summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-tegra114.c
blob: b1f31bb16659d8692f8826b431ec0ac98e03b053 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
/*
 * SPI driver for NVIDIA's Tegra114 SPI Controller.
 *
 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>

#define SPI_COMMAND1				0x000
#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
#define SPI_PACKED				(1 << 5)
#define SPI_TX_EN				(1 << 11)
#define SPI_RX_EN				(1 << 12)
#define SPI_BOTH_EN_BYTE			(1 << 13)
#define SPI_BOTH_EN_BIT				(1 << 14)
#define SPI_LSBYTE_FE				(1 << 15)
#define SPI_LSBIT_FE				(1 << 16)
#define SPI_BIDIROE				(1 << 17)
#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
#define SPI_IDLE_SDA_MASK			(3 << 18)
#define SPI_CS_SW_VAL				(1 << 20)
#define SPI_CS_SW_HW				(1 << 21)
/* SPI_CS_POL_INACTIVE bits are default high */
						/* n from 0 to 3 */
#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)

#define SPI_CS_SEL_0				(0 << 26)
#define SPI_CS_SEL_1				(1 << 26)
#define SPI_CS_SEL_2				(2 << 26)
#define SPI_CS_SEL_3				(3 << 26)
#define SPI_CS_SEL_MASK				(3 << 26)
#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
#define SPI_CONTROL_MODE_0			(0 << 28)
#define SPI_CONTROL_MODE_1			(1 << 28)
#define SPI_CONTROL_MODE_2			(2 << 28)
#define SPI_CONTROL_MODE_3			(3 << 28)
#define SPI_CONTROL_MODE_MASK			(3 << 28)
#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
#define SPI_M_S					(1 << 30)
#define SPI_PIO					(1 << 31)

#define SPI_COMMAND2				0x004
#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)

#define SPI_CS_TIMING1				0x008
#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
		((((val) & 0xFFu) << ((cs) * 8)) |	\
		((reg) & ~(0xFFu << ((cs) * 8))))

#define SPI_CS_TIMING2				0x00C
#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
			((reg) & ~(1 << ((cs) * 8 + 5))))
#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
			((reg) & ~(0xF << ((cs) * 8))))

#define SPI_TRANS_STATUS			0x010
#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
#define SPI_RDY					(1 << 30)

#define SPI_FIFO_STATUS				0x014
#define SPI_RX_FIFO_EMPTY			(1 << 0)
#define SPI_RX_FIFO_FULL			(1 << 1)
#define SPI_TX_FIFO_EMPTY			(1 << 2)
#define SPI_TX_FIFO_FULL			(1 << 3)
#define SPI_RX_FIFO_UNF				(1 << 4)
#define SPI_RX_FIFO_OVF				(1 << 5)
#define SPI_TX_FIFO_UNF				(1 << 6)
#define SPI_TX_FIFO_OVF				(1 << 7)
#define SPI_ERR					(1 << 8)
#define SPI_TX_FIFO_FLUSH			(1 << 14)
#define SPI_RX_FIFO_FLUSH			(1 << 15)
#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
#define SPI_FRAME_END				(1 << 30)
#define SPI_CS_INACTIVE				(1 << 31)

#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)

#define SPI_TX_DATA				0x018
#define SPI_RX_DATA				0x01C

#define SPI_DMA_CTL				0x020
#define SPI_TX_TRIG_1				(0 << 15)
#define SPI_TX_TRIG_4				(1 << 15)
#define SPI_TX_TRIG_8				(2 << 15)
#define SPI_TX_TRIG_16				(3 << 15)
#define SPI_TX_TRIG_MASK			(3 << 15)
#define SPI_RX_TRIG_1				(0 << 19)
#define SPI_RX_TRIG_4				(1 << 19)
#define SPI_RX_TRIG_8				(2 << 19)
#define SPI_RX_TRIG_16				(3 << 19)
#define SPI_RX_TRIG_MASK			(3 << 19)
#define SPI_IE_TX				(1 << 28)
#define SPI_IE_RX				(1 << 29)
#define SPI_CONT				(1 << 30)
#define SPI_DMA					(1 << 31)
#define SPI_DMA_EN				SPI_DMA

#define SPI_DMA_BLK				0x024
#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)

#define SPI_TX_FIFO				0x108
#define SPI_RX_FIFO				0x188
#define SPI_INTR_MASK				0x18c
#define SPI_INTR_ALL_MASK			(0x1fUL << 25)
#define MAX_CHIP_SELECT				4
#define SPI_FIFO_DEPTH				64
#define DATA_DIR_TX				(1 << 0)
#define DATA_DIR_RX				(1 << 1)

