summaryrefslogtreecommitdiff
path: root/drivers/dma/mediatek/mtk-cqdma.c
blob: 324b7387b1b922d3528a2de9e38fbecac2d97d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2018-2019 MediaTek Inc.

/*
 * Driver for MediaTek Command-Queue DMA Controller
 *
 * Author: Shun-Chih Yu <shun-chih.yu@mediatek.com>
 *
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/refcount.h>
#include <linux/slab.h>

#include "../virt-dma.h"

#define MTK_CQDMA_USEC_POLL		10
#define MTK_CQDMA_TIMEOUT_POLL		1000
#define MTK_CQDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
#define MTK_CQDMA_ALIGN_SIZE		1

/* The default number of virtual channel */
#define MTK_CQDMA_NR_VCHANS		32

/* The default number of physical channel */
#define MTK_CQDMA_NR_PCHANS		3

/* Registers for underlying dma manipulation */
#define MTK_CQDMA_INT_FLAG		0x0
#define MTK_CQDMA_INT_EN		0x4
#define MTK_CQDMA_EN			0x8
#define MTK_CQDMA_RESET			0xc
#define MTK_CQDMA_FLUSH			0x14
#define MTK_CQDMA_SRC			0x1c
#define MTK_CQDMA_DST			0x20
#define MTK_CQDMA_LEN1			0x24
#define MTK_CQDMA_LEN2			0x28
#define MTK_CQDMA_SRC2			0x60
#define MTK_CQDMA_DST2			0x64

/* Registers setting */
#define MTK_CQDMA_EN_BIT		BIT(0)
#define MTK_CQDMA_INT_FLAG_BIT		BIT(0)
#define MTK_CQDMA_INT_EN_BIT		BIT(0)
#define MTK_CQDMA_FLUSH_BIT		BIT(0)

#define MTK_CQDMA_WARM_RST_BIT		BIT(0)
#define MTK_CQDMA_HARD_RST_BIT		BIT(1)

#define MTK_CQDMA_MAX_LEN		GENMASK(27, 0)
#define MTK_CQDMA_ADDR_LIMIT		GENMASK(31, 0)
#define MTK_CQDMA_ADDR2_SHFIT		(32)

/**
 * struct mtk_cqdma_vdesc - The struct holding info describing virtual
 *                         descriptor (CVD)
 * @vd:                    An instance for struct virt_dma_desc
 * @len:                   The total data size device wants to move
 * @residue:               The remaining data size device will move
 * @dest:                  The destination address device wants to move to
 * @src:                   The source address device wants to move from
 * @ch:                    The pointer to the corresponding dma channel
 * @node:                  The lise_head struct to build link-list for VDs
 * @parent:                The pointer to the parent CVD
 */
struct mtk_cqdma_vdesc {
	struct virt_dma_desc vd;
	size_t len;
	size_t residue;
	dma_addr_t dest;
	dma_addr_t src;
	struct dma_chan *ch;

	struct list_head node;
	struct mtk_cqdma_vdesc *parent;
};

/**
 * struct mtk_cqdma_pchan - The struct holding info describing physical
 *                         channel (PC)
 * @queue:                 Queue for the PDs issued to this PC
 * @base:                  The mapped register I/O base of this PC
 * @irq:                   The IRQ that this PC are using
 * @refcnt:                Track how many VCs are using this PC
 * @tasklet:               Tasklet for this PC
 * @lock:                  Lock protect agaisting multiple VCs access PC
 */
struct mtk_cqdma_pchan {
	struct list_head queue;
	void __iomem *base;
	u32 irq;

	refcount_t refcnt;

	struct tasklet_struct tasklet;

	/* lock to protect PC */
	spinlock_t lock;
};

/**
 * struct mtk_cqdma_vchan - The struct holding info describing virtual
 *                         channel (VC)
 * @vc:                    An instance for struct virt_dma_chan
 * @pc:                    The pointer to the underlying PC
 * @issue_completion:	   The wait for all issued descriptors completited
 * @issue_synchronize:	   Bool indicating channel synchronization starts
 */
struct mtk_cqdma_vchan {
	struct virt_dma_chan vc;
	struct mtk_cqdma_pchan *pc;
	struct completion issue_completion;
	bool issue_synchronize;
};

