
enum dfll_ctrl_mode mode)
{
td->mode = mode;
dfll_writel(td, mode - 1, DFLL_CTRL);
dfll_wmb(td);
}
/*
* DFLL-to-I2C controller interface
*/
/**
* dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
* @td: DFLL instance
* @enable: whether to enable or disable the I2C voltage requests
*
* Set the master enable control for I2C control value updates. If disabled,
* then I2C control messages are inhibited, regardless of the DFLL mode.
*/
static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
{
u32 val;
val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
if (enable)
val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
else
val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
dfll_i2c_wmb(td);
return 0;
}
/**
* dfll_load_lut - load the voltage lookup table
* @td: struct tegra_dfll *
*
* Load the voltage-to-PMIC register value lookup table into the DFLL
* IP block memory. Look-up tables can be loaded at any time.
*/
static void dfll_load_i2c_lut(struct tegra_dfll *td)
{
int i, lut_index;
u32 val;
for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
if (i < td->lut_min)
lut_index = td->lut_min;
else if (i > td->lut_max)
lut_index = td->lut_max;
else
lut_index = i;
val = regulator_list_hardware_vsel(td->vdd_reg,
td->i2c_lut[lut_index]);
__raw_writel(val, td->lut_base + i * 4);
}
dfll_i2c_wmb(td);
}
/**
* dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
* @td: DFLL instance
*
* During DFLL driver initialization, program the DFLL-I2C interface
* with the PMU slave address, vdd register offset, and transfer mode.
* This data is used by the DFLL to automatically construct I2C
* voltage-set commands, which are then passed to the DFLL's internal
* I2C controller.
*/
static void dfll_init_i2c_if(struct tegra_dfll *td)
{
u32 val;
if (td->i2c_slave_addr > 0x7f) {
val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
} else {
val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
}
val |= DFLL_I2C_CFG_SIZE_MASK;
val |= DFLL_I2C_CFG_ARB_ENABLE;
dfll_i2c_writel(td, val, DFLL_I2C_CFG);
dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
/* default hs divisor just in case */
val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
dfll_i2c_wmb(td);
}
/**
* dfll_init_out_if - prepare DFLL-to-PMIC interface
* @td: DFLL instance
*
* During DFLL driver initialization or resume from context loss,
* disable the I2C command output to the PMIC, set safe voltage and
* output limits, and disable and clear limit interrupts.
*/
static void dfll_init_out_if(struct tegra_dfll *td)
{
u32 val;
td->lut_min = 0;
td->lut_max = td->i2c_lut_size - 1;
td->lut_safe = td->lut_min + 1;
dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
(td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
(td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
dfll_i2c_wmb(td);
dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
dfll_i2c_writel(td, 0, DFLL_INTR_EN);
dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
DFLL_INTR_STS);
dfll_load_i2c_lut(td);
dfll_init_i2c_if(td);
}
/*
* Set/get the DFLL's targeted output clock rate
*/
/**
* find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
* @td: DFLL instance
* @rate: clock rate
*
* Determines the index of a I2C LUT entry for a voltage that approximately
* produces the given DFLL clock rate. This is used when forcing a value
* to the integrator during rate changes. Returns -ENOENT if a suitable
* LUT index is not found.
*/
static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
{
struct dev_pm_opp *opp;
int i, uv;
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
if (IS_ERR(opp)) {
rcu_read_unlock();
return PTR_ERR(opp);
}
uv = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
for (i = 0; i < td->i2c_lut_size; i++) {
if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
return i;
}
return -ENOENT;
}
/**
* dfll_calculate_rate_request - calculate DFLL parameters for a given rate
* @td: DFLL instance
* @req: DFLL-rate-request structure
* @rate: the desired DFLL rate
*
* Populate the DFLL-rate-request record @req fields with the scale_bits
* and mult_bits fields, based on the target input rate. Returns 0 upon
* success, or -EINVAL if the requested rate in req->rate is too high
* or low for the DFLL to generate.
*/
static int dfll_calculate_rate_request(struct tegra_dfll *td,
struct dfll_rate_req *req,
unsigned long rate)
{
u32 val;
/*
* If requested rate is below the minimum DVCO rate, active the scaler.
* In the future the DVCO minimum voltage should be selected based on
* chip temperature and the actual minimum rate should be calibrated
* at runtime.