#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
#define MAX_HOLD_CYCLES				16
#define SPI_DEFAULT_SPEED			25000000

struct tegra_spi_soc_data {
	bool has_intr_mask_reg;
};

struct tegra_spi_data {
	struct device				*dev;
	struct spi_master			*master;
	spinlock_t				lock;

	struct clk				*clk;
	struct reset_control			*rst;
	void __iomem				*base;
	phys_addr_t				phys;
	unsigned				irq;
	u32					cur_speed;

	struct spi_device			*cur_spi;
	struct spi_device			*cs_control;
	unsigned				cur_pos;
	unsigned				words_per_32bit;
	unsigned				bytes_per_word;
	unsigned				curr_dma_words;
	unsigned				cur_direction;

	unsigned				cur_rx_pos;
	unsigned				cur_tx_pos;

	unsigned				dma_buf_size;
	unsigned				max_buf_size;
	bool					is_curr_dma_xfer;

	struct completion			rx_dma_complete;
	struct completion			tx_dma_complete;

	u32					tx_status;
	u32					rx_status;
	u32					status_reg;
	bool					is_packed;

	u32					command1_reg;
	u32					dma_control_reg;
	u32					def_command1_reg;

	struct completion			xfer_completion;
	struct spi_transfer			*curr_xfer;
	struct dma_chan				*rx_dma_chan;
	u32					*rx_dma_buf;
	dma_addr_t				rx_dma_phys;
	struct dma_async_tx_descriptor		*rx_dma_desc;

	struct dma_chan				*tx_dma_chan;
	u32					*tx_dma_buf;
	dma_addr_t				tx_dma_phys;
	struct dma_async_tx_descriptor		*tx_dma_desc;
	const struct tegra_spi_soc_data		*soc_data;
};

static int tegra_spi_runtime_suspend(struct device *dev);
static int tegra_spi_runtime_resume(struct device *dev);

static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
		unsigned long reg)
{
	return readl(tspi->base + reg);
}

static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
		u32 val, unsigned long reg)
{
	writel(val, tspi->base + reg);

	/* Read back register to make sure that register writes completed */
	if (reg != SPI_TX_FIFO)
		readl(tspi->base + SPI_COMMAND1);
}

static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
{
	u32 val;

	/* Write 1 to clear status register */
	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);

	/* Clear fifo status error if any */
	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
	if (val & SPI_ERR)
		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
				SPI_FIFO_STATUS);
}

static unsigned tegra_spi_calculate_curr_xfer_param(
	struct spi_device *spi, struct tegra_spi_data *tspi,
	struct spi_transfer *t)
{
	unsigned remain_len = t->len - tspi->cur_pos;
	unsigned max_word;
	unsigned bits_per_word = t->bits_per_word;
	unsigned max_len;
	unsigned total_fifo_words;

	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);

	if ((bits_per_word == 8 || bits_per_word == 16 ||
	     bits_per_word == 32) && t->len > 3) {
		tspi->is_packed = 1;
		tspi->words_per_32bit = 32/bits_per_word;
	} else {
		tspi->is_packed = 0;
		tspi->words_per_32bit = 1;
	}

	if (tspi->is_packed) {
		max_len = min(remain_len, tspi->max_buf_size);
		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
		total_fifo_words = (max_len + 3) / 4;
	} else {
		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
		max_word = min(max_word, tspi->max_buf_size/4);
		tspi->curr_dma_words = max_word;
		total_fifo_words = max_word;
	}
	return total_fifo_words;
}

static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
	struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	unsigned nbytes;
	unsigned tx_empty_count;
	u32 fifo_status;
	unsigned max_n_32bit;
	unsigned i, count;
	unsigned int written_words;
	unsigned fifo_words_left;
	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;

	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);

	if (tspi->is_packed) {
		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
		written_words = min(fifo_words_left, tspi->curr_dma_words);
		nbytes = written_words * tspi->bytes_per_word;
		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
		for (count = 0; count < max_n_32bit; count++) {
			u32 x = 0;

			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
				x |= (u32)(*tx_buf++) << (i * 8);
			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
		}

		tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
	} else {
		unsigned int write_bytes;
		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
		written_words = max_n_32bit;
		nbytes = written_words * tspi->bytes_per_word;
		if (nbytes > t->len - tspi->cur_pos)
			nbytes = t->len - tspi->cur_pos;
		write_bytes = nbytes;
		for (count = 0; count < max_n_32bit; count++) {
			u32 x = 0;

			for (i = 0; nbytes && (i < tspi->bytes_per_word);
							i++, nbytes--)
				x |= (u32)(*tx_buf++) << (i * 8);
			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
		}

		tspi->cur_tx_pos += write_bytes;
	}

	return written_words;
}

static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
		struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	unsigned rx_full_count;
	u32 fifo_status;
	unsigned i, count;
	unsigned int read_words = 0;
	unsigned len;
	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;