/**
 * struct mtk_cqdma_device - The struct holding info describing CQDMA
 *                          device
 * @ddev:                   An instance for struct dma_device
 * @clk:                    The clock that device internal is using
 * @dma_requests:           The number of VCs the device supports to
 * @dma_channels:           The number of PCs the device supports to
 * @vc:                     The pointer to all available VCs
 * @pc:                     The pointer to all the underlying PCs
 */
struct mtk_cqdma_device {
	struct dma_device ddev;
	struct clk *clk;

	u32 dma_requests;
	u32 dma_channels;
	struct mtk_cqdma_vchan *vc;
	struct mtk_cqdma_pchan **pc;
};

static struct mtk_cqdma_device *to_cqdma_dev(struct dma_chan *chan)
{
	return container_of(chan->device, struct mtk_cqdma_device, ddev);
}

static struct mtk_cqdma_vchan *to_cqdma_vchan(struct dma_chan *chan)
{
	return container_of(chan, struct mtk_cqdma_vchan, vc.chan);
}

static struct mtk_cqdma_vdesc *to_cqdma_vdesc(struct virt_dma_desc *vd)
{
	return container_of(vd, struct mtk_cqdma_vdesc, vd);
}

static struct device *cqdma2dev(struct mtk_cqdma_device *cqdma)
{
	return cqdma->ddev.dev;
}

static u32 mtk_dma_read(struct mtk_cqdma_pchan *pc, u32 reg)
{
	return readl(pc->base + reg);
}

static void mtk_dma_write(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
{
	writel_relaxed(val, pc->base + reg);
}

static void mtk_dma_rmw(struct mtk_cqdma_pchan *pc, u32 reg,
			u32 mask, u32 set)
{
	u32 val;

	val = mtk_dma_read(pc, reg);
	val &= ~mask;
	val |= set;
	mtk_dma_write(pc, reg, val);
}

static void mtk_dma_set(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
{
	mtk_dma_rmw(pc, reg, 0, val);
}

static void mtk_dma_clr(struct mtk_cqdma_pchan *pc, u32 reg, u32 val)
{
	mtk_dma_rmw(pc, reg, val, 0);
}

static void mtk_cqdma_vdesc_free(struct virt_dma_desc *vd)
{
	kfree(to_cqdma_vdesc(vd));
}

static int mtk_cqdma_poll_engine_done(struct mtk_cqdma_pchan *pc, bool atomic)
{
	u32 status = 0;

	if (!atomic)
		return readl_poll_timeout(pc->base + MTK_CQDMA_EN,
					  status,
					  !(status & MTK_CQDMA_EN_BIT),
					  MTK_CQDMA_USEC_POLL,
					  MTK_CQDMA_TIMEOUT_POLL);

	return readl_poll_timeout_atomic(pc->base + MTK_CQDMA_EN,
					 status,
					 !(status & MTK_CQDMA_EN_BIT),
					 MTK_CQDMA_USEC_POLL,
					 MTK_CQDMA_TIMEOUT_POLL);
}

static int mtk_cqdma_hard_reset(struct mtk_cqdma_pchan *pc)
{
	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT);
	mtk_dma_clr(pc, MTK_CQDMA_RESET, MTK_CQDMA_HARD_RST_BIT);

	return mtk_cqdma_poll_engine_done(pc, true);
}

static void mtk_cqdma_start(struct mtk_cqdma_pchan *pc,
			    struct mtk_cqdma_vdesc *cvd)
{
	/* wait for the previous transaction done */
	if (mtk_cqdma_poll_engine_done(pc, true) < 0)
		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma wait transaction timeout\n");

	/* warm reset the dma engine for the new transaction */
	mtk_dma_set(pc, MTK_CQDMA_RESET, MTK_CQDMA_WARM_RST_BIT);
	if (mtk_cqdma_poll_engine_done(pc, true) < 0)
		dev_err(cqdma2dev(to_cqdma_dev(cvd->ch)), "cqdma warm reset timeout\n");

	/* setup the source */
	mtk_dma_set(pc, MTK_CQDMA_SRC, cvd->src & MTK_CQDMA_ADDR_LIMIT);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
	mtk_dma_set(pc, MTK_CQDMA_SRC2, cvd->src >> MTK_CQDMA_ADDR2_SHFIT);
#else
	mtk_dma_set(pc, MTK_CQDMA_SRC2, 0);
#endif

	/* setup the destination */
	mtk_dma_set(pc, MTK_CQDMA_DST, cvd->dest & MTK_CQDMA_ADDR_LIMIT);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
	mtk_dma_set(pc, MTK_CQDMA_DST2, cvd->dest >> MTK_CQDMA_ADDR2_SHFIT);
#else
	mtk_dma_set(pc, MTK_CQDMA_DST2, 0);
#endif