*/
req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
if (rate < td->dvco_rate_min) {
int scale;
scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
td->dvco_rate_min / 1000);
if (!scale) {
dev_err(td->dev, "%s: Rate %lu is too low\n",
__func__, rate);
return -EINVAL;
}
req->scale_bits = scale - 1;
rate = td->dvco_rate_min;
}
/* Convert requested rate into frequency request and scale settings */
val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
if (val > FREQ_MAX) {
dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
__func__, rate);
return -EINVAL;
}
req->mult_bits = val;
req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
req->rate = dfll_scale_dvco_rate(req->scale_bits,
req->dvco_target_rate);
req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
if (req->lut_index < 0)
return req->lut_index;
return 0;
}
/**
* dfll_set_frequency_request - start the frequency change operation
* @td: DFLL instance
* @req: rate request structure
*
* Tell the DFLL to try to change its output frequency to the
* frequency represented by @req. DFLL must be in closed-loop mode.
*/
static void dfll_set_frequency_request(struct tegra_dfll *td,
struct dfll_rate_req *req)
{
u32 val = 0;
int force_val;
int coef = 128; /* FIXME: td->cg_scale? */;
force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
DFLL_FREQ_REQ_FORCE_MASK;
val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
dfll_writel(td, val, DFLL_FREQ_REQ);
dfll_wmb(td);
}
/**
* tegra_dfll_request_rate - set the next rate for the DFLL to tune to
* @td: DFLL instance
* @rate: clock rate to target
*
* Convert the requested clock rate @rate into the DFLL control logic
* settings. In closed-loop mode, update new settings immediately to
* adjust DFLL output rate accordingly. Otherwise, just save them
* until the next switch to closed loop. Returns 0 upon success,
* -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
* if @rate is outside the DFLL's tunable range.
*/
static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
{
int ret;
struct dfll_rate_req req;
if (td->mode == DFLL_UNINITIALIZED) {
dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
__func__, mode_name[td->mode]);
return -EPERM;
}
ret = dfll_calculate_rate_request(td, &req, rate);
if (ret)
return ret;
td->last_unrounded_rate = rate;
td->last_req = req;
if (td->mode == DFLL_CLOSED_LOOP)
dfll_set_frequency_request(td, &td->last_req);
return 0;
}
/*
* DFLL enable/disable & open-loop <-> closed-loop transitions
*/
/**
* dfll_disable - switch from open-loop mode to disabled mode
* @td: DFLL instance
*
* Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
* or -EPERM if the DFLL is not currently in open-loop mode.
*/
static int dfll_disable(struct tegra_dfll *td)
{
if (td->mode != DFLL_OPEN_LOOP) {
dev_err(td->dev, "cannot disable DFLL in %s mode\n",
mode_name[td->mode]);
return -EINVAL;
}
dfll_set_mode(td, DFLL_DISABLED);
pm_runtime_put_sync(td->dev);
return 0;
}
/**
* dfll_enable - switch a disabled DFLL to open-loop mode
* @td: DFLL instance
*
* Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
* or -EPERM if the DFLL is not currently disabled.
*/
static int dfll_enable(struct tegra_dfll *td)
{
if (td->mode != DFLL_DISABLED) {
dev_err(td->dev, "cannot enable DFLL in %s mode\n",
mode_name[td->mode]);
return -EPERM;
}
pm_runtime_get_sync(td->dev);
dfll_set_mode(td, DFLL_OPEN_LOOP);
return 0;
}
/**
* dfll_set_open_loop_config - prepare to switch to open-loop mode
* @td: DFLL instance
*
* Prepare to switch the DFLL to open-loop mode. This switches the
* DFLL to the low-voltage tuning range, ensures that I2C output
* forcing is disabled, and disables the output clock rate scaler.
* The DFLL's low-voltage tuning range parameters must be
* characterized to keep the downstream device stable at any DVCO
* input voltage. No return value.
*/
static void dfll_set_open_loop_config(struct tegra_dfll *td)
{
u32 val;
/* always tune low (safe) in open loop */
if (td->tune_range != DFLL_TUNE_LOW)
dfll_tune_low(td);
val = dfll_readl(td, DFLL_FREQ_REQ);
val |= DFLL_FREQ_REQ_SCALE_MASK;
val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
dfll_writel(td, val, DFLL_FREQ_REQ);
dfll_wmb(td);
}
/**
* tegra_dfll_lock - switch from open-loop to closed-loop mode
* @td: DFLL instance
*
* Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
* -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
* DFLL is not currently in open-loop mode.
