1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
|
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __KVM_HOST_H
#define __KVM_HOST_H
#include <linux/types.h>
#include <linux/hardirq.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/stat.h>
#include <linux/bug.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/preempt.h>
#include <linux/msi.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/rcupdate.h>
#include <linux/ratelimit.h>
#include <linux/err.h>
#include <linux/irqflags.h>
#include <linux/context_tracking.h>
#include <linux/irqbypass.h>
#include <linux/rcuwait.h>
#include <linux/refcount.h>
#include <linux/nospec.h>
#include <linux/notifier.h>
#include <linux/ftrace.h>
#include <linux/hashtable.h>
#include <linux/instrumentation.h>
#include <linux/interval_tree.h>
#include <linux/rbtree.h>
#include <linux/xarray.h>
#include <asm/signal.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <asm/kvm_host.h>
#include <linux/kvm_dirty_ring.h>
#ifndef KVM_MAX_VCPU_IDS
#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
#endif
/*
* The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
* used in kvm, other bits are visible for userspace which are defined in
* include/linux/kvm_h.
*/
#define KVM_MEMSLOT_INVALID (1UL << 16)
/*
* Bit 63 of the memslot generation number is an "update in-progress flag",
* e.g. is temporarily set for the duration of kvm_swap_active_memslots().
* This flag effectively creates a unique generation number that is used to
* mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
* i.e. may (or may not) have come from the previous memslots generation.
*
* This is necessary because the actual memslots update is not atomic with
* respect to the generation number update. Updating the generation number
* first would allow a vCPU to cache a spte from the old memslots using the
* new generation number, and updating the generation number after switching
* to the new memslots would allow cache hits using the old generation number
* to reference the defunct memslots.
*
* This mechanism is used to prevent getting hits in KVM's caches while a
* memslot update is in-progress, and to prevent cache hits *after* updating
* the actual generation number against accesses that were inserted into the
* cache *before* the memslots were updated.
*/
#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
/* Two fragments for cross MMIO pages. */
#define KVM_MAX_MMIO_FRAGMENTS 2
#ifndef KVM_ADDRESS_SPACE_NUM
#define KVM_ADDRESS_SPACE_NUM 1
#endif
/*
* For the normal pfn, the highest 12 bits should be zero,
* so we can mask bit 62 ~ bit 52 to indicate the error pfn,
* mask bit 63 to indicate the noslot pfn.
*/
#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
#define KVM_PFN_NOSLOT (0x1ULL << 63)
#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
/*
* error pfns indicate that the gfn is in slot but faild to
* translate it to pfn on host.
*/
static inline bool is_error_pfn(kvm_pfn_t pfn)
{
return !!(pfn & KVM_PFN_ERR_MASK);
}
/*
* KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
* by a pending signal. Note, the signal may or may not be fatal.
*/
static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
{
return pfn == KVM_PFN_ERR_SIGPENDING;
}
/*
* error_noslot pfns indicate that the gfn can not be
* translated to pfn - it is not in slot or failed to
* translate it to pfn.
*/
static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
{
return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
}
/* noslot pfn indicates that the gfn is not in slot. */
static inline bool is_noslot_pfn(kvm_pfn_t pfn)
{
return pfn == KVM_PFN_NOSLOT;
}
/*
* architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
* provide own defines and kvm_is_error_hva
*/
#ifndef KVM_HVA_ERR_BAD
#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
static inline bool kvm_is_error_hva(unsigned long addr)
{
return addr >= PAGE_OFFSET;
}
#endif
#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
static inline bool is_error_page(struct page *page)
{
return IS_ERR(page);
}
#define KVM_REQUEST_MASK GENMASK(7,0)
#define KVM_REQUEST_NO_WAKEUP BIT(8)
#define KVM_REQUEST_WAIT BIT(9)
#define KVM_REQUEST_NO_ACTION BIT(10)
/*
* Architecture-independent vcpu->requests bit members
* Bits 3-7 are reserved for more arch-independent bits.
*/
#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_UNBLOCK 2
#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
#define KVM_REQUEST_ARCH_BASE 8
/*
* KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
* OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
* in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
* on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
* kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
* guarantee the vCPU received an IPI and has actually exited guest mode.
*/
#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
})
#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
unsigned long *vcpu_bitmap);
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
struct kvm_vcpu *except);
bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
unsigned long *vcpu_bitmap);
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
extern struct mutex kvm_lock;
extern struct list_head vm_list;
struct kvm_io_range {
gpa_t addr;
int len;
struct kvm_io_device *dev;
};
#define NR_IOBUS_DEVS 1000
struct kvm_io_bus {
int dev_count;
int ioeventfd_count;
struct kvm_io_range range[];
};
enum kvm_bus {
KVM_MMIO_BUS,
KVM_PIO_BUS,
KVM_VIRTIO_CCW_NOTIFY_BUS,
KVM_FAST_MMIO_BUS,
KVM_NR_BUSES
};
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, const void *val);
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
gpa_t addr, int len, const void *val, long cookie);
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
int len, void *val);
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev);
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev);
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
gpa_t addr);
#ifdef CONFIG_KVM_ASYNC_PF
struct kvm_async_pf {
struct work_struct work;
struct list_head link;
struct list_head queue;
struct kvm_vcpu *vcpu;
struct mm_struct *mm;
gpa_t cr2_or_gpa;
unsigned long addr;
struct kvm_arch_async_pf arch;
bool wakeup_all;
bool notpresent_injected;
};
void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
unsigned long hva, struct kvm_arch_async_pf *arch);
int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
#endif
#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
struct kvm_gfn_range {
struct kvm_memory_slot *slot;
gfn_t start;
gfn_t end;
pte_t pte;
bool may_block;
};
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
#endif
enum {
OUTSIDE_GUEST_MODE,
IN_GUEST_MODE,
EXITING_GUEST_MODE,
READING_SHADOW_PAGE_TABLES,
};
#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
struct kvm_host_map {
/*
* Only valid if the 'pfn' is managed by the host kernel (i.e. There is
* a 'struct page' for it. When using mem= kernel parameter some memory
* can be used as guest memory but they are not managed by host
* kernel).