	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
	if (tspi->is_packed) {
		len = tspi->curr_dma_words * tspi->bytes_per_word;
		for (count = 0; count < rx_full_count; count++) {
			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);

			for (i = 0; len && (i < 4); i++, len--)
				*rx_buf++ = (x >> i*8) & 0xFF;
		}
		read_words += tspi->curr_dma_words;
		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
	} else {
		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
		u8 bytes_per_word = tspi->bytes_per_word;
		unsigned int read_bytes;

		len = rx_full_count * bytes_per_word;
		if (len > t->len - tspi->cur_pos)
			len = t->len - tspi->cur_pos;
		read_bytes = len;
		for (count = 0; count < rx_full_count; count++) {
			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;

			for (i = 0; len && (i < bytes_per_word); i++, len--)
				*rx_buf++ = (x >> (i*8)) & 0xFF;
		}
		read_words += rx_full_count;
		tspi->cur_rx_pos += read_bytes;
	}

	return read_words;
}

static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
		struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	/* Make the dma buffer to read by cpu */
	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
				tspi->dma_buf_size, DMA_TO_DEVICE);

	if (tspi->is_packed) {
		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;

		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
		tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
	} else {
		unsigned int i;
		unsigned int count;
		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
		unsigned int write_bytes;

		if (consume > t->len - tspi->cur_pos)
			consume = t->len - tspi->cur_pos;
		write_bytes = consume;
		for (count = 0; count < tspi->curr_dma_words; count++) {
			u32 x = 0;

			for (i = 0; consume && (i < tspi->bytes_per_word);
							i++, consume--)
				x |= (u32)(*tx_buf++) << (i * 8);
			tspi->tx_dma_buf[count] = x;
		}

		tspi->cur_tx_pos += write_bytes;
	}

	/* Make the dma buffer to read by dma */
	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
				tspi->dma_buf_size, DMA_TO_DEVICE);
}

static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
		struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	/* Make the dma buffer to read by cpu */
	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
		tspi->dma_buf_size, DMA_FROM_DEVICE);

	if (tspi->is_packed) {
		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;

		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
	} else {
		unsigned int i;
		unsigned int count;
		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
		unsigned int read_bytes;

		if (consume > t->len - tspi->cur_pos)
			consume = t->len - tspi->cur_pos;
		read_bytes = consume;
		for (count = 0; count < tspi->curr_dma_words; count++) {
			u32 x = tspi->rx_dma_buf[count] & rx_mask;

			for (i = 0; consume && (i < tspi->bytes_per_word);
							i++, consume--)
				*rx_buf++ = (x >> (i*8)) & 0xFF;
		}

		tspi->cur_rx_pos += read_bytes;
	}

	/* Make the dma buffer to read by dma */
	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
		tspi->dma_buf_size, DMA_FROM_DEVICE);
}

static void tegra_spi_dma_complete(void *args)
{
	struct completion *dma_complete = args;

	complete(dma_complete);
}

static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
{
	reinit_completion(&tspi->tx_dma_complete);
	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
	if (!tspi->tx_dma_desc) {
		dev_err(tspi->dev, "Not able to get desc for Tx\n");
		return -EIO;
	}

	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;

	dmaengine_submit(tspi->tx_dma_desc);
	dma_async_issue_pending(tspi->tx_dma_chan);
	return 0;
}

static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
{
	reinit_completion(&tspi->rx_dma_complete);
	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
	if (!tspi->rx_dma_desc) {
		dev_err(tspi->dev, "Not able to get desc for Rx\n");
		return -EIO;
	}

	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;

	dmaengine_submit(tspi->rx_dma_desc);
	dma_async_issue_pending(tspi->rx_dma_chan);
	return 0;
}

static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
{
	unsigned long timeout = jiffies + HZ;
	u32 status;

	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
		status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
		tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
		while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
			status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
			if (time_after(jiffies, timeout)) {
				dev_err(tspi->dev,
					"timeout waiting for fifo flush\n");
				return -EIO;
			}

			udelay(1);
		}
	}

	return 0;
}

static int tegra_spi_start_dma_based_transfer(
		struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	u32 val;
	unsigned int len;
	int ret = 0;
	u8 dma_burst;
	struct dma_slave_config dma_sconfig = {0};

	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
	tegra_spi_writel(tspi, val, SPI_DMA_BLK);

	if (tspi->is_packed)
		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
					4) * 4;
	else
		len = tspi->curr_dma_words * 4;