*/
static int dfll_lock(struct tegra_dfll *td)
{
struct dfll_rate_req *req = &td->last_req;
switch (td->mode) {
case DFLL_CLOSED_LOOP:
return 0;
case DFLL_OPEN_LOOP:
if (req->rate == 0) {
dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
__func__);
return -EINVAL;
}
dfll_i2c_set_output_enabled(td, true);
dfll_set_mode(td, DFLL_CLOSED_LOOP);
dfll_set_frequency_request(td, req);
return 0;
default:
BUG_ON(td->mode > DFLL_CLOSED_LOOP);
dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
__func__, mode_name[td->mode]);
return -EPERM;
}
}
/**
* tegra_dfll_unlock - switch from closed-loop to open-loop mode
* @td: DFLL instance
*
* Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
* or -EPERM if the DFLL is not currently in open-loop mode.
*/
static int dfll_unlock(struct tegra_dfll *td)
{
switch (td->mode) {
case DFLL_CLOSED_LOOP:
dfll_set_open_loop_config(td);
dfll_set_mode(td, DFLL_OPEN_LOOP);
dfll_i2c_set_output_enabled(td, false);
return 0;
case DFLL_OPEN_LOOP:
return 0;
default:
BUG_ON(td->mode > DFLL_CLOSED_LOOP);
dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
__func__, mode_name[td->mode]);
return -EPERM;
}
}
/*
* Clock framework integration
*
* When the DFLL is being controlled by the CCF, always enter closed loop
* mode when the clk is enabled. This requires that a DFLL rate request
* has been set beforehand, which implies that a clk_set_rate() call is
* always required before a clk_enable().
*/
static int dfll_clk_is_enabled(struct clk_hw *hw)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
return dfll_is_running(td);
}
static int dfll_clk_enable(struct clk_hw *hw)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
int ret;
ret = dfll_enable(td);
if (ret)
return ret;
ret = dfll_lock(td);
if (ret)
dfll_disable(td);
return ret;
}
static void dfll_clk_disable(struct clk_hw *hw)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
int ret;
ret = dfll_unlock(td);
if (!ret)
dfll_disable(td);
}
static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
return td->last_unrounded_rate;
}
/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
static int dfll_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *clk_req)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
struct dfll_rate_req req;
int ret;
ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
if (ret)
return ret;
/*
* Don't set the rounded rate, since it doesn't really matter as
* the output rate will be voltage controlled anyway, and cpufreq
* freaks out if any rounding happens.
*/
return 0;
}
static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct tegra_dfll *td = clk_hw_to_dfll(hw);
return dfll_request_rate(td, rate);
}
static const struct clk_ops dfll_clk_ops = {
.is_enabled = dfll_clk_is_enabled,
.enable = dfll_clk_enable,
.disable = dfll_clk_disable,
.recalc_rate = dfll_clk_recalc_rate,
.determine_rate = dfll_clk_determine_rate,
.set_rate = dfll_clk_set_rate,
};
static struct clk_init_data dfll_clk_init_data = {
.ops = &dfll_clk_ops,
.num_parents = 0,
};
/**
* dfll_register_clk - register the DFLL output clock with the clock framework
* @td: DFLL instance
*
* Register the DFLL's output clock with the Linux clock framework and register
* the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
* or -ENOMEM upon failure.
*/
static int dfll_register_clk(struct tegra_dfll *td)
{
int ret;
dfll_clk_init_data.name = td->output_clock_name;
td->dfll_clk_hw.init = &dfll_clk_init_data;
td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
if (IS_ERR(td->dfll_clk)) {
dev_err(td->dev, "DFLL clock registration error\n");
return -EINVAL;
}
ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
td->dfll_clk);
if (ret) {
dev_err(td->dev, "of_clk_add_provider() failed\n");
clk_unregister(td->dfll_clk);
return ret;
}
return 0;
}
/**
* dfll_unregister_clk - unregister the DFLL output clock
* @td: DFLL instance
*
* Unregister the DFLL's output clock from the Linux clock framework
* and from clkdev. No return value.
