1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2023 Intel Corporation
*/
#include <linux/minmax.h>
#include "xe_mmio.h"
#include <drm/drm_managed.h>
#include <drm/xe_drm.h>
#include "regs/xe_engine_regs.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_macros.h"
#include "xe_module.h"
#include "xe_tile.h"
#define XEHP_MTCFG_ADDR XE_REG(0x101800)
#define TILE_COUNT REG_GENMASK(15, 8)
#define BAR_SIZE_SHIFT 20
static void
_resize_bar(struct xe_device *xe, int resno, resource_size_t size)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
int bar_size = pci_rebar_bytes_to_size(size);
int ret;
if (pci_resource_len(pdev, resno))
pci_release_resource(pdev, resno);
ret = pci_resize_resource(pdev, resno, bar_size);
if (ret) {
drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
resno, 1 << bar_size, ERR_PTR(ret));
return;
}
drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
}
/*
* if force_vram_bar_size is set, attempt to set to the requested size
* else set to maximum possible size
*/
static void xe_resize_vram_bar(struct xe_device *xe)
{
u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_bus *root = pdev->bus;
resource_size_t current_size;
resource_size_t rebar_size;
struct resource *root_res;
u32 bar_size_mask;
u32 pci_cmd;
int i;
/* gather some relevant info */
current_size = pci_resource_len(pdev, LMEM_BAR);
bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
if (!bar_size_mask)
return;
/* set to a specific size? */
if (force_vram_bar_size) {
u32 bar_size_bit;
rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
if (!bar_size_bit) {
drm_info(&xe->drm,
"Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
(u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
return;
}
rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
if (rebar_size == current_size)
return;
} else {
rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
/* only resize if larger than current */
if (rebar_size <= current_size)
return;
}
drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
(u64)current_size >> 20, (u64)rebar_size >> 20);
while (root->parent)
root = root->parent;
pci_bus_for_each_resource(root, root_res, i) {
if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
root_res->start > 0x100000000ull)
break;
}
if (!root_res) {
drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
return;
}
pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
_resize_bar(xe, LMEM_BAR, rebar_size);
pci_assign_unassigned_bus_resources(pdev->bus);
pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
}
static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
{
if (!pci_resource_flags(pdev, bar))
return false;
if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
return false;
if (!pci_resource_len(pdev, bar))
return false;
return true;
}
static int xe_determine_lmem_bar_size(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
drm_err(&xe->drm, "pci resource is not valid\n");
return -ENXIO;
}
xe_resize_vram_bar(xe);
xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
if (!xe->mem.vram.io_size)
return -EIO;
/* XXX: Need to change when xe link code is ready */
xe->mem.vram.dpa_base = 0;
/* set up a map to the total memory area. */
xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
return 0;
}
/**
* xe_mmio_tile_vram_size() - Collect vram size and offset information
* @tile: tile to get info for
* @vram_size: available vram (size - device reserved portions)
* @tile_size: actual vram size
* @tile_offset: physical start point in the vram address space
*
* There are 4 places for size information:
* - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
* - TILEx size (actual vram size)
* - GSMBASE offset (TILEx - "stolen")
* - CSSBASE offset (TILEx - CSS space necessary)
*
* CSSBASE is always a lower/smaller offset then GSMBASE.
*
* The actual available size of memory is to the CCS or GSM base.
* NOTE: multi-tile bases will include the tile offset.
*
*/
static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
u64 *tile_size, u64 *tile_offset)
{
struct xe_device *xe = tile_to_xe(tile);
struct xe_gt *gt = tile->primary_gt;
u64 offset;
int err;
u32 reg;
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
/* actual size */
if (unlikely(xe->info.platform == XE_DG1)) {
*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
*tile_offset = 0;
} else {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
}
/* minus device usage */
if (xe->info.has_flat_ccs) {
reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K;
} else {
offset = xe_mmio_read64_2x32(gt, GSMBASE);
}
/* remove the tile offset so we have just the available size */
*vram_size = offset - *tile_offset;
return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
}
int xe_mmio_probe_vram(struct xe_device *xe)
{
struct xe_tile *tile;
resource_size_t io_size;
u64 available_size = 0;
u64 total_size = 0;
u64 tile_offset;
u64 tile_size;
u64 vram_size;
int err;
u8 id;
if (!IS_DGFX(xe))
return 0;
/* Get the size of the root tile's vram for later accessibility comparison */
tile = xe_device_get_root_tile(xe);
err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
err = xe_determine_lmem_bar_size(xe);
if (err)
return err;
drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.io_size);
io_size = xe->mem.vram.io_size;
/* tile specific ranges */
for_each_tile(tile, xe, id) {
err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
if (err)
return err;
tile->mem.vram.actual_physical_size = tile_size;
tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
if (!tile->mem.vram.io_size) {
drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
return -ENODEV;
}
tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
tile->mem.vram.usable_size = vram_size;
tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
drm_info(&xe->drm, "Small BAR device\n");
drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
&tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + tile->mem.vram.actual_physical_size,
&tile->mem.vram.io_start, tile->mem.vram.io_start + tile->mem.vram.io_size);
/* calculate total size using tile size to get the correct HW sizing */
total_size += tile_size;
available_size += vram_size;
if (total_size > xe->mem.vram.io_size) {
drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
&total_size, &xe->mem.vram.io_size);
}
io_size -= min_t(u64, tile_size, io_size);
}
xe->mem.vram.actual_physical_size = total_size;
drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&xe->mem.vram.actual_physical_size);
drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
&available_size);
return 0;
}
void xe_mmio_probe_tiles(struct xe_device *xe)
{
size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
u8 id, tile_count = xe->info.tile_count;
struct xe_gt *gt = xe_root_mmio_gt(xe);
struct xe_tile *tile;
void *regs;
u32 mtcfg;
if (tile_count == 1)
goto add_mmio_ext;
if (!xe->info.skip_mtcfg) {
mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
if (tile_count < xe->info.tile_count) {
drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
xe->info.tile_count, tile_count);
xe->info.tile_count = tile_count;
/*
* FIXME: Needs some work for standalone media, but should be impossible
* with multi-tile for now.