	/* Set attention level based on length of transfer */
	if (len & 0xF) {
		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
		dma_burst = 1;
	} else if (((len) >> 4) & 0x1) {
		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
		dma_burst = 4;
	} else {
		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
		dma_burst = 8;
	}

	if (!tspi->soc_data->has_intr_mask_reg) {
		if (tspi->cur_direction & DATA_DIR_TX)
			val |= SPI_IE_TX;

		if (tspi->cur_direction & DATA_DIR_RX)
			val |= SPI_IE_RX;
	}

	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
	tspi->dma_control_reg = val;

	dma_sconfig.device_fc = true;
	if (tspi->cur_direction & DATA_DIR_TX) {
		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		dma_sconfig.dst_maxburst = dma_burst;
		ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
		if (ret < 0) {
			dev_err(tspi->dev,
				"DMA slave config failed: %d\n", ret);
			return ret;
		}

		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
		ret = tegra_spi_start_tx_dma(tspi, len);
		if (ret < 0) {
			dev_err(tspi->dev,
				"Starting tx dma failed, err %d\n", ret);
			return ret;
		}
	}

	if (tspi->cur_direction & DATA_DIR_RX) {
		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		dma_sconfig.src_maxburst = dma_burst;
		ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
		if (ret < 0) {
			dev_err(tspi->dev,
				"DMA slave config failed: %d\n", ret);
			return ret;
		}

		/* Make the dma buffer to read by dma */
		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
				tspi->dma_buf_size, DMA_FROM_DEVICE);

		ret = tegra_spi_start_rx_dma(tspi, len);
		if (ret < 0) {
			dev_err(tspi->dev,
				"Starting rx dma failed, err %d\n", ret);
			if (tspi->cur_direction & DATA_DIR_TX)
				dmaengine_terminate_all(tspi->tx_dma_chan);
			return ret;
		}
	}
	tspi->is_curr_dma_xfer = true;
	tspi->dma_control_reg = val;

	val |= SPI_DMA_EN;
	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
	return ret;
}

static int tegra_spi_start_cpu_based_transfer(
		struct tegra_spi_data *tspi, struct spi_transfer *t)
{
	u32 val;
	unsigned cur_words;

	if (tspi->cur_direction & DATA_DIR_TX)
		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
	else
		cur_words = tspi->curr_dma_words;

	val = SPI_DMA_BLK_SET(cur_words - 1);
	tegra_spi_writel(tspi, val, SPI_DMA_BLK);

	val = 0;
	if (tspi->cur_direction & DATA_DIR_TX)
		val |= SPI_IE_TX;

	if (tspi->cur_direction & DATA_DIR_RX)
		val |= SPI_IE_RX;

	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
	tspi->dma_control_reg = val;

	tspi->is_curr_dma_xfer = false;

	val = tspi->command1_reg;
	val |= SPI_PIO;
	tegra_spi_writel(tspi, val, SPI_COMMAND1);
	return 0;
}

static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
			bool dma_to_memory)
{
	struct dma_chan *dma_chan;
	u32 *dma_buf;
	dma_addr_t dma_phys;
	int ret;

	dma_chan = dma_request_slave_channel_reason(tspi->dev,
					dma_to_memory ? "rx" : "tx");
	if (IS_ERR(dma_chan)) {
		ret = PTR_ERR(dma_chan);
		if (ret != -EPROBE_DEFER)
			dev_err(tspi->dev,
				"Dma channel is not available: %d\n", ret);
		return ret;
	}

	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
				&dma_phys, GFP_KERNEL);
	if (!dma_buf) {
		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
		dma_release_channel(dma_chan);
		return -ENOMEM;
	}

	if (dma_to_memory) {
		tspi->rx_dma_chan = dma_chan;
		tspi->rx_dma_buf = dma_buf;
		tspi->rx_dma_phys = dma_phys;
	} else {
		tspi->tx_dma_chan = dma_chan;
		tspi->tx_dma_buf = dma_buf;
		tspi->tx_dma_phys = dma_phys;
	}
	return 0;
}

static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
	bool dma_to_memory)
{
	u32 *dma_buf;
	dma_addr_t dma_phys;
	struct dma_chan *dma_chan;

	if (dma_to_memory) {
		dma_buf = tspi->rx_dma_buf;
		dma_chan = tspi->rx_dma_chan;
		dma_phys = tspi->rx_dma_phys;
		tspi->rx_dma_chan = NULL;
		tspi->rx_dma_buf = NULL;
	} else {
		dma_buf = tspi->tx_dma_buf;
		dma_chan = tspi->tx_dma_chan;
		dma_phys = tspi->tx_dma_phys;
		tspi->tx_dma_buf = NULL;
		tspi->tx_dma_chan = NULL;
	}
	if (!dma_chan)
		return;

