summaryrefslogtreecommitdiff
path: root/drivers/mtd/Kconfig
blob: 6d1b91bf7ad59f3ce244eec76ea2521a94511383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# $Id: Kconfig,v 1.11 2005/11/07 11:14:19 gleixner Exp $

menu "Memory Technology Devices (MTD)"

config MTD
	tristate "Memory Technology Device (MTD) support"
	help
	  Memory Technology Devices are flash, RAM and similar chips, often
	  used for solid state file systems on embedded devices. This option
	  will provide the generic support for MTD drivers to register
	  themselves with the kernel and for potential users of MTD devices
	  to enumerate the devices which are present and obtain a handle on
	  them. It will also allow you to select individual drivers for
	  particular hardware and users of MTD devices. If unsure, say N.

config MTD_DEBUG
	bool "Debugging"
	depends on MTD
	help
	  This turns on low-level debugging for the entire MTD sub-system.
	  Normally, you should say 'N'.

config MTD_DEBUG_VERBOSE
	int "Debugging verbosity (0 = quiet, 3 = noisy)"
	depends on MTD_DEBUG
	default "0"
	help
	  Determines the verbosity level of the MTD debugging messages.

config MTD_CONCAT
	tristate "MTD concatenating support"
	depends on MTD
	help
	  Support for concatenating several MTD devices into a single
	  (virtual) one. This allows you to have -for example- a JFFS(2)
	  file system spanning multiple physical flash chips. If unsure,
	  say 'Y'.

config MTD_PARTITIONS
	bool "MTD partitioning support"
	depends on MTD
	help
	  If you have a device which needs to divide its flash chip(s) up
	  into multiple 'partitions', each of which appears to the user as
	  a separate MTD device, you require this option to be enabled. If
	  unsure, say 'Y'.

	  Note, however, that you don't need this option for the DiskOnChip
	  devices. Partitioning on NFTL 'devices' is a different - that's the
	  'normal' form of partitioning used on a block device.

config MTD_REDBOOT_PARTS
	tristate "RedBoot partition table parsing"
	depends on MTD_PARTITIONS
	---help---
	  RedBoot is a ROM monitor and bootloader which deals with multiple
	  'images' in flash devices by putting a table one of the erase
	  blocks on the device, similar to a partition table, which gives
	  the offsets, lengths and names of all the images stored in the
	  flash.

	  If you need code which can detect and parse this table, and register
	  MTD 'partitions' corresponding to each image in the table, enable
	  this option.

	  You will still need the parsing functions to be called by the driver
	  for your particular device. It won't happen automatically. The
	  SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
	  example.

config MTD_REDBOOT_DIRECTORY_BLOCK
	int "Location of RedBoot partition table"
	depends on MTD_REDBOOT_PARTS
	default "-1"
	---help---
	  This option is the Linux counterpart to the
	  CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
	  option.

	  The option specifies which Flash sectors holds the RedBoot
	  partition table.  A zero or positive value gives an absolute
	  erase block number. A negative value specifies a number of
	  sectors before the end of the device.

	  For example "2" means block number 2, "-1" means the last
	  block and "-2" means the penultimate block.

config MTD_REDBOOT_PARTS_UNALLOCATED
	bool "Include unallocated flash regions"
	depends on MTD_REDBOOT_PARTS
	help
	  If you need to register each unallocated flash region as a MTD
	  'partition', enable this option.

config MTD_REDBOOT_PARTS_READONLY
	bool "Force read-only for RedBoot system images"
	depends on MTD_REDBOOT_PARTS
	help
	  If you need to force read-only for 'RedBoot', 'RedBoot Config' and
	  'FIS directory' images, enable this option.

config MTD_CMDLINE_PARTS
	bool "Command line partition table parsing"
	depends on MTD_PARTITIONS = "y" && MTD = "y"
	---help---
	  Allow generic configuration of the MTD partition tables via the kernel
	  command line. Multiple flash resources are supported for hardware where
	  different kinds of flash memory are available.

	  You will still need the parsing functions to be called by the driver
	  for your particular device. It won't happen automatically. The
	  SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
	  example.

	  The format for the command line is as follows:

	  mtdparts=<mtddef>[;<mtddef]
	  <mtddef>  := <mtd-id>:<partdef>[,<partdef>]
	  <partdef> := <size>[@offset][<name>][ro]
	  <mtd-id>  := unique id used in mapping driver/device
	  <size>    := standard linux memsize OR "-" to denote all
	  remaining space
	  <name>    := (NAME)

	  Due to the way Linux handles the command line, no spaces are
	  allowed in the partition definition, including mtd id's and partition
	  names.