* If 'pfn' is not managed by the host kernel, this field is
* initialized to KVM_UNMAPPED_PAGE.
*/
struct page *page;
void *hva;
kvm_pfn_t pfn;
kvm_pfn_t gfn;
};
/*
* Used to check if the mapping is valid or not. Never use 'kvm_host_map'
* directly to check for that.
*/
static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
{
return !!map->hva;
}
static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
{
return single_task_running() && !need_resched() && ktime_before(cur, stop);
}
/*
* Sometimes a large or cross-page mmio needs to be broken up into separate
* exits for userspace servicing.
*/
struct kvm_mmio_fragment {
gpa_t gpa;
void *data;
unsigned len;
};
struct kvm_vcpu {
struct kvm *kvm;
#ifdef CONFIG_PREEMPT_NOTIFIERS
struct preempt_notifier preempt_notifier;
#endif
int cpu;
int vcpu_id; /* id given by userspace at creation */
int vcpu_idx; /* index into kvm->vcpu_array */
int ____srcu_idx; /* Don't use this directly. You've been warned. */
#ifdef CONFIG_PROVE_RCU
int srcu_depth;
#endif
int mode;
u64 requests;
unsigned long guest_debug;
struct mutex mutex;
struct kvm_run *run;
#ifndef __KVM_HAVE_ARCH_WQP
struct rcuwait wait;
#endif
struct pid __rcu *pid;
int sigset_active;
sigset_t sigset;
unsigned int halt_poll_ns;
bool valid_wakeup;
#ifdef CONFIG_HAS_IOMEM
int mmio_needed;
int mmio_read_completed;
int mmio_is_write;
int mmio_cur_fragment;
int mmio_nr_fragments;
struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
#endif
#ifdef CONFIG_KVM_ASYNC_PF
struct {
u32 queued;
struct list_head queue;
struct list_head done;
spinlock_t lock;
} async_pf;
#endif
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
/*
* Cpu relax intercept or pause loop exit optimization
* in_spin_loop: set when a vcpu does a pause loop exit
* or cpu relax intercepted.
* dy_eligible: indicates whether vcpu is eligible for directed yield.
*/
struct {
bool in_spin_loop;
bool dy_eligible;
} spin_loop;
#endif
bool preempted;
bool ready;
struct kvm_vcpu_arch arch;
struct kvm_vcpu_stat stat;
char stats_id[KVM_STATS_NAME_SIZE];
struct kvm_dirty_ring dirty_ring;
/*
* The most recently used memslot by this vCPU and the slots generation
* for which it is valid.
* No wraparound protection is needed since generations won't overflow in
* thousands of years, even assuming 1M memslot operations per second.
*/
struct kvm_memory_slot *last_used_slot;
u64 last_used_slot_gen;
};
/*
* Start accounting time towards a guest.
* Must be called before entering guest context.
*/
static __always_inline void guest_timing_enter_irqoff(void)
{
/*
* This is running in ioctl context so its safe to assume that it's the
* stime pending cputime to flush.
*/
instrumentation_begin();
vtime_account_guest_enter();
instrumentation_end();
}
/*
* Enter guest context and enter an RCU extended quiescent state.
*
* Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
* unsafe to use any code which may directly or indirectly use RCU, tracing
* (including IRQ flag tracing), or lockdep. All code in this period must be
* non-instrumentable.
*/
static __always_inline void guest_context_enter_irqoff(void)
{
/*
* KVM does not hold any references to rcu protected data when it
* switches CPU into a guest mode. In fact switching to a guest mode
* is very similar to exiting to userspace from rcu point of view. In
* addition CPU may stay in a guest mode for quite a long time (up to
* one time slice). Lets treat guest mode as quiescent state, just like
* we do with user-mode execution.
*/
if (!context_tracking_guest_enter()) {
instrumentation_begin();
rcu_virt_note_context_switch();
instrumentation_end();
}
}
/*
* Deprecated. Architectures should move to guest_timing_enter_irqoff() and
* guest_state_enter_irqoff().
*/
static __always_inline void guest_enter_irqoff(void)
{
guest_timing_enter_irqoff();
guest_context_enter_irqoff();
}
/**
* guest_state_enter_irqoff - Fixup state when entering a guest
*
* Entry to a guest will enable interrupts, but the kernel state is interrupts
* disabled when this is invoked. Also tell RCU about it.
*
* 1) Trace interrupts on state
* 2) Invoke context tracking if enabled to adjust RCU state
* 3) Tell lockdep that interrupts are enabled
*
* Invoked from architecture specific code before entering a guest.
* Must be called with interrupts disabled and the caller must be
* non-instrumentable.
* The caller has to invoke guest_timing_enter_irqoff() before this.
*
* Note: this is analogous to exit_to_user_mode().
*/
static __always_inline void guest_state_enter_irqoff(void)
{
instrumentation_begin();
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
instrumentation_end();
guest_context_enter_irqoff();
lockdep_hardirqs_on(CALLER_ADDR0);
}
/*
* Exit guest context and exit an RCU extended quiescent state.
*
* Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
* unsafe to use any code which may directly or indirectly use RCU, tracing
* (including IRQ flag tracing), or lockdep. All code in this period must be
* non-instrumentable.
*/
static __always_inline void guest_context_exit_irqoff(void)
{
context_tracking_guest_exit();
}
/*
* Stop accounting time towards a guest.
* Must be called after exiting guest context.
*/
static __always_inline void guest_timing_exit_irqoff(void)
{
instrumentation_begin();
/* Flush the guest cputime we spent on the guest */
vtime_account_guest_exit();
instrumentation_end();
}
/*
* Deprecated. Architectures should move to guest_state_exit_irqoff() and
* guest_timing_exit_irqoff().
