1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright (C) 2020 Invensense, Inc.
*/
#ifndef INV_SENSORS_TIMESTAMP_H_
#define INV_SENSORS_TIMESTAMP_H_
/**
* struct inv_sensors_timestamp_chip - chip internal properties
* @clock_period: internal clock period in ns
* @jitter: acceptable jitter in per-mille
* @init_period: chip initial period at reset in ns
*/
struct inv_sensors_timestamp_chip {
uint32_t clock_period;
uint32_t jitter;
uint32_t init_period;
};
/**
* struct inv_sensors_timestamp_interval - timestamps interval
* @lo: interval lower bound
* @up: interval upper bound
*/
struct inv_sensors_timestamp_interval {
int64_t lo;
int64_t up;
};
/**
* struct inv_sensors_timestamp_acc - accumulator for computing an estimation
* @val: current estimation of the value, the mean of all values
* @idx: current index of the next free place in values table
* @values: table of all measured values, use for computing the mean
*/
struct inv_sensors_timestamp_acc {
uint32_t val;
size_t idx;
uint32_t values[32];
};
/**
* struct inv_sensors_timestamp - timestamp management states
* @chip: chip internal characteristics
* @min_period: minimal acceptable clock period
* @max_period: maximal acceptable clock period
* @it: interrupts interval timestamps
* @timestamp: store last timestamp for computing next data timestamp
* @mult: current internal period multiplier
* @new_mult: new set internal period multiplier (not yet effective)
* @period: measured current period of the sensor
* @chip_period: accumulator for computing internal chip period
*/
struct inv_sensors_timestamp {
struct inv_sensors_timestamp_chip chip;
uint32_t min_period;
uint32_t max_period;
struct inv_sensors_timestamp_interval it;
int64_t timestamp;
uint32_t mult;
uint32_t new_mult;
uint32_t period;
struct inv_sensors_timestamp_acc chip_period;
};
void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts,
const struct inv_sensors_timestamp_chip *chip);
int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts,
uint32_t period, bool fifo);
void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts,
uint32_t fifo_period, size_t fifo_nb,
size_t sensor_nb, int64_t timestamp);
static inline int64_t inv_sensors_timestamp_pop(struct inv_sensors_timestamp *ts)
{
ts->timestamp += ts->period;
return ts->timestamp;
}
void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts,
uint32_t fifo_period, size_t fifo_nb,
unsigned int fifo_no);
static inline void inv_sensors_timestamp_reset(struct inv_sensors_timestamp *ts)
{
const struct inv_sensors_timestamp_interval interval_init = {0LL, 0LL};
ts->it = interval_init;
ts->timestamp = 0;
}
#endif
|