	/* setup the length */
	mtk_dma_set(pc, MTK_CQDMA_LEN1, cvd->len);

	/* start dma engine */
	mtk_dma_set(pc, MTK_CQDMA_EN, MTK_CQDMA_EN_BIT);
}

static void mtk_cqdma_issue_vchan_pending(struct mtk_cqdma_vchan *cvc)
{
	struct virt_dma_desc *vd, *vd2;
	struct mtk_cqdma_pchan *pc = cvc->pc;
	struct mtk_cqdma_vdesc *cvd;
	bool trigger_engine = false;

	lockdep_assert_held(&cvc->vc.lock);
	lockdep_assert_held(&pc->lock);

	list_for_each_entry_safe(vd, vd2, &cvc->vc.desc_issued, node) {
		/* need to trigger dma engine if PC's queue is empty */
		if (list_empty(&pc->queue))
			trigger_engine = true;

		cvd = to_cqdma_vdesc(vd);

		/* add VD into PC's queue */
		list_add_tail(&cvd->node, &pc->queue);

		/* start the dma engine */
		if (trigger_engine)
			mtk_cqdma_start(pc, cvd);

		/* remove VD from list desc_issued */
		list_del(&vd->node);
	}
}

/*
 * return true if this VC is active,
 * meaning that there are VDs under processing by the PC
 */
static bool mtk_cqdma_is_vchan_active(struct mtk_cqdma_vchan *cvc)
{
	struct mtk_cqdma_vdesc *cvd;

	list_for_each_entry(cvd, &cvc->pc->queue, node)
		if (cvc == to_cqdma_vchan(cvd->ch))
			return true;

	return false;
}

/*
 * return the pointer of the CVD that is just consumed by the PC
 */
static struct mtk_cqdma_vdesc
*mtk_cqdma_consume_work_queue(struct mtk_cqdma_pchan *pc)
{
	struct mtk_cqdma_vchan *cvc;
	struct mtk_cqdma_vdesc *cvd, *ret = NULL;

	/* consume a CVD from PC's queue */
	cvd = list_first_entry_or_null(&pc->queue,
				       struct mtk_cqdma_vdesc, node);
	if (unlikely(!cvd || !cvd->parent))
		return NULL;

	cvc = to_cqdma_vchan(cvd->ch);
	ret = cvd;

	/* update residue of the parent CVD */
	cvd->parent->residue -= cvd->len;

	/* delete CVD from PC's queue */
	list_del(&cvd->node);

	spin_lock(&cvc->vc.lock);

	/* check whether all the child CVDs completed */
	if (!cvd->parent->residue) {
		/* add the parent VD into list desc_completed */
		vchan_cookie_complete(&cvd->parent->vd);

		/* setup completion if this VC is under synchronization */
		if (cvc->issue_synchronize && !mtk_cqdma_is_vchan_active(cvc)) {
			complete(&cvc->issue_completion);
			cvc->issue_synchronize = false;
		}
	}

	spin_unlock(&cvc->vc.lock);

	/* start transaction for next CVD in the queue */
	cvd = list_first_entry_or_null(&pc->queue,
				       struct mtk_cqdma_vdesc, node);
	if (cvd)
		mtk_cqdma_start(pc, cvd);

	return ret;
}

static void mtk_cqdma_tasklet_cb(struct tasklet_struct *t)
{
	struct mtk_cqdma_pchan *pc = from_tasklet(pc, t, tasklet);
	struct mtk_cqdma_vdesc *cvd = NULL;
	unsigned long flags;

	spin_lock_irqsave(&pc->lock, flags);
	/* consume the queue */
	cvd = mtk_cqdma_consume_work_queue(pc);
	spin_unlock_irqrestore(&pc->lock, flags);

	/* submit the next CVD */
	if (cvd) {
		dma_run_dependencies(&cvd->vd.tx);

		/*
		 * free child CVD after completion.
		 * the parent CVD would be freed with desc_free by user.
		 */
		if (cvd->parent != cvd)
			kfree(cvd);
	}

	/* re-enable interrupt before leaving tasklet */
	enable_irq(pc->irq);
}

static irqreturn_t mtk_cqdma_irq(int irq, void *devid)
{
	struct mtk_cqdma_device *cqdma = devid;
	irqreturn_t ret = IRQ_NONE;
	bool schedule_tasklet = false;
	u32 i;