	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
	dma_release_channel(dma_chan);
}

static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
		struct spi_transfer *t, bool is_first_of_msg)
{
	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
	u32 speed = t->speed_hz;
	u8 bits_per_word = t->bits_per_word;
	u32 command1;
	int req_mode;

	if (speed != tspi->cur_speed) {
		clk_set_rate(tspi->clk, speed);
		tspi->cur_speed = speed;
	}

	tspi->cur_spi = spi;
	tspi->cur_pos = 0;
	tspi->cur_rx_pos = 0;
	tspi->cur_tx_pos = 0;
	tspi->curr_xfer = t;

	if (is_first_of_msg) {
		tegra_spi_clear_status(tspi);

		command1 = tspi->def_command1_reg;
		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);

		command1 &= ~SPI_CONTROL_MODE_MASK;
		req_mode = spi->mode & 0x3;
		if (req_mode == SPI_MODE_0)
			command1 |= SPI_CONTROL_MODE_0;
		else if (req_mode == SPI_MODE_1)
			command1 |= SPI_CONTROL_MODE_1;
		else if (req_mode == SPI_MODE_2)
			command1 |= SPI_CONTROL_MODE_2;
		else if (req_mode == SPI_MODE_3)
			command1 |= SPI_CONTROL_MODE_3;

		if (spi->mode & SPI_LSB_FIRST)
			command1 |= SPI_LSBIT_FE;
		else
			command1 &= ~SPI_LSBIT_FE;

		if (spi->mode & SPI_3WIRE)
			command1 |= SPI_BIDIROE;
		else
			command1 &= ~SPI_BIDIROE;

		if (tspi->cs_control) {
			if (tspi->cs_control != spi)
				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
			tspi->cs_control = NULL;
		} else
			tegra_spi_writel(tspi, command1, SPI_COMMAND1);

		command1 |= SPI_CS_SW_HW;
		if (spi->mode & SPI_CS_HIGH)
			command1 |= SPI_CS_SW_VAL;
		else
			command1 &= ~SPI_CS_SW_VAL;

		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
	} else {
		command1 = tspi->command1_reg;
		command1 &= ~SPI_BIT_LENGTH(~0);
		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
	}

	return command1;
}

static int tegra_spi_start_transfer_one(struct spi_device *spi,
		struct spi_transfer *t, u32 command1)
{
	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
	unsigned total_fifo_words;
	int ret;

	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);

	if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
		command1 |= SPI_BOTH_EN_BIT;
	else
		command1 &= ~SPI_BOTH_EN_BIT;

	if (tspi->is_packed)
		command1 |= SPI_PACKED;
	else
		command1 &= ~SPI_PACKED;

	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
	tspi->cur_direction = 0;
	if (t->rx_buf) {
		command1 |= SPI_RX_EN;
		tspi->cur_direction |= DATA_DIR_RX;
	}
	if (t->tx_buf) {
		command1 |= SPI_TX_EN;
		tspi->cur_direction |= DATA_DIR_TX;
	}
	command1 |= SPI_CS_SEL(spi->chip_select);
	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
	tspi->command1_reg = command1;

	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
		tspi->def_command1_reg, (unsigned)command1);

	ret = tegra_spi_flush_fifos(tspi);
	if (ret < 0)
		return ret;
	if (total_fifo_words > SPI_FIFO_DEPTH)
		ret = tegra_spi_start_dma_based_transfer(tspi, t);
	else
		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
	return ret;
}

static int tegra_spi_setup(struct spi_device *spi)
{
	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
	u32 val;
	unsigned long flags;
	int ret;

	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
		spi->bits_per_word,
		spi->mode & SPI_CPOL ? "" : "~",
		spi->mode & SPI_CPHA ? "" : "~",
		spi->max_speed_hz);

	ret = pm_runtime_get_sync(tspi->dev);
	if (ret < 0) {
		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
		return ret;
	}

	if (tspi->soc_data->has_intr_mask_reg) {
		val = tegra_spi_readl(tspi, SPI_INTR_MASK);
		val &= ~SPI_INTR_ALL_MASK;
		tegra_spi_writel(tspi, val, SPI_INTR_MASK);
	}

	spin_lock_irqsave(&tspi->lock, flags);
	val = tspi->def_command1_reg;
	if (spi->mode & SPI_CS_HIGH)
		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
	else
		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
	tspi->def_command1_reg = val;
	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
	spin_unlock_irqrestore(&tspi->lock, flags);

