1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Linux-specific definitions for managing interactions with Microsoft's
* Hyper-V hypervisor. The definitions in this file are architecture
* independent. See arch/<arch>/include/asm/mshyperv.h for definitions
* that are specific to architecture <arch>.
*
* Definitions that are specified in the Hyper-V Top Level Functional
* Spec (TLFS) should not go in this file, but should instead go in
* hyperv-tlfs.h.
*
* Copyright (C) 2019, Microsoft, Inc.
*
* Author : Michael Kelley <mikelley@microsoft.com>
*/
#ifndef _ASM_GENERIC_MSHYPERV_H
#define _ASM_GENERIC_MSHYPERV_H
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/cpumask.h>
#include <linux/nmi.h>
#include <asm/ptrace.h>
#include <asm/hyperv-tlfs.h>
#define VTPM_BASE_ADDRESS 0xfed40000
struct ms_hyperv_info {
u32 features;
u32 priv_high;
u32 misc_features;
u32 hints;
u32 nested_features;
u32 max_vp_index;
u32 max_lp_index;
union {
u32 isolation_config_a;
struct {
u32 paravisor_present : 1;
u32 reserved_a1 : 31;
};
};
union {
u32 isolation_config_b;
struct {
u32 cvm_type : 4;
u32 reserved_b1 : 1;
u32 shared_gpa_boundary_active : 1;
u32 shared_gpa_boundary_bits : 6;
u32 reserved_b2 : 20;
};
};
u64 shared_gpa_boundary;
u8 vtl;
};
extern struct ms_hyperv_info ms_hyperv;
extern bool hv_nested;
extern void * __percpu *hyperv_pcpu_input_arg;
extern void * __percpu *hyperv_pcpu_output_arg;
extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
extern bool hv_isolation_type_snp(void);
extern bool hv_isolation_type_en_snp(void);
/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
static inline int hv_result(u64 status)
{
return status & HV_HYPERCALL_RESULT_MASK;
}
static inline bool hv_result_success(u64 status)
{
return hv_result(status) == HV_STATUS_SUCCESS;
}
static inline unsigned int hv_repcomp(u64 status)
{
/* Bits [43:32] of status have 'Reps completed' data. */
return (status & HV_HYPERCALL_REP_COMP_MASK) >>
HV_HYPERCALL_REP_COMP_OFFSET;
}
/*
* Rep hypercalls. Callers of this functions are supposed to ensure that
* rep_count and varhead_size comply with Hyper-V hypercall definition.
*/
static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
void *input, void *output)
{
u64 control = code;
u64 status;
u16 rep_comp;
control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
do {
status = hv_do_hypercall(control, input, output);
if (!hv_result_success(status))
return status;
rep_comp = hv_repcomp(status);
control &= ~HV_HYPERCALL_REP_START_MASK;
control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
touch_nmi_watchdog();
} while (rep_comp < rep_count);
return status;
}
/* Generate the guest OS identifier as described in the Hyper-V TLFS */
static inline u64 hv_generate_guest_id(u64 kernel_version)
{
u64 guest_id;
guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
guest_id |= (kernel_version << 16);
return guest_id;
}
/* Free the message slot and signal end-of-message if required */
static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
{
/*
* On crash we're reading some other CPU's message page and we need
* to be careful: this other CPU may already had cleared the header
* and the host may already had delivered some other message there.
* In case we blindly write msg->header.message_type we're going
* to lose it. We can still lose a message of the same type but
* we count on the fact that there can only be one
* CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
* on crash.