*/
static __always_inline void guest_exit_irqoff(void)
{
guest_context_exit_irqoff();
guest_timing_exit_irqoff();
}
static inline void guest_exit(void)
{
unsigned long flags;
local_irq_save(flags);
guest_exit_irqoff();
local_irq_restore(flags);
}
/**
* guest_state_exit_irqoff - Establish state when returning from guest mode
*
* Entry from a guest disables interrupts, but guest mode is traced as
* interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
*
* 1) Tell lockdep that interrupts are disabled
* 2) Invoke context tracking if enabled to reactivate RCU
* 3) Trace interrupts off state
*
* Invoked from architecture specific code after exiting a guest.
* Must be invoked with interrupts disabled and the caller must be
* non-instrumentable.
* The caller has to invoke guest_timing_exit_irqoff() after this.
*
* Note: this is analogous to enter_from_user_mode().
*/
static __always_inline void guest_state_exit_irqoff(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
guest_context_exit_irqoff();
instrumentation_begin();
trace_hardirqs_off_finish();
instrumentation_end();
}
static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
{
/*
* The memory barrier ensures a previous write to vcpu->requests cannot
* be reordered with the read of vcpu->mode. It pairs with the general
* memory barrier following the write of vcpu->mode in VCPU RUN.
*/
smp_mb__before_atomic();
return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
}
/*
* Some of the bitops functions do not support too long bitmaps.
* This number must be determined not to exceed such limits.
*/
#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
/*
* Since at idle each memslot belongs to two memslot sets it has to contain
* two embedded nodes for each data structure that it forms a part of.
*
* Two memslot sets (one active and one inactive) are necessary so the VM
* continues to run on one memslot set while the other is being modified.
*
* These two memslot sets normally point to the same set of memslots.
* They can, however, be desynchronized when performing a memslot management
* operation by replacing the memslot to be modified by its copy.
* After the operation is complete, both memslot sets once again point to
* the same, common set of memslot data.
*
* The memslots themselves are independent of each other so they can be
* individually added or deleted.
*/
struct kvm_memory_slot {
struct hlist_node id_node[2];
struct interval_tree_node hva_node[2];
struct rb_node gfn_node[2];
gfn_t base_gfn;
unsigned long npages;
unsigned long *dirty_bitmap;
struct kvm_arch_memory_slot arch;
unsigned long userspace_addr;
u32 flags;
short id;
u16 as_id;
};
static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
{
return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
}
static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
{
return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
}
static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
{
unsigned long len = kvm_dirty_bitmap_bytes(memslot);
return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
}
#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
#endif
struct kvm_s390_adapter_int {
u64 ind_addr;
u64 summary_addr;
u64 ind_offset;
u32 summary_offset;
u32 adapter_id;
};
struct kvm_hv_sint {
u32 vcpu;
u32 sint;
};
struct kvm_xen_evtchn {
u32 port;
u32 vcpu_id;
int vcpu_idx;
u32 priority;
};
struct kvm_kernel_irq_routing_entry {
u32 gsi;
u32 type;
int (*set)(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status);
union {
struct {
unsigned irqchip;
unsigned pin;
} irqchip;
struct {
u32 address_lo;
u32 address_hi;
u32 data;
u32 flags;
u32 devid;
} msi;
struct kvm_s390_adapter_int adapter;
struct kvm_hv_sint hv_sint;
struct kvm_xen_evtchn xen_evtchn;
};
struct hlist_node link;
};
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
struct kvm_irq_routing_table {
int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
u32 nr_rt_entries;
/*
* Array indexed by gsi. Each entry contains list of irq chips
* the gsi is connected to.
*/
struct hlist_head map[];
};
#endif
bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
#ifndef KVM_INTERNAL_MEM_SLOTS
#define KVM_INTERNAL_MEM_SLOTS 0
#endif
#define KVM_MEM_SLOTS_NUM SHRT_MAX
#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
{
return 0;
}
#endif
struct kvm_memslots {
u64 generation;
atomic_long_t last_used_slot;
struct rb_root_cached hva_tree;
struct rb_root gfn_tree;
/*
* The mapping table from slot id to memslot.
*
* 7-bit bucket count matches the size of the old id to index array for
* 512 slots, while giving good performance with this slot count.
* Higher bucket counts bring only small performance improvements but
* always result in higher memory usage (even for lower memslot counts).
*/
DECLARE_HASHTABLE(id_hash, 7);
int node_idx;
};
struct kvm {
#ifdef KVM_HAVE_MMU_RWLOCK
rwlock_t mmu_lock;
#else
spinlock_t mmu_lock;
#endif /* KVM_HAVE_MMU_RWLOCK */
struct mutex slots_lock;
/*
* Protects the arch-specific fields of struct kvm_memory_slots in
* use by the VM. To be used under the slots_lock (above) or in a
* kvm->srcu critical section where acquiring the slots_lock would
* lead to deadlock with the synchronize_srcu in
* kvm_swap_active_memslots().
*/
struct mutex slots_arch_lock;
struct mm_struct *mm; /* userspace tied to this vm */
unsigned long nr_memslot_pages;
/* The two memslot sets - active and inactive (per address space) */
struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
/* The current active memslot set for each address space */
struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
struct xarray vcpu_array;
/*
* Protected by slots_lock, but can be read outside if an
* incorrect answer is acceptable.
*/
atomic_t nr_memslots_dirty_logging;
/* Used to wait for completion of MMU notifiers. */
spinlock_t mn_invalidate_lock;
unsigned long mn_active_invalidate_count;
struct rcuwait mn_memslots_update_rcuwait;
/* For management / invalidation of gfn_to_pfn_caches */
spinlock_t gpc_lock;
struct list_head gpc_list;
/*
* created_vcpus is protected by kvm->lock, and is incremented
* at the beginning of KVM_CREATE_VCPU. online_vcpus is only
* incremented after storing the kvm_vcpu pointer in vcpus,
* and is accessed atomically.