	pm_runtime_put(tspi->dev);
	return 0;
}

static void tegra_spi_transfer_delay(int delay)
{
	if (!delay)
		return;

	if (delay >= 1000)
		mdelay(delay / 1000);

	udelay(delay % 1000);
}

static void tegra_spi_transfer_end(struct spi_device *spi)
{
	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
	int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;

	if (cs_val)
		tspi->command1_reg |= SPI_CS_SW_VAL;
	else
		tspi->command1_reg &= ~SPI_CS_SW_VAL;
	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
}

static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
{
	dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
	dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
		tegra_spi_readl(tspi, SPI_COMMAND1),
		tegra_spi_readl(tspi, SPI_COMMAND2));
	dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
		tegra_spi_readl(tspi, SPI_DMA_CTL),
		tegra_spi_readl(tspi, SPI_DMA_BLK));
	dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
		tegra_spi_readl(tspi, SPI_TRANS_STATUS),
		tegra_spi_readl(tspi, SPI_FIFO_STATUS));
}

static int tegra_spi_transfer_one_message(struct spi_master *master,
			struct spi_message *msg)
{
	bool is_first_msg = true;
	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret;
	bool skip = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		u32 cmd1;

		reinit_completion(&tspi->xfer_completion);

		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);

		if (!xfer->len) {
			ret = 0;
			skip = true;
			goto complete_xfer;
		}

		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
		if (ret < 0) {
			dev_err(tspi->dev,
				"spi can not start transfer, err %d\n", ret);
			goto complete_xfer;
		}

		is_first_msg = false;
		ret = wait_for_completion_timeout(&tspi->xfer_completion,
						SPI_DMA_TIMEOUT);
		if (WARN_ON(ret == 0)) {
			dev_err(tspi->dev,
				"spi transfer timeout, err %d\n", ret);
			if (tspi->is_curr_dma_xfer &&
			    (tspi->cur_direction & DATA_DIR_TX))
				dmaengine_terminate_all(tspi->tx_dma_chan);
			if (tspi->is_curr_dma_xfer &&
			    (tspi->cur_direction & DATA_DIR_RX))
				dmaengine_terminate_all(tspi->rx_dma_chan);
			ret = -EIO;
			tegra_spi_dump_regs(tspi);
			tegra_spi_flush_fifos(tspi);
			reset_control_assert(tspi->rst);
			udelay(2);
			reset_control_deassert(tspi->rst);
			goto complete_xfer;
		}

		if (tspi->tx_status ||  tspi->rx_status) {
			dev_err(tspi->dev, "Error in Transfer\n");
			ret = -EIO;
			tegra_spi_dump_regs(tspi);
			goto complete_xfer;
		}
		msg->actual_length += xfer->len;

complete_xfer:
		if (ret < 0 || skip) {
			tegra_spi_transfer_end(spi);
			tegra_spi_transfer_delay(xfer->delay_usecs);
			goto exit;
		} else if (list_is_last(&xfer->transfer_list,
					&msg->transfers)) {
			if (xfer->cs_change)
				tspi->cs_control = spi;
			else {
				tegra_spi_transfer_end(spi);
				tegra_spi_transfer_delay(xfer->delay_usecs);
			}
		} else if (xfer->cs_change) {
			tegra_spi_transfer_end(spi);
			tegra_spi_transfer_delay(xfer->delay_usecs);
		}

	}
	ret = 0;
exit:
	msg->status = ret;
	spi_finalize_current_message(master);
	return ret;
}

static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
{
	struct spi_transfer *t = tspi->curr_xfer;
	unsigned long flags;

	spin_lock_irqsave(&tspi->lock, flags);
	if (tspi->tx_status ||  tspi->rx_status) {
		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
			tspi->status_reg);
		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
			tspi->command1_reg, tspi->dma_control_reg);
		tegra_spi_dump_regs(tspi);
		tegra_spi_flush_fifos(tspi);
		complete(&tspi->xfer_completion);
		spin_unlock_irqrestore(&tspi->lock, flags);
		reset_control_assert(tspi->rst);
		udelay(2);
		reset_control_deassert(tspi->rst);
		return IRQ_HANDLED;
	}

	if (tspi->cur_direction & DATA_DIR_RX)
		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);

	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->cur_pos = tspi->cur_tx_pos;
	else
		tspi->cur_pos = tspi->cur_rx_pos;

	if (tspi->cur_pos == t->len) {
		complete(&tspi->xfer_completion);
		goto exit;
	}