*/
static void dfll_unregister_clk(struct tegra_dfll *td)
{
of_clk_del_provider(td->dev->of_node);
clk_unregister(td->dfll_clk);
td->dfll_clk = NULL;
}
/*
* Debugfs interface
*/
#ifdef CONFIG_DEBUG_FS
/*
* Monitor control
*/
/**
* dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
* @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
* @ref_rate: DFLL reference clock rate
*
* Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
* per second. Returns the converted value.
*/
static u64 dfll_calc_monitored_rate(u32 monitor_data,
unsigned long ref_rate)
{
return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
}
/**
* dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
* @td: DFLL instance
*
* If the DFLL is enabled, return the last rate reported by the DFLL's
* internal monitoring hardware. This works in both open-loop and
* closed-loop mode, and takes the output scaler setting into account.
* Assumes that the monitor was programmed to monitor frequency before
* the sample period started. If the driver believes that the DFLL is
* currently uninitialized or disabled, it will return 0, since
* otherwise the DFLL monitor data register will return the last
* measured rate from when the DFLL was active.
*/
static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
{
u32 v, s;
u64 pre_scaler_rate, post_scaler_rate;
if (!dfll_is_running(td))
return 0;
v = dfll_readl(td, DFLL_MONITOR_DATA);
v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
s = dfll_readl(td, DFLL_FREQ_REQ);
s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
return post_scaler_rate;
}
static int attr_enable_get(void *data, u64 *val)
{
struct tegra_dfll *td = data;
*val = dfll_is_running(td);
return 0;
}
static int attr_enable_set(void *data, u64 val)
{
struct tegra_dfll *td = data;
return val ? dfll_enable(td) : dfll_disable(td);
}
DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
"%llu\n");
static int attr_lock_get(void *data, u64 *val)
{
struct tegra_dfll *td = data;
*val = (td->mode == DFLL_CLOSED_LOOP);
return 0;
}
static int attr_lock_set(void *data, u64 val)
{
struct tegra_dfll *td = data;
return val ? dfll_lock(td) : dfll_unlock(td);
}
DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
"%llu\n");
static int attr_rate_get(void *data, u64 *val)
{
struct tegra_dfll *td = data;
*val = dfll_read_monitor_rate(td);
return 0;
}
static int attr_rate_set(void *data, u64 val)
{
struct tegra_dfll *td = data;
return dfll_request_rate(td, val);
}
DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
static int attr_registers_show(struct seq_file *s, void *data)
{
u32 val, offs;
struct tegra_dfll *td = s->private;
seq_puts(s, "CONTROL REGISTERS:\n");
for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
if (offs == DFLL_OUTPUT_CFG)
val = dfll_i2c_readl(td, offs);
else
val = dfll_readl(td, offs);
seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
}
seq_puts(s, "\nI2C and INTR REGISTERS:\n");
for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
dfll_i2c_readl(td, offs));
for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
dfll_i2c_readl(td, offs));
seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
offs = DFLL_I2C_CLK_DIVISOR;
seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
__raw_readl(td->i2c_controller_base + offs));
seq_puts(s, "\nLUT:\n");
for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4)
seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
__raw_readl(td->lut_base + offs));
return 0;
}
static int attr_registers_open(struct inode *inode, struct file *file)
{
return single_open(file, attr_registers_show, inode->i_private);
}
static const struct file_operations attr_registers_fops = {
.open = attr_registers_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int dfll_debug_init(struct tegra_dfll *td)
{
int ret;
if (!td || (td->mode == DFLL_UNINITIALIZED))
return 0;
td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL);
if (!td->debugfs_dir)
return -ENOMEM;
ret = -ENOMEM;
if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR,
td->debugfs_dir, td, &enable_fops))
goto err_out;
if (!debugfs_create_file("lock", S_IRUGO,
td->debugfs_dir, td, &lock_fops))
goto err_out;
if (!debugfs_create_file("rate", S_IRUGO,
td->debugfs_dir, td, &rate_fops))
goto err_out;
if (!debugfs_create_file("registers", S_IRUGO,
td->debugfs_dir, td, &attr_registers_fops))
goto err_out;
return 0;
err_out:
debugfs_remove_recursive(td->debugfs_dir);
return ret;
}
#endif /* CONFIG_DEBUG_FS */
/*
* DFLL initialization
*/
/**
* dfll_set_default_params - program non-output related DFLL parameters
* @td: DFLL instance
*
* During DFLL driver initialization or resume from context loss,
* program parameters for the closed loop integrator, DVCO tuning,
* voltage droop control and monitor control.