*/
atomic_t online_vcpus;
int max_vcpus;
int created_vcpus;
int last_boosted_vcpu;
struct list_head vm_list;
struct mutex lock;
struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
#ifdef CONFIG_HAVE_KVM_EVENTFD
struct {
spinlock_t lock;
struct list_head items;
/* resampler_list update side is protected by resampler_lock. */
struct list_head resampler_list;
struct mutex resampler_lock;
} irqfds;
struct list_head ioeventfds;
#endif
struct kvm_vm_stat stat;
struct kvm_arch arch;
refcount_t users_count;
#ifdef CONFIG_KVM_MMIO
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
spinlock_t ring_lock;
struct list_head coalesced_zones;
#endif
struct mutex irq_lock;
#ifdef CONFIG_HAVE_KVM_IRQCHIP
/*
* Update side is protected by irq_lock.
*/
struct kvm_irq_routing_table __rcu *irq_routing;
#endif
#ifdef CONFIG_HAVE_KVM_IRQFD
struct hlist_head irq_ack_notifier_list;
#endif
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
struct mmu_notifier mmu_notifier;
unsigned long mmu_invalidate_seq;
long mmu_invalidate_in_progress;
unsigned long mmu_invalidate_range_start;
unsigned long mmu_invalidate_range_end;
#endif
struct list_head devices;
u64 manual_dirty_log_protect;
struct dentry *debugfs_dentry;
struct kvm_stat_data **debugfs_stat_data;
struct srcu_struct srcu;
struct srcu_struct irq_srcu;
pid_t userspace_pid;
bool override_halt_poll_ns;
unsigned int max_halt_poll_ns;
u32 dirty_ring_size;
bool dirty_ring_with_bitmap;
bool vm_bugged;
bool vm_dead;
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
struct notifier_block pm_notifier;
#endif
char stats_id[KVM_STATS_NAME_SIZE];
};
#define kvm_err(fmt, ...) \
pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_info(fmt, ...) \
pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug(fmt, ...) \
pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
#define kvm_debug_ratelimited(fmt, ...) \
pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
## __VA_ARGS__)
#define kvm_pr_unimpl(fmt, ...) \
pr_err_ratelimited("kvm [%i]: " fmt, \
task_tgid_nr(current), ## __VA_ARGS__)
/* The guest did something we don't support. */
#define vcpu_unimpl(vcpu, fmt, ...) \
kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
#define vcpu_debug(vcpu, fmt, ...) \
kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
## __VA_ARGS__)
#define vcpu_err(vcpu, fmt, ...) \
kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
static inline void kvm_vm_dead(struct kvm *kvm)
{
kvm->vm_dead = true;
kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
}
static inline void kvm_vm_bugged(struct kvm *kvm)
{
kvm->vm_bugged = true;
kvm_vm_dead(kvm);
}
#define KVM_BUG(cond, kvm, fmt...) \
({ \
int __ret = (cond); \
\
if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
kvm_vm_bugged(kvm); \
unlikely(__ret); \
})
#define KVM_BUG_ON(cond, kvm) \
({ \
int __ret = (cond); \
\
if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
kvm_vm_bugged(kvm); \
unlikely(__ret); \
})
static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PROVE_RCU
WARN_ONCE(vcpu->srcu_depth++,
"KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
#endif
vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
}
static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
{
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
#ifdef CONFIG_PROVE_RCU
WARN_ONCE(--vcpu->srcu_depth,
"KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
#endif
}
static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
{
return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
}
static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
{
return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
lockdep_is_held(&kvm->slots_lock) ||
!refcount_read(&kvm->users_count));
}
static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
{
int num_vcpus = atomic_read(&kvm->online_vcpus);
i = array_index_nospec(i, num_vcpus);
/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
smp_rmb();
return xa_load(&kvm->vcpu_array, i);
}
#define kvm_for_each_vcpu(idx, vcpup, kvm) \
xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
(atomic_read(&kvm->online_vcpus) - 1))
static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
{
struct kvm_vcpu *vcpu = NULL;
unsigned long i;
if (id < 0)
return NULL;
if (id < KVM_MAX_VCPUS)
vcpu = kvm_get_vcpu(kvm, id);
if (vcpu && vcpu->vcpu_id == id)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
if (vcpu->vcpu_id == id)
return vcpu;
return NULL;
}
void kvm_destroy_vcpus(struct kvm *kvm);
void vcpu_load(struct kvm_vcpu *vcpu);
void vcpu_put(struct kvm_vcpu *vcpu);
#ifdef __KVM_HAVE_IOAPIC
void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
void kvm_arch_post_irq_routing_update(struct kvm *kvm);
#else
static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
{
}
static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
{
}
#endif
#ifdef CONFIG_HAVE_KVM_IRQFD
int kvm_irqfd_init(void);
void kvm_irqfd_exit(void);
#else
static inline int kvm_irqfd_init(void)
{
return 0;
}
static inline void kvm_irqfd_exit(void)
{
}
#endif
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
void kvm_exit(void);
void kvm_get_kvm(struct kvm *kvm);
bool kvm_get_kvm_safe(struct kvm *kvm);
void kvm_put_kvm(struct kvm *kvm);
bool file_is_kvm(struct file *file);
void kvm_put_kvm_no_destroy(struct kvm *kvm);
static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
{
as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
lockdep_is_held(&kvm->slots_lock) ||
!refcount_read(&kvm->users_count));
}
static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
{
return __kvm_memslots(kvm, 0);
}
static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
{
int as_id = kvm_arch_vcpu_memslots_id(vcpu);
return __kvm_memslots(vcpu->kvm, as_id);
}
static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
{
return RB_EMPTY_ROOT(&slots->gfn_tree);
}
bool kvm_are_all_memslots_empty(struct kvm *kvm);
#define kvm_for_each_memslot(memslot, bkt, slots) \
hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
if (WARN_ON_ONCE(!memslot->npages)) { \
} else
static inline
struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
{
struct kvm_memory_slot *slot;
int idx = slots->node_idx;
hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
if (slot->id == id)
return slot;
}
return NULL;
}
/* Iterator used for walking memslots that overlap a gfn range. */
struct kvm_memslot_iter {
struct kvm_memslots *slots;
struct rb_node *node;
struct kvm_memory_slot *slot;
};
static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
{
iter->node = rb_next(iter->node);
if (!iter->node)
return;
iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
}
static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
struct kvm_memslots *slots,
gfn_t start)
{
int idx = slots->node_idx;
struct rb_node *tmp;
struct kvm_memory_slot *slot;
iter->slots = slots;
/*
* Find the so called "upper bound" of a key - the first node that has
* its key strictly greater than the searched one (the start gfn in our case).