*/
xe->info.gt_count = xe->info.tile_count;
}
}
regs = xe->mmio.regs;
for_each_tile(tile, xe, id) {
tile->mmio.size = tile_mmio_size;
tile->mmio.regs = regs;
regs += tile_mmio_size;
}
add_mmio_ext:
/*
* By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
* When supported, there could be an additional contiguous multi-tile MMIO extension
* space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
*/
if (xe->info.has_mmio_ext) {
regs = xe->mmio.regs + tile_mmio_size * tile_count;
for_each_tile(tile, xe, id) {
tile->mmio_ext.size = tile_mmio_ext_size;
tile->mmio_ext.regs = regs;
regs += tile_mmio_ext_size;
}
}
}
static void mmio_fini(struct drm_device *drm, void *arg)
{
struct xe_device *xe = arg;
pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
if (xe->mem.vram.mapping)
iounmap(xe->mem.vram.mapping);
}
static int xe_verify_lmem_ready(struct xe_device *xe)
{
struct xe_gt *gt = xe_root_mmio_gt(xe);
/*
* The boot firmware initializes local memory and assesses its health.
* If memory training fails, the punit will have been instructed to
* keep the GT powered down; we won't be able to communicate with it
* and we should not continue with driver initialization.
*/
if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) {
drm_err(&xe->drm, "VRAM not initialized by firmware\n");
return -ENODEV;
}
return 0;
}
int xe_mmio_init(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
const int mmio_bar = 0;
/*
* Map the entire BAR.
* The first 16MB of the BAR, belong to the root tile, and include:
* registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
*/
xe->mmio.size = pci_resource_len(pdev, mmio_bar);
xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
if (xe->mmio.regs == NULL) {
drm_err(&xe->drm, "failed to map registers\n");
return -EIO;
}
return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
}
int xe_mmio_root_tile_init(struct xe_device *xe)
{
struct xe_tile *root_tile = xe_device_get_root_tile(xe);
int err;
/* Setup first tile; other tiles (if present) will be setup later. */
root_tile->mmio.size = SZ_16M;
root_tile->mmio.regs = xe->mmio.regs;
err = xe_verify_lmem_ready(xe);
if (err)
return err;
return 0;
}
/**
* xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
* @gt: MMIO target GT
* @reg: register to read value from
*
* Although Intel GPUs have some 64-bit registers, the hardware officially
* only supports GTTMMADR register reads of 32 bits or smaller. Even if
* a readq operation may return a reasonable value, that violation of the
* spec shouldn't be relied upon and all 64-bit register reads should be
* performed as two 32-bit reads of the upper and lower dwords.
*
* When reading registers that may be changing (such as
* counters), a rollover of the lower dword between the two 32-bit reads
* can be problematic. This function attempts to ensure the upper dword has
* stabilized before returning the 64-bit value.
*
* Note that because this function may re-read the register multiple times
* while waiting for the value to stabilize it should not be used to read
* any registers where read operations have side effects.
*
* Returns the value of the 64-bit register.
*/
u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
{
struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
u32 ldw, udw, oldudw, retries;
if (reg.addr < gt->mmio.adj_limit) {
reg.addr += gt->mmio.adj_offset;
reg_udw.addr += gt->mmio.adj_offset;
}
oldudw = xe_mmio_read32(gt, reg_udw);
for (retries = 5; retries; --retries) {
ldw = xe_mmio_read32(gt, reg);
udw = xe_mmio_read32(gt, reg_udw);
if (udw == oldudw)
break;
oldudw = udw;
}
xe_gt_WARN(gt, retries == 0,
"64-bit read of %#x did not stabilize\n", reg.addr);
return (u64)udw << 32 | ldw;
}
/**
* xe_mmio_wait32() - Wait for a register to match the desired masked value
* @gt: MMIO target GT
* @reg: register to read value from
* @mask: mask to be applied to the value read from the register
* @val: desired value after applying the mask
* @timeout_us: time out after this period of time. Wait logic tries to be
* smart, applying an exponential backoff until @timeout_us is reached.
* @out_val: if not NULL, points where to store the last unmasked value
* @atomic: needs to be true if calling from an atomic context
*
* This function polls for the desired masked value and returns zero on success
* or -ETIMEDOUT if timed out.
*
* Note that @timeout_us represents the minimum amount of time to wait before
* giving up. The actual time taken by this function can be a little more than
* @timeout_us for different reasons, specially in non-atomic contexts. Thus,
* it is possible that this function succeeds even after @timeout_us has passed.
*/
int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
u32 *out_val, bool atomic)
{
ktime_t cur = ktime_get_raw();
const ktime_t end = ktime_add_us(cur, timeout_us);
int ret = -ETIMEDOUT;
s64 wait = 10;
u32 read;
for (;;) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val) {
ret = 0;
break;
}
cur = ktime_get_raw();
if (!ktime_before(cur, end))
break;
if (ktime_after(ktime_add_us(cur, wait), end))
wait = ktime_us_delta(end, cur);
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
if (ret != 0) {
read = xe_mmio_read32(gt, reg);
if ((read & mask) == val)
ret = 0;
}
if (out_val)
*out_val = read;
return ret;
}
|