*/
static void dfll_set_default_params(struct tegra_dfll *td)
{
u32 val;
val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
BUG_ON(val > DFLL_CONFIG_DIV_MASK);
dfll_writel(td, val, DFLL_CONFIG);
val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
dfll_writel(td, val, DFLL_PARAMS);
dfll_tune_low(td);
dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
}
/**
* dfll_init_clks - clk_get() the DFLL source clocks
* @td: DFLL instance
*
* Call clk_get() on the DFLL source clocks and save the pointers for later
* use. Returns 0 upon success or error (see devm_clk_get) if one or more
* of the clocks couldn't be looked up.
*/
static int dfll_init_clks(struct tegra_dfll *td)
{
td->ref_clk = devm_clk_get(td->dev, "ref");
if (IS_ERR(td->ref_clk)) {
dev_err(td->dev, "missing ref clock\n");
return PTR_ERR(td->ref_clk);
}
td->soc_clk = devm_clk_get(td->dev, "soc");
if (IS_ERR(td->soc_clk)) {
dev_err(td->dev, "missing soc clock\n");
return PTR_ERR(td->soc_clk);
}
td->i2c_clk = devm_clk_get(td->dev, "i2c");
if (IS_ERR(td->i2c_clk)) {
dev_err(td->dev, "missing i2c clock\n");
return PTR_ERR(td->i2c_clk);
}
td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
return 0;
}
/**
* dfll_init - Prepare the DFLL IP block for use
* @td: DFLL instance
*
* Do everything necessary to prepare the DFLL IP block for use. The
* DFLL will be left in DISABLED state. Called by dfll_probe().
* Returns 0 upon success, or passes along the error from whatever
* function returned it.
*/
static int dfll_init(struct tegra_dfll *td)
{
int ret;
td->ref_rate = clk_get_rate(td->ref_clk);
if (td->ref_rate != REF_CLOCK_RATE) {
dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
td->ref_rate, REF_CLOCK_RATE);
return -EINVAL;
}
reset_control_deassert(td->dvco_rst);
ret = clk_prepare(td->ref_clk);
if (ret) {
dev_err(td->dev, "failed to prepare ref_clk\n");
return ret;
}
ret = clk_prepare(td->soc_clk);
if (ret) {
dev_err(td->dev, "failed to prepare soc_clk\n");
goto di_err1;
}
ret = clk_prepare(td->i2c_clk);
if (ret) {
dev_err(td->dev, "failed to prepare i2c_clk\n");
goto di_err2;
}
td->last_unrounded_rate = 0;
pm_runtime_enable(td->dev);
pm_runtime_get_sync(td->dev);
dfll_set_mode(td, DFLL_DISABLED);
dfll_set_default_params(td);
if (td->soc->init_clock_trimmers)
td->soc->init_clock_trimmers();
dfll_set_open_loop_config(td);
dfll_init_out_if(td);
pm_runtime_put_sync(td->dev);
return 0;
di_err2:
clk_unprepare(td->soc_clk);
di_err1:
clk_unprepare(td->ref_clk);
reset_control_assert(td->dvco_rst);
return ret;
}
/*
* DT data fetch
*/
/*
* Find a PMIC voltage register-to-voltage mapping for the given voltage.
* An exact voltage match is required.
*/
static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
{
int i, n_voltages, reg_uV;
n_voltages = regulator_count_voltages(td->vdd_reg);
for (i = 0; i < n_voltages; i++) {
reg_uV = regulator_list_voltage(td->vdd_reg, i);
if (reg_uV < 0)
break;
if (uV == reg_uV)
return i;
}
dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
return -EINVAL;
}
/*
* Find a PMIC voltage register-to-voltage mapping for the given voltage,
* rounding up to the closest supported voltage.