*/
iter->node = NULL;
for (tmp = slots->gfn_tree.rb_node; tmp; ) {
slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
if (start < slot->base_gfn) {
iter->node = tmp;
tmp = tmp->rb_left;
} else {
tmp = tmp->rb_right;
}
}
/*
* Find the slot with the lowest gfn that can possibly intersect with
* the range, so we'll ideally have slot start <= range start
*/
if (iter->node) {
/*
* A NULL previous node means that the very first slot
* already has a higher start gfn.
* In this case slot start > range start.
*/
tmp = rb_prev(iter->node);
if (tmp)
iter->node = tmp;
} else {
/* a NULL node below means no slots */
iter->node = rb_last(&slots->gfn_tree);
}
if (iter->node) {
iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
/*
* It is possible in the slot start < range start case that the
* found slot ends before or at range start (slot end <= range start)
* and so it does not overlap the requested range.
*
* In such non-overlapping case the next slot (if it exists) will
* already have slot start > range start, otherwise the logic above
* would have found it instead of the current slot.
*/
if (iter->slot->base_gfn + iter->slot->npages <= start)
kvm_memslot_iter_next(iter);
}
}
static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
{
if (!iter->node)
return false;
/*
* If this slot starts beyond or at the end of the range so does
* every next one
*/
return iter->slot->base_gfn < end;
}
/* Iterate over each memslot at least partially intersecting [start, end) range */
#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
for (kvm_memslot_iter_start(iter, slots, start); \
kvm_memslot_iter_is_valid(iter, end); \
kvm_memslot_iter_next(iter))
/*
* KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
* - create a new memory slot
* - delete an existing memory slot
* - modify an existing memory slot
* -- move it in the guest physical memory space
* -- just change its flags
*
* Since flags can be changed by some of these operations, the following
* differentiation is the best we can do for __kvm_set_memory_region():
*/
enum kvm_mr_change {
KVM_MR_CREATE,
KVM_MR_DELETE,
KVM_MR_MOVE,
KVM_MR_FLAGS_ONLY,
};
int kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem);
int __kvm_set_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem);
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change);
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change);
/* flush all memory translations */
void kvm_arch_flush_shadow_all(struct kvm *kvm);
/* flush memory translations pointing to 'slot' */
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot);
int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
struct page **pages, int nr_pages);
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
bool *writable);
void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page);
kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
bool *writable);
kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
bool atomic, bool interruptible, bool *async,
bool write_fault, bool *writable, hva_t *hva);
void kvm_release_pfn_clean(kvm_pfn_t pfn);
void kvm_release_pfn_dirty(kvm_pfn_t pfn);
void kvm_set_pfn_dirty(kvm_pfn_t pfn);
void kvm_set_pfn_accessed(kvm_pfn_t pfn);
void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len);
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
int offset, int len);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len);
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned long len);
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
void *data, unsigned int offset,
unsigned long len);
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
gpa_t gpa, unsigned long len);
#define __kvm_get_guest(kvm, gfn, offset, v) \
({ \
unsigned long __addr = gfn_to_hva(kvm, gfn); \
typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
int __ret = -EFAULT; \
\
if (!kvm_is_error_hva(__addr)) \
__ret = get_user(v, __uaddr); \
__ret; \
})
#define kvm_get_guest(kvm, gpa, v) \
({ \
gpa_t __gpa = gpa; \
struct kvm *__kvm = kvm; \
\
__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
offset_in_page(__gpa), v); \
})
#define __kvm_put_guest(kvm, gfn, offset, v) \
({ \
unsigned long __addr = gfn_to_hva(kvm, gfn); \
typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
int __ret = -EFAULT; \
\
if (!kvm_is_error_hva(__addr)) \
__ret = put_user(v, __uaddr); \
if (!__ret) \
mark_page_dirty(kvm, gfn); \
__ret; \
})
#define kvm_put_guest(kvm, gpa, v) \
({ \
gpa_t __gpa = gpa; \
struct kvm *__kvm = kvm; \
\
__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
offset_in_page(__gpa), v); \
})
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
int len);
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
unsigned long len);
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
unsigned long len);
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
int offset, int len);
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
unsigned long len);
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
/**
* kvm_gpc_init - initialize gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @kvm: pointer to kvm instance.
* @vcpu: vCPU to be used for marking pages dirty and to be woken on
* invalidation.
* @usage: indicates if the resulting host physical PFN is used while
* the @vcpu is IN_GUEST_MODE (in which case invalidation of
* the cache from MMU notifiers---but not for KVM memslot
* changes!---will also force @vcpu to exit the guest and
* refresh the cache); and/or if the PFN used directly
* by KVM (and thus needs a kernel virtual mapping).
*
* This sets up a gfn_to_pfn_cache by initializing locks and assigning the
* immutable attributes. Note, the cache must be zero-allocated (or zeroed by
* the caller before init).
*/
void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
/**
* kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
* physical address.
*
* @gpc: struct gfn_to_pfn_cache object.
* @gpa: guest physical address to map.
* @len: sanity check; the range being access must fit a single page.
*
* @return: 0 for success.
* -EINVAL for a mapping which would cross a page boundary.
* -EFAULT for an untranslatable guest physical address.
*
* This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
* invalidations to be processed. Callers are required to use kvm_gpc_check()
* to ensure that the cache is valid before accessing the target page.