	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
	tegra_spi_start_cpu_based_transfer(tspi, t);
exit:
	spin_unlock_irqrestore(&tspi->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
{
	struct spi_transfer *t = tspi->curr_xfer;
	long wait_status;
	int err = 0;
	unsigned total_fifo_words;
	unsigned long flags;

	/* Abort dmas if any error */
	if (tspi->cur_direction & DATA_DIR_TX) {
		if (tspi->tx_status) {
			dmaengine_terminate_all(tspi->tx_dma_chan);
			err += 1;
		} else {
			wait_status = wait_for_completion_interruptible_timeout(
				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
			if (wait_status <= 0) {
				dmaengine_terminate_all(tspi->tx_dma_chan);
				dev_err(tspi->dev, "TxDma Xfer failed\n");
				err += 1;
			}
		}
	}

	if (tspi->cur_direction & DATA_DIR_RX) {
		if (tspi->rx_status) {
			dmaengine_terminate_all(tspi->rx_dma_chan);
			err += 2;
		} else {
			wait_status = wait_for_completion_interruptible_timeout(
				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
			if (wait_status <= 0) {
				dmaengine_terminate_all(tspi->rx_dma_chan);
				dev_err(tspi->dev, "RxDma Xfer failed\n");
				err += 2;
			}
		}
	}

	spin_lock_irqsave(&tspi->lock, flags);
	if (err) {
		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
			tspi->status_reg);
		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
			tspi->command1_reg, tspi->dma_control_reg);
		tegra_spi_dump_regs(tspi);
		tegra_spi_flush_fifos(tspi);
		complete(&tspi->xfer_completion);
		spin_unlock_irqrestore(&tspi->lock, flags);
		reset_control_assert(tspi->rst);
		udelay(2);
		reset_control_deassert(tspi->rst);
		return IRQ_HANDLED;
	}

	if (tspi->cur_direction & DATA_DIR_RX)
		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);

	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->cur_pos = tspi->cur_tx_pos;
	else
		tspi->cur_pos = tspi->cur_rx_pos;

	if (tspi->cur_pos == t->len) {
		complete(&tspi->xfer_completion);
		goto exit;
	}

	/* Continue transfer in current message */
	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
							tspi, t);
	if (total_fifo_words > SPI_FIFO_DEPTH)
		err = tegra_spi_start_dma_based_transfer(tspi, t);
	else
		err = tegra_spi_start_cpu_based_transfer(tspi, t);

exit:
	spin_unlock_irqrestore(&tspi->lock, flags);
	return IRQ_HANDLED;
}

static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
{
	struct tegra_spi_data *tspi = context_data;

	if (!tspi->is_curr_dma_xfer)
		return handle_cpu_based_xfer(tspi);
	return handle_dma_based_xfer(tspi);
}

static irqreturn_t tegra_spi_isr(int irq, void *context_data)
{
	struct tegra_spi_data *tspi = context_data;

	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
	if (tspi->cur_direction & DATA_DIR_TX)
		tspi->tx_status = tspi->status_reg &
					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);

	if (tspi->cur_direction & DATA_DIR_RX)
		tspi->rx_status = tspi->status_reg &
					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
	tegra_spi_clear_status(tspi);

	return IRQ_WAKE_THREAD;
}

static struct tegra_spi_soc_data tegra114_spi_soc_data = {
	.has_intr_mask_reg = false,
};

static struct tegra_spi_soc_data tegra124_spi_soc_data = {
	.has_intr_mask_reg = false,
};

static struct tegra_spi_soc_data tegra210_spi_soc_data = {
	.has_intr_mask_reg = true,
};

static const struct of_device_id tegra_spi_of_match[] = {
	{
		.compatible = "nvidia,tegra114-spi",
		.data	    = &tegra114_spi_soc_data,
	}, {
		.compatible = "nvidia,tegra124-spi",
		.data	    = &tegra124_spi_soc_data,
	}, {
		.compatible = "nvidia,tegra210-spi",
		.data	    = &tegra210_spi_soc_data,
	},
	{}
};
MODULE_DEVICE_TABLE(of, tegra_spi_of_match);

static int tegra_spi_probe(struct platform_device *pdev)
{
	struct spi_master	*master;
	struct tegra_spi_data	*tspi;
	struct resource		*r;
	int ret, spi_irq;
	int bus_num;

	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
	if (!master) {
		dev_err(&pdev->dev, "master allocation failed\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);
	tspi = spi_master_get_devdata(master);

	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
				 &master->max_speed_hz))
		master->max_speed_hz = 25000000; /* 25MHz */