* */
static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
{
int i, n_voltages, reg_uV;
n_voltages = regulator_count_voltages(td->vdd_reg);
for (i = 0; i < n_voltages; i++) {
reg_uV = regulator_list_voltage(td->vdd_reg, i);
if (reg_uV < 0)
break;
if (uV <= reg_uV)
return i;
}
dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
return -EINVAL;
}
/**
* dfll_build_i2c_lut - build the I2C voltage register lookup table
* @td: DFLL instance
*
* The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
* PMIC voltage register values that span the entire DFLL operating range.
* This function builds the look-up table based on the OPP table provided by
* the soc-specific platform driver (td->soc->opp_dev) and the PMIC
* register-to-voltage mapping queried from the regulator framework.
*
* On success, fills in td->i2c_lut and returns 0, or -err on failure.
*/
static int dfll_build_i2c_lut(struct tegra_dfll *td)
{
int ret = -EINVAL;
int j, v, v_max, v_opp;
int selector;
unsigned long rate;
struct dev_pm_opp *opp;
int lut;
rcu_read_lock();
rate = ULONG_MAX;
opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
if (IS_ERR(opp)) {
dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
goto out;
}
v_max = dev_pm_opp_get_voltage(opp);
v = td->soc->cvb->min_millivolts * 1000;
lut = find_vdd_map_entry_exact(td, v);
if (lut < 0)
goto out;
td->i2c_lut[0] = lut;
for (j = 1, rate = 0; ; rate++) {
opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
if (IS_ERR(opp))
break;
v_opp = dev_pm_opp_get_voltage(opp);
if (v_opp <= td->soc->cvb->min_millivolts * 1000)
td->dvco_rate_min = dev_pm_opp_get_freq(opp);
for (;;) {
v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
if (v >= v_opp)
break;
selector = find_vdd_map_entry_min(td, v);
if (selector < 0)
goto out;
if (selector != td->i2c_lut[j - 1])
td->i2c_lut[j++] = selector;
}
v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
selector = find_vdd_map_entry_exact(td, v);
if (selector < 0)
goto out;
if (selector != td->i2c_lut[j - 1])
td->i2c_lut[j++] = selector;
if (v >= v_max)
break;
}
td->i2c_lut_size = j;
if (!td->dvco_rate_min)
dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
td->soc->cvb->min_millivolts);
else
ret = 0;
out:
rcu_read_unlock();
return ret;
}
/**
* read_dt_param - helper function for reading required parameters from the DT
* @td: DFLL instance
* @param: DT property name
* @dest: output pointer for the value read
*
* Read a required numeric parameter from the DFLL device node, or complain
* if the property doesn't exist. Returns a boolean indicating success for
* easy chaining of multiple calls to this function.
*/
static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
{
int err = of_property_read_u32(td->dev->of_node, param, dest);
if (err < 0) {
dev_err(td->dev, "failed to read DT parameter %s: %d\n",
param, err);
return false;
}
return true;
}
/**
* dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
* @td: DFLL instance
*
* Read all the parameters required for operation in I2C mode. The parameters
* can originate from the device tree or the regulator subsystem.
* Returns 0 on success or -err on failure.
*/
static int dfll_fetch_i2c_params(struct tegra_dfll *td)
{
struct regmap *regmap;
struct device *i2c_dev;
struct i2c_client *i2c_client;
int vsel_reg, vsel_mask;
int ret;
if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
return -EINVAL;
regmap = regulator_get_regmap(td->vdd_reg);
i2c_dev = regmap_get_device(regmap);
i2c_client = to_i2c_client(i2c_dev);
td->i2c_slave_addr = i2c_client->addr;
ret = regulator_get_hardware_vsel_register(td->vdd_reg,
&vsel_reg,
&vsel_mask);
if (ret < 0) {
dev_err(td->dev,
"regulator unsuitable for DFLL I2C operation\n");
return -EINVAL;
}
td->i2c_reg = vsel_reg;
ret = dfll_build_i2c_lut(td);
if (ret) {
dev_err(td->dev, "couldn't build I2C LUT\n");
return ret;
}
return 0;
}
/**
* dfll_fetch_common_params - read DFLL parameters from the device tree
* @td: DFLL instance
*
* Read all the DT parameters that are common to both I2C and PWM operation.
* Returns 0 on success or -EINVAL on any failure.