*/
int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
/**
* kvm_gpc_check - check validity of a gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @len: sanity check; the range being access must fit a single page.
*
* @return: %true if the cache is still valid and the address matches.
* %false if the cache is not valid.
*
* Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
* while calling this function, and then continue to hold the lock until the
* access is complete.
*
* Callers in IN_GUEST_MODE may do so without locking, although they should
* still hold a read lock on kvm->scru for the memslot checks.
*/
bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
/**
* kvm_gpc_refresh - update a previously initialized cache.
*
* @gpc: struct gfn_to_pfn_cache object.
* @len: sanity check; the range being access must fit a single page.
*
* @return: 0 for success.
* -EINVAL for a mapping which would cross a page boundary.
* -EFAULT for an untranslatable guest physical address.
*
* This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
* return from this function does not mean the page can be immediately
* accessed because it may have raced with an invalidation. Callers must
* still lock and check the cache status, as this function does not return
* with the lock still held to permit access.
*/
int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
/**
* kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
*
* @gpc: struct gfn_to_pfn_cache object.
*
* This removes a cache from the VM's list to be processed on MMU notifier
* invocation.
*/
void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
void kvm_sigset_activate(struct kvm_vcpu *vcpu);
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
int kvm_vcpu_yield_to(struct kvm_vcpu *target);
void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
void kvm_flush_remote_tlbs(struct kvm *kvm);
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
#endif
void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
unsigned long end);
void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
unsigned long end);
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask);
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
const struct kvm_memory_slot *memslot);
#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
int *is_dirty, struct kvm_memory_slot **memslot);
#endif
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
bool line_status);
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
struct kvm_enable_cap *cap);
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg);
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr);
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg);
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
#endif
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
#else
static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
#endif
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
int kvm_arch_hardware_enable(void);
void kvm_arch_hardware_disable(void);
#endif
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
int kvm_arch_post_init_vm(struct kvm *kvm);
void kvm_arch_pre_destroy_vm(struct kvm *kvm);
int kvm_arch_create_vm_debugfs(struct kvm *kvm);
#ifndef __KVM_HAVE_ARCH_VM_ALLOC
/*
* All architectures that want to use vzalloc currently also
* need their own kvm_arch_alloc_vm implementation.
*/
static inline struct kvm *kvm_arch_alloc_vm(void)
{
return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
}
#endif
static inline void __kvm_arch_free_vm(struct kvm *kvm)
{
kvfree(kvm);
}
#ifndef __KVM_HAVE_ARCH_VM_FREE
static inline void kvm_arch_free_vm(struct kvm *kvm)
{
__kvm_arch_free_vm(kvm);
}
#endif
#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
{
return -ENOTSUPP;
}
#endif
#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
#else
static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
{
}
static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
{
}
static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
{
return false;
}
#endif
#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
void kvm_arch_start_assignment(struct kvm *kvm);
void kvm_arch_end_assignment(struct kvm *kvm);
bool kvm_arch_has_assigned_device(struct kvm *kvm);
#else
static inline void kvm_arch_start_assignment(struct kvm *kvm)
{
}
static inline void kvm_arch_end_assignment(struct kvm *kvm)
{
}
static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
{
return false;
}
#endif
static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
{
#ifdef __KVM_HAVE_ARCH_WQP
return vcpu->arch.waitp;
#else
return &vcpu->wait;
#endif
}
/*
* Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
* true if the vCPU was blocking and was awakened, false otherwise.
*/
static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
{
return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
}
static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
{
return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
}
#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
/*
* returns true if the virtual interrupt controller is initialized and
* ready to accept virtual IRQ. On some architectures the virtual interrupt
* controller is dynamically instantiated and this is not always true.
*/
bool kvm_arch_intc_initialized(struct kvm *kvm);
#else
static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
{
return true;
}
#endif
#ifdef CONFIG_GUEST_PERF_EVENTS
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
void kvm_unregister_perf_callbacks(void);
#else
static inline void kvm_register_perf_callbacks(void *ign) {}
static inline void kvm_unregister_perf_callbacks(void) {}
#endif /* CONFIG_GUEST_PERF_EVENTS */
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
void kvm_arch_destroy_vm(struct kvm *kvm);
void kvm_arch_sync_events(struct kvm *kvm);
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
bool kvm_is_zone_device_page(struct page *page);
struct kvm_irq_ack_notifier {
struct hlist_node link;
unsigned gsi;
void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
};
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries, int gsi);
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
bool line_status);
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
int irq_source_id, int level, bool line_status);
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id,
int level, bool line_status);
bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_register_irq_ack_notifier(struct kvm *kvm,
struct kvm_irq_ack_notifier *kian);
void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
struct kvm_irq_ack_notifier *kian);
int kvm_request_irq_source_id(struct kvm *kvm);
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
/*
* Returns a pointer to the memslot if it contains gfn.
* Otherwise returns NULL.
*/
static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
{
if (!slot)
return NULL;
if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
return slot;
else
return NULL;
}
/*
* Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
*
* With "approx" set returns the memslot also when the address falls
* in a hole. In that case one of the memslots bordering the hole is
* returned.
*/
static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{
struct kvm_memory_slot *slot;
struct rb_node *node;
int idx = slots->node_idx;
slot = NULL;
for (node = slots->gfn_tree.rb_node; node; ) {
slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
if (gfn >= slot->base_gfn) {
if (gfn < slot->base_gfn + slot->npages)
return slot;
node = node->rb_right;
} else
node = node->rb_left;
}
return approx ? slot : NULL;
}
static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{
struct kvm_memory_slot *slot;
slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
slot = try_get_memslot(slot, gfn);
if (slot)
return slot;
slot = search_memslots(slots, gfn, approx);
if (slot) {
atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
return slot;
}
return NULL;
}
/*
* __gfn_to_memslot() and its descendants are here to allow arch code to inline
* the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
* because that would bloat other code too much.