*/
if (cmpxchg(&msg->header.message_type, old_msg_type,
HVMSG_NONE) != old_msg_type)
return;
/*
* The cmxchg() above does an implicit memory barrier to
* ensure the write to MessageType (ie set to
* HVMSG_NONE) happens before we read the
* MessagePending and EOMing. Otherwise, the EOMing
* will not deliver any more messages since there is
* no empty slot
*/
if (msg->header.message_flags.msg_pending) {
/*
* This will cause message queue rescan to
* possibly deliver another msg from the
* hypervisor
*/
hv_set_register(HV_REGISTER_EOM, 0);
}
}
void hv_setup_vmbus_handler(void (*handler)(void));
void hv_remove_vmbus_handler(void);
void hv_setup_stimer0_handler(void (*handler)(void));
void hv_remove_stimer0_handler(void);
void hv_setup_kexec_handler(void (*handler)(void));
void hv_remove_kexec_handler(void);
void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
void hv_remove_crash_handler(void);
extern int vmbus_interrupt;
extern int vmbus_irq;
extern bool hv_root_partition;
#if IS_ENABLED(CONFIG_HYPERV)
/*
* Hypervisor's notion of virtual processor ID is different from
* Linux' notion of CPU ID. This information can only be retrieved
* in the context of the calling CPU. Setup a map for easy access
* to this information.
*/
extern u32 *hv_vp_index;
extern u32 hv_max_vp_index;
extern u64 (*hv_read_reference_counter)(void);
/* Sentinel value for an uninitialized entry in hv_vp_index array */
#define VP_INVAL U32_MAX
int __init hv_common_init(void);
void __init hv_common_free(void);
int hv_common_cpu_init(unsigned int cpu);
int hv_common_cpu_die(unsigned int cpu);
void *hv_alloc_hyperv_page(void);
void *hv_alloc_hyperv_zeroed_page(void);
void hv_free_hyperv_page(unsigned long addr);
/**
* hv_cpu_number_to_vp_number() - Map CPU to VP.
* @cpu_number: CPU number in Linux terms
*
* This function returns the mapping between the Linux processor
* number and the hypervisor's virtual processor number, useful
* in making hypercalls and such that talk about specific
* processors.
*
* Return: Virtual processor number in Hyper-V terms
*/
static inline int hv_cpu_number_to_vp_number(int cpu_number)
{
return hv_vp_index[cpu_number];
}
static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
const struct cpumask *cpus,
bool (*func)(int cpu))
{
int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
/* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
return 0;
/*
* Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
* structs are not cleared between calls, we risk flushing unneeded
* vCPUs otherwise.
*/
for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
vpset->bank_contents[vcpu_bank] = 0;
/*
* Some banks may end up being empty but this is acceptable.
*/
for_each_cpu(cpu, cpus) {
if (func && func(cpu))
continue;
vcpu = hv_cpu_number_to_vp_number(cpu);
if (vcpu == VP_INVAL)
return -1;
vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
__set_bit(vcpu_offset, (unsigned long *)
&vpset->bank_contents[vcpu_bank]);
if (vcpu_bank >= nr_bank)
nr_bank = vcpu_bank + 1;
}
vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
return nr_bank;
}
/*
* Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
* 'func' is called for each CPU present in cpumask. If 'func' returns
* true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
* added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
* skipped.
*/
static inline int cpumask_to_vpset(struct hv_vpset *vpset,
const struct cpumask *cpus)
{
return __cpumask_to_vpset(vpset, cpus, NULL);
}
static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
const struct cpumask *cpus,
bool (*func)(int cpu))
{
return __cpumask_to_vpset(vpset, cpus, func);
}
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
bool hv_is_hyperv_initialized(void);
bool hv_is_hibernation_supported(void);
enum hv_isolation_type hv_get_isolation_type(void);
bool hv_is_isolation_supported(void);
bool hv_isolation_type_snp(void);
u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
void hyperv_cleanup(void);
bool hv_query_ext_cap(u64 cap_query);
void hv_setup_dma_ops(struct device *dev, bool coherent);
#else /* CONFIG_HYPERV */
static inline bool hv_is_hyperv_initialized(void) { return false; }
static inline bool hv_is_hibernation_supported(void) { return false; }
static inline void hyperv_cleanup(void) {}
static inline bool hv_is_isolation_supported(void) { return false; }
static inline enum hv_isolation_type hv_get_isolation_type(void)
{
return HV_ISOLATION_TYPE_NONE;
}
#endif /* CONFIG_HYPERV */
#endif
|