*/
static int dfll_fetch_common_params(struct tegra_dfll *td)
{
bool ok = true;
ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
ok &= read_dt_param(td, "nvidia,cf", &td->cf);
ok &= read_dt_param(td, "nvidia,ci", &td->ci);
ok &= read_dt_param(td, "nvidia,cg", &td->cg);
td->cg_scale = of_property_read_bool(td->dev->of_node,
"nvidia,cg-scale");
if (of_property_read_string(td->dev->of_node, "clock-output-names",
&td->output_clock_name)) {
dev_err(td->dev, "missing clock-output-names property\n");
ok = false;
}
return ok ? 0 : -EINVAL;
}
/*
* API exported to per-SoC platform drivers
*/
/**
* tegra_dfll_register - probe a Tegra DFLL device
* @pdev: DFLL platform_device *
* @soc: Per-SoC integration and characterization data for this DFLL instance
*
* Probe and initialize a DFLL device instance. Intended to be called
* by a SoC-specific shim driver that passes in per-SoC integration
* and configuration data via @soc. Returns 0 on success or -err on failure.
*/
int tegra_dfll_register(struct platform_device *pdev,
struct tegra_dfll_soc_data *soc)
{
struct resource *mem;
struct tegra_dfll *td;
int ret;
if (!soc) {
dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
return -EINVAL;
}
td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
if (!td)
return -ENOMEM;
td->dev = &pdev->dev;
platform_set_drvdata(pdev, td);
td->soc = soc;
td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
if (IS_ERR(td->vdd_reg)) {
dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
return PTR_ERR(td->vdd_reg);
}
td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
if (IS_ERR(td->dvco_rst)) {
dev_err(td->dev, "couldn't get dvco reset\n");
return PTR_ERR(td->dvco_rst);
}
ret = dfll_fetch_common_params(td);
if (ret) {
dev_err(td->dev, "couldn't parse device tree parameters\n");
return ret;
}
ret = dfll_fetch_i2c_params(td);
if (ret)
return ret;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(td->dev, "no control register resource\n");
return -ENODEV;
}
td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
if (!td->base) {
dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
return -ENODEV;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!mem) {
dev_err(td->dev, "no i2c_base resource\n");
return -ENODEV;
}
td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
if (!td->i2c_base) {
dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
return -ENODEV;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!mem) {
dev_err(td->dev, "no i2c_controller_base resource\n");
return -ENODEV;
}
td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
resource_size(mem));
if (!td->i2c_controller_base) {
dev_err(td->dev,
"couldn't ioremap i2c_controller_base resource\n");
return -ENODEV;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
if (!mem) {
dev_err(td->dev, "no lut_base resource\n");
return -ENODEV;
}
td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
if (!td->lut_base) {
dev_err(td->dev,
"couldn't ioremap lut_base resource\n");
return -ENODEV;
}
ret = dfll_init_clks(td);
if (ret) {
dev_err(&pdev->dev, "DFLL clock init error\n");
return ret;
}
/* Enable the clocks and set the device up */
ret = dfll_init(td);
if (ret)
return ret;
ret = dfll_register_clk(td);
if (ret) {
dev_err(&pdev->dev, "DFLL clk registration failed\n");
return ret;
}
#ifdef CONFIG_DEBUG_FS
dfll_debug_init(td);
#endif
return 0;
}
EXPORT_SYMBOL(tegra_dfll_register);
/**
* tegra_dfll_unregister - release all of the DFLL driver resources for a device
* @pdev: DFLL platform_device *
*
* Unbind this driver from the DFLL hardware device represented by
* @pdev. The DFLL must be disabled for this to succeed. Returns 0
* upon success or -EBUSY if the DFLL is still active.
*/
int tegra_dfll_unregister(struct platform_device *pdev)
{
struct tegra_dfll *td = platform_get_drvdata(pdev);
/* Try to prevent removal while the DFLL is active */
if (td->mode != DFLL_DISABLED) {
dev_err(&pdev->dev,
"must disable DFLL before removing driver\n");
return -EBUSY;
}
debugfs_remove_recursive(td->debugfs_dir);
dfll_unregister_clk(td);
pm_runtime_disable(&pdev->dev);
clk_unprepare(td->ref_clk);
clk_unprepare(td->soc_clk);
clk_unprepare(td->i2c_clk);
reset_control_assert(td->dvco_rst);
return 0;
}
EXPORT_SYMBOL(tegra_dfll_unregister);
|