*/
static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
{
return ____gfn_to_memslot(slots, gfn, false);
}
static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
{
/*
* The index was checked originally in search_memslots. To avoid
* that a malicious guest builds a Spectre gadget out of e.g. page
* table walks, do not let the processor speculate loads outside
* the guest's registered memslots.
*/
unsigned long offset = gfn - slot->base_gfn;
offset = array_index_nospec(offset, slot->npages);
return slot->userspace_addr + offset * PAGE_SIZE;
}
static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
{
return gfn_to_memslot(kvm, gfn)->id;
}
static inline gfn_t
hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
{
gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
return slot->base_gfn + gfn_offset;
}
static inline gpa_t gfn_to_gpa(gfn_t gfn)
{
return (gpa_t)gfn << PAGE_SHIFT;
}
static inline gfn_t gpa_to_gfn(gpa_t gpa)
{
return (gfn_t)(gpa >> PAGE_SHIFT);
}
static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
{
return (hpa_t)pfn << PAGE_SHIFT;
}
static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
{
unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
return kvm_is_error_hva(hva);
}
enum kvm_stat_kind {
KVM_STAT_VM,
KVM_STAT_VCPU,
};
struct kvm_stat_data {
struct kvm *kvm;
const struct _kvm_stats_desc *desc;
enum kvm_stat_kind kind;
};
struct _kvm_stats_desc {
struct kvm_stats_desc desc;
char name[KVM_STATS_NAME_SIZE];
};
#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
.flags = type | unit | base | \
BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
.exponent = exp, \
.size = sz, \
.bucket_size = bsz
#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vm_stat, generic.stat) \
}, \
.name = #stat, \
}
#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
}, \
.name = #stat, \
}
#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vm_stat, stat) \
}, \
.name = #stat, \
}
#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
{ \
{ \
STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
.offset = offsetof(struct kvm_vcpu_stat, stat) \
}, \
.name = #stat, \
}
/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
unit, base, exponent, 1, 0)
#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
unit, base, exponent, 1, 0)
#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
unit, base, exponent, 1, 0)
#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
unit, base, exponent, sz, bsz)
#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
unit, base, exponent, sz, 0)
/* Cumulative counter, read/write */
#define STATS_DESC_COUNTER(SCOPE, name) \
STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Instantaneous counter, read only */
#define STATS_DESC_ICOUNTER(SCOPE, name) \
STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Peak counter, read/write */
#define STATS_DESC_PCOUNTER(SCOPE, name) \
STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
KVM_STATS_BASE_POW10, 0)
/* Instantaneous boolean value, read only */
#define STATS_DESC_IBOOLEAN(SCOPE, name) \
STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
KVM_STATS_BASE_POW10, 0)
/* Peak (sticky) boolean value, read/write */
#define STATS_DESC_PBOOLEAN(SCOPE, name) \
STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
KVM_STATS_BASE_POW10, 0)
/* Cumulative time in nanosecond */
#define STATS_DESC_TIME_NSEC(SCOPE, name) \
STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9)
/* Linear histogram for time in nanosecond */
#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9, sz, bsz)
/* Logarithmic histogram for time in nanosecond */
#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
KVM_STATS_BASE_POW10, -9, sz)
#define KVM_GENERIC_VM_STATS() \
STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
#define KVM_GENERIC_VCPU_STATS() \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
HALT_POLL_HIST_COUNT), \
STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
extern struct dentry *kvm_debugfs_dir;
ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
const struct _kvm_stats_desc *desc,
void *stats, size_t size_stats,
char __user *user_buffer, size_t size, loff_t *offset);
/**
* kvm_stats_linear_hist_update() - Update bucket value for linear histogram
* statistics data.
*
* @data: start address of the stats data
* @size: the number of bucket of the stats data
* @value: the new value used to update the linear histogram's bucket
* @bucket_size: the size (width) of a bucket
*/
static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
u64 value, size_t bucket_size)
{
size_t index = div64_u64(value, bucket_size);
index = min(index, size - 1);
++data[index];
}
/**
* kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
* statistics data.
*
* @data: start address of the stats data
* @size: the number of bucket of the stats data
* @value: the new value used to update the logarithmic histogram's bucket
*/
static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
{
size_t index = fls64(value);
index = min(index, size - 1);
++data[index];
}
#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
extern const struct kvm_stats_header kvm_vm_stats_header;
extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
extern const struct kvm_stats_header kvm_vcpu_stats_header;
extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
{
if (unlikely(kvm->mmu_invalidate_in_progress))
return 1;
/*
* Ensure the read of mmu_invalidate_in_progress happens before
* the read of mmu_invalidate_seq. This interacts with the
* smp_wmb() in mmu_notifier_invalidate_range_end to make sure
* that the caller either sees the old (non-zero) value of
* mmu_invalidate_in_progress or the new (incremented) value of
* mmu_invalidate_seq.
*
* PowerPC Book3s HV KVM calls this under a per-page lock rather
* than under kvm->mmu_lock, for scalability, so can't rely on
* kvm->mmu_lock to keep things ordered.
*/
smp_rmb();
if (kvm->mmu_invalidate_seq != mmu_seq)
return 1;
return 0;
}
static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
unsigned long mmu_seq,
unsigned long hva)
{
lockdep_assert_held(&kvm->mmu_lock);
/*
* If mmu_invalidate_in_progress is non-zero, then the range maintained
* by kvm_mmu_notifier_invalidate_range_start contains all addresses
* that might be being invalidated. Note that it may include some false
* positives, due to shortcuts when handing concurrent invalidations.