	  Examples:

	  1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
	  mtdparts=sa1100:-

	  Same flash, but 2 named partitions, the first one being read-only:
	  mtdparts=sa1100:256k(ARMboot)ro,-(root)

	  If unsure, say 'N'.

config MTD_AFS_PARTS
	tristate "ARM Firmware Suite partition parsing"
	depends on ARM && MTD_PARTITIONS
	---help---
	  The ARM Firmware Suite allows the user to divide flash devices into
	  multiple 'images'. Each such image has a header containing its name
	  and offset/size etc.

	  If you need code which can detect and parse these tables, and
	  register MTD 'partitions' corresponding to each image detected,
	  enable this option.

	  You will still need the parsing functions to be called by the driver
	  for your particular device. It won't happen automatically. The
	  'armflash' map driver (CONFIG_MTD_ARMFLASH) does this, for example.

comment "User Modules And Translation Layers"
	depends on MTD

config MTD_CHAR
	tristate "Direct char device access to MTD devices"
	depends on MTD
	help
	  This provides a character device for each MTD device present in
	  the system, allowing the user to read and write directly to the
	  memory chips, and also use ioctl() to obtain information about
	  the device, or to erase parts of it.

config MTD_BLKDEVS
	tristate "Common interface to block layer for MTD 'translation layers'"
	depends on MTD && BLOCK
	default n

config MTD_BLOCK
	tristate "Caching block device access to MTD devices"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	---help---
	  Although most flash chips have an erase size too large to be useful
	  as block devices, it is possible to use MTD devices which are based
	  on RAM chips in this manner. This block device is a user of MTD
	  devices performing that function.

	  At the moment, it is also required for the Journalling Flash File
	  System(s) to obtain a handle on the MTD device when it's mounted
	  (although JFFS and JFFS2 don't actually use any of the functionality
	  of the mtdblock device).

	  Later, it may be extended to perform read/erase/modify/write cycles
	  on flash chips to emulate a smaller block size. Needless to say,
	  this is very unsafe, but could be useful for file systems which are
	  almost never written to.

	  You do not need this option for use with the DiskOnChip devices. For
	  those, enable NFTL support (CONFIG_NFTL) instead.

config MTD_BLOCK_RO
	tristate "Readonly block device access to MTD devices"
	depends on MTD_BLOCK!=y && MTD && BLOCK
	select MTD_BLKDEVS
	help
	  This allows you to mount read-only file systems (such as cramfs)
	  from an MTD device, without the overhead (and danger) of the caching
	  driver.

	  You do not need this option for use with the DiskOnChip devices. For
	  those, enable NFTL support (CONFIG_NFTL) instead.

config FTL
	tristate "FTL (Flash Translation Layer) support"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	---help---
	  This provides support for the original Flash Translation Layer which
	  is part of the PCMCIA specification. It uses a kind of pseudo-
	  file system on a flash device to emulate a block device with
	  512-byte sectors, on top of which you put a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on PCMCIA
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

config NFTL
	tristate "NFTL (NAND Flash Translation Layer) support"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	---help---
	  This provides support for the NAND Flash Translation Layer which is
	  used on M-Systems' DiskOnChip devices. It uses a kind of pseudo-
	  file system on a flash device to emulate a block device with
	  512-byte sectors, on top of which you put a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on DiskOnChip
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

config NFTL_RW
	bool "Write support for NFTL"
	depends on NFTL
	help
	  Support for writing to the NAND Flash Translation Layer, as used
	  on the DiskOnChip.

config INFTL
	tristate "INFTL (Inverse NAND Flash Translation Layer) support"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	---help---
	  This provides support for the Inverse NAND Flash Translation
	  Layer which is used on M-Systems' newer DiskOnChip devices. It
	  uses a kind of pseudo-file system on a flash device to emulate
	  a block device with 512-byte sectors, on top of which you put
	  a 'normal' file system.

	  You may find that the algorithms used in this code are patented
	  unless you live in the Free World where software patents aren't
	  legal - in the USA you are only permitted to use this on DiskOnChip
	  hardware, although under the terms of the GPL you're obviously
	  permitted to copy, modify and distribute the code as you wish. Just
	  not use it.

config RFD_FTL
        tristate "Resident Flash Disk (Flash Translation Layer) support"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	---help---
	  This provides support for the flash translation layer known
	  as the Resident Flash Disk (RFD), as used by the Embedded BIOS
	  of General Software. There is a blurb at:

		http://www.gensw.com/pages/prod/bios/rfd.htm

config SSFDC
	tristate "NAND SSFDC (SmartMedia) read only translation layer"
	depends on MTD && BLOCK
	select MTD_BLKDEVS
	help
	  This enables read only access to SmartMedia formatted NAND
	  flash. You can mount it with FAT file system.

source "drivers/mtd/chips/Kconfig"

source "drivers/mtd/maps/Kconfig"

source "drivers/mtd/devices/Kconfig"

source "drivers/mtd/nand/Kconfig"

source "drivers/mtd/onenand/Kconfig"

source "drivers/mtd/ubi/Kconfig"

endmenu