	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
			    SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
	master->setup = tegra_spi_setup;
	master->transfer_one_message = tegra_spi_transfer_one_message;
	master->num_chipselect = MAX_CHIP_SELECT;
	master->auto_runtime_pm = true;
	bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
	if (bus_num >= 0)
		master->bus_num = bus_num;

	tspi->master = master;
	tspi->dev = &pdev->dev;
	spin_lock_init(&tspi->lock);

	tspi->soc_data = of_device_get_match_data(&pdev->dev);
	if (!tspi->soc_data) {
		dev_err(&pdev->dev, "unsupported tegra\n");
		ret = -ENODEV;
		goto exit_free_master;
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	tspi->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(tspi->base)) {
		ret = PTR_ERR(tspi->base);
		goto exit_free_master;
	}
	tspi->phys = r->start;

	spi_irq = platform_get_irq(pdev, 0);
	tspi->irq = spi_irq;

	tspi->clk = devm_clk_get(&pdev->dev, "spi");
	if (IS_ERR(tspi->clk)) {
		dev_err(&pdev->dev, "can not get clock\n");
		ret = PTR_ERR(tspi->clk);
		goto exit_free_master;
	}

	tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
	if (IS_ERR(tspi->rst)) {
		dev_err(&pdev->dev, "can not get reset\n");
		ret = PTR_ERR(tspi->rst);
		goto exit_free_master;
	}

	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;

	ret = tegra_spi_init_dma_param(tspi, true);
	if (ret < 0)
		goto exit_free_master;
	ret = tegra_spi_init_dma_param(tspi, false);
	if (ret < 0)
		goto exit_rx_dma_free;
	tspi->max_buf_size = tspi->dma_buf_size;
	init_completion(&tspi->tx_dma_complete);
	init_completion(&tspi->rx_dma_complete);

	init_completion(&tspi->xfer_completion);

	pm_runtime_enable(&pdev->dev);
	if (!pm_runtime_enabled(&pdev->dev)) {
		ret = tegra_spi_runtime_resume(&pdev->dev);
		if (ret)
			goto exit_pm_disable;
	}

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
		goto exit_pm_disable;
	}

	reset_control_assert(tspi->rst);
	udelay(2);
	reset_control_deassert(tspi->rst);
	tspi->def_command1_reg  = SPI_M_S;
	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
	pm_runtime_put(&pdev->dev);
	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
				   tegra_spi_isr_thread, IRQF_ONESHOT,
				   dev_name(&pdev->dev), tspi);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
			tspi->irq);
		goto exit_pm_disable;
	}

	master->dev.of_node = pdev->dev.of_node;
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret < 0) {
		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
		goto exit_free_irq;
	}
	return ret;

exit_free_irq:
	free_irq(spi_irq, tspi);
exit_pm_disable:
	pm_runtime_disable(&pdev->dev);
	if (!pm_runtime_status_suspended(&pdev->dev))
		tegra_spi_runtime_suspend(&pdev->dev);
	tegra_spi_deinit_dma_param(tspi, false);
exit_rx_dma_free:
	tegra_spi_deinit_dma_param(tspi, true);
exit_free_master:
	spi_master_put(master);
	return ret;
}

static int tegra_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);

	free_irq(tspi->irq, tspi);

	if (tspi->tx_dma_chan)
		tegra_spi_deinit_dma_param(tspi, false);

	if (tspi->rx_dma_chan)
		tegra_spi_deinit_dma_param(tspi, true);

	pm_runtime_disable(&pdev->dev);
	if (!pm_runtime_status_suspended(&pdev->dev))
		tegra_spi_runtime_suspend(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int tegra_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);

	return spi_master_suspend(master);
}

static int tegra_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
	int ret;

	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm runtime failed, e = %d\n", ret);
		return ret;
	}
	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
	pm_runtime_put(dev);

	return spi_master_resume(master);
}
#endif

static int tegra_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_spi_data *tspi = spi_master_get_devdata(master);

	/* Flush all write which are in PPSB queue by reading back */
	tegra_spi_readl(tspi, SPI_COMMAND1);

	clk_disable_unprepare(tspi->clk);
	return 0;
}

static int tegra_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
	int ret;

	ret = clk_prepare_enable(tspi->clk);
	if (ret < 0) {
		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
		return ret;
	}
	return 0;
}

static const struct dev_pm_ops tegra_spi_pm_ops = {
	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
		tegra_spi_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
};
static struct platform_driver tegra_spi_driver = {
	.driver = {
		.name		= "spi-tegra114",
		.pm		= &tegra_spi_pm_ops,
		.of_match_table	= tegra_spi_of_match,
	},
	.probe =	tegra_spi_probe,
	.remove =	tegra_spi_remove,
};
module_platform_driver(tegra_spi_driver);

MODULE_ALIAS("platform:spi-tegra114");
MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");