*/
if (unlikely(kvm->mmu_invalidate_in_progress) &&
hva >= kvm->mmu_invalidate_range_start &&
hva < kvm->mmu_invalidate_range_end)
return 1;
if (kvm->mmu_invalidate_seq != mmu_seq)
return 1;
return 0;
}
#endif
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
int kvm_set_irq_routing(struct kvm *kvm,
const struct kvm_irq_routing_entry *entries,
unsigned nr,
unsigned flags);
int kvm_set_routing_entry(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *e,
const struct kvm_irq_routing_entry *ue);
void kvm_free_irq_routing(struct kvm *kvm);
#else
static inline void kvm_free_irq_routing(struct kvm *kvm) {}
#endif
int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
#ifdef CONFIG_HAVE_KVM_EVENTFD
void kvm_eventfd_init(struct kvm *kvm);
int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
#ifdef CONFIG_HAVE_KVM_IRQFD
int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
void kvm_irqfd_release(struct kvm *kvm);
bool kvm_notify_irqfd_resampler(struct kvm *kvm,
unsigned int irqchip,
unsigned int pin);
void kvm_irq_routing_update(struct kvm *);
#else
static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
{
return -EINVAL;
}
static inline void kvm_irqfd_release(struct kvm *kvm) {}
static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
unsigned int irqchip,
unsigned int pin)
{
return false;
}
#endif
#else
static inline void kvm_eventfd_init(struct kvm *kvm) {}
static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
{
return -EINVAL;
}
static inline void kvm_irqfd_release(struct kvm *kvm) {}
#ifdef CONFIG_HAVE_KVM_IRQCHIP
static inline void kvm_irq_routing_update(struct kvm *kvm)
{
}
#endif
static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
{
return -ENOSYS;
}
#endif /* CONFIG_HAVE_KVM_EVENTFD */
void kvm_arch_irq_routing_update(struct kvm *kvm);
static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
{
/*
* Ensure the rest of the request is published to kvm_check_request's
* caller. Paired with the smp_mb__after_atomic in kvm_check_request.
*/
smp_wmb();
set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
{
/*
* Request that don't require vCPU action should never be logged in
* vcpu->requests. The vCPU won't clear the request, so it will stay
* logged indefinitely and prevent the vCPU from entering the guest.
*/
BUILD_BUG_ON(!__builtin_constant_p(req) ||
(req & KVM_REQUEST_NO_ACTION));
__kvm_make_request(req, vcpu);
}
static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
{
return READ_ONCE(vcpu->requests);
}
static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
{
return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
{
clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
}
static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
{
if (kvm_test_request(req, vcpu)) {
kvm_clear_request(req, vcpu);
/*
* Ensure the rest of the request is visible to kvm_check_request's
* caller. Paired with the smp_wmb in kvm_make_request.
*/
smp_mb__after_atomic();
return true;
} else {
return false;
}
}
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
extern bool kvm_rebooting;
#endif
extern unsigned int halt_poll_ns;
extern unsigned int halt_poll_ns_grow;
extern unsigned int halt_poll_ns_grow_start;
extern unsigned int halt_poll_ns_shrink;
struct kvm_device {
const struct kvm_device_ops *ops;
struct kvm *kvm;
void *private;
struct list_head vm_node;
};
/* create, destroy, and name are mandatory */
struct kvm_device_ops {
const char *name;
/*
* create is called holding kvm->lock and any operations not suitable
* to do while holding the lock should be deferred to init (see
* below).
*/
int (*create)(struct kvm_device *dev, u32 type);
/*
* init is called after create if create is successful and is called
* outside of holding kvm->lock.
*/
void (*init)(struct kvm_device *dev);
/*
* Destroy is responsible for freeing dev.
*
* Destroy may be called before or after destructors are called
* on emulated I/O regions, depending on whether a reference is
* held by a vcpu or other kvm component that gets destroyed
* after the emulated I/O.
*/
void (*destroy)(struct kvm_device *dev);
/*
* Release is an alternative method to free the device. It is
* called when the device file descriptor is closed. Once
* release is called, the destroy method will not be called
* anymore as the device is removed from the device list of
* the VM. kvm->lock is held.
*/
void (*release)(struct kvm_device *dev);
int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
unsigned long arg);
int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
};
void kvm_device_get(struct kvm_device *dev);
void kvm_device_put(struct kvm_device *dev);
struct kvm_device *kvm_device_from_filp(struct file *filp);
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
void kvm_unregister_device_ops(u32 type);
extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.in_spin_loop = val;
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
vcpu->spin_loop.dy_eligible = val;
}
#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
}
#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
{
return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
!(memslot->flags & KVM_MEMSLOT_INVALID));
}
struct kvm_vcpu *kvm_get_running_vcpu(void);
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
bool kvm_arch_has_irq_bypass(void);
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
struct irq_bypass_producer *);
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
struct irq_bypass_producer *);
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
struct kvm_kernel_irq_routing_entry *);
#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
/* If we wakeup during the poll time, was it a sucessful poll? */
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{
return vcpu->valid_wakeup;
}
#else
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{
return true;
}
#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
#ifdef CONFIG_HAVE_KVM_NO_POLL
/* Callback that tells if we must not poll */
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
#else
static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
{
return false;
}
#endif /* CONFIG_HAVE_KVM_NO_POLL */
#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
#else
static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
unsigned int ioctl,
unsigned long arg)
{
return -ENOIOCTLCMD;
}
#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
unsigned long start, unsigned long end);
void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
#else
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{
return 0;
}
#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
uintptr_t data, const char *name,
struct task_struct **thread_ptr);
#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_INTR;
vcpu->stat.signal_exits++;
}
#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
/*
* If more than one page is being (un)accounted, @virt must be the address of
* the first page of a block of pages what were allocated together (i.e
* accounted together).
*
* kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
* is thread-safe.
*/
static inline void kvm_account_pgtable_pages(void *virt, int nr)
{
mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
}
/*
* This defines how many reserved entries we want to keep before we
* kick the vcpu to the userspace to avoid dirty ring full. This
* value can be tuned to higher if e.g. PML is enabled on the host.
*/
#define KVM_DIRTY_RING_RSVD_ENTRIES 64
/* Max number of entries allowed for each kvm dirty ring */
#define KVM_DIRTY_RING_MAX_ENTRIES 65536
#endif
|