	/* clear interrupt flags for each PC */
	for (i = 0; i < cqdma->dma_channels; ++i, schedule_tasklet = false) {
		spin_lock(&cqdma->pc[i]->lock);
		if (mtk_dma_read(cqdma->pc[i],
				 MTK_CQDMA_INT_FLAG) & MTK_CQDMA_INT_FLAG_BIT) {
			/* clear interrupt */
			mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_FLAG,
				    MTK_CQDMA_INT_FLAG_BIT);

			schedule_tasklet = true;
			ret = IRQ_HANDLED;
		}
		spin_unlock(&cqdma->pc[i]->lock);

		if (schedule_tasklet) {
			/* disable interrupt */
			disable_irq_nosync(cqdma->pc[i]->irq);

			/* schedule the tasklet to handle the transactions */
			tasklet_schedule(&cqdma->pc[i]->tasklet);
		}
	}

	return ret;
}

static struct virt_dma_desc *mtk_cqdma_find_active_desc(struct dma_chan *c,
							dma_cookie_t cookie)
{
	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
	struct virt_dma_desc *vd;
	unsigned long flags;

	spin_lock_irqsave(&cvc->pc->lock, flags);
	list_for_each_entry(vd, &cvc->pc->queue, node)
		if (vd->tx.cookie == cookie) {
			spin_unlock_irqrestore(&cvc->pc->lock, flags);
			return vd;
		}
	spin_unlock_irqrestore(&cvc->pc->lock, flags);

	list_for_each_entry(vd, &cvc->vc.desc_issued, node)
		if (vd->tx.cookie == cookie)
			return vd;

	return NULL;
}

static enum dma_status mtk_cqdma_tx_status(struct dma_chan *c,
					   dma_cookie_t cookie,
					   struct dma_tx_state *txstate)
{
	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
	struct mtk_cqdma_vdesc *cvd;
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
	size_t bytes = 0;

	ret = dma_cookie_status(c, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&cvc->vc.lock, flags);
	vd = mtk_cqdma_find_active_desc(c, cookie);
	spin_unlock_irqrestore(&cvc->vc.lock, flags);

	if (vd) {
		cvd = to_cqdma_vdesc(vd);
		bytes = cvd->residue;
	}

	dma_set_residue(txstate, bytes);

	return ret;
}

static void mtk_cqdma_issue_pending(struct dma_chan *c)
{
	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
	unsigned long pc_flags;
	unsigned long vc_flags;

	/* acquire PC's lock before VS's lock for lock dependency in tasklet */
	spin_lock_irqsave(&cvc->pc->lock, pc_flags);
	spin_lock_irqsave(&cvc->vc.lock, vc_flags);

	if (vchan_issue_pending(&cvc->vc))
		mtk_cqdma_issue_vchan_pending(cvc);

	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags);
	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags);
}

static struct dma_async_tx_descriptor *
mtk_cqdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
			  dma_addr_t src, size_t len, unsigned long flags)
{
	struct mtk_cqdma_vdesc **cvd;
	struct dma_async_tx_descriptor *tx = NULL, *prev_tx = NULL;
	size_t i, tlen, nr_vd;

	/*
	 * In the case that trsanction length is larger than the
	 * DMA engine supports, a single memcpy transaction needs
	 * to be separated into several DMA transactions.
	 * Each DMA transaction would be described by a CVD,
	 * and the first one is referred as the parent CVD,
	 * while the others are child CVDs.
	 * The parent CVD's tx descriptor is the only tx descriptor
	 * returned to the DMA user, and it should not be completed
	 * until all the child CVDs completed.
	 */
	nr_vd = DIV_ROUND_UP(len, MTK_CQDMA_MAX_LEN);
	cvd = kcalloc(nr_vd, sizeof(*cvd), GFP_NOWAIT);
	if (!cvd)
		return NULL;

	for (i = 0; i < nr_vd; ++i) {
		cvd[i] = kzalloc(sizeof(*cvd[i]), GFP_NOWAIT);
		if (!cvd[i]) {
			for (; i > 0; --i)
				kfree(cvd[i - 1]);
			return NULL;
		}

		/* setup dma channel */
		cvd[i]->ch = c;

		/* setup sourece, destination, and length */
		tlen = (len > MTK_CQDMA_MAX_LEN) ? MTK_CQDMA_MAX_LEN : len;
		cvd[i]->len = tlen;
		cvd[i]->src = src;
		cvd[i]->dest = dest;

		/* setup tx descriptor */
		tx = vchan_tx_prep(to_virt_chan(c), &cvd[i]->vd, flags);
		tx->next = NULL;

		if (!i) {
			cvd[0]->residue = len;
		} else {
			prev_tx->next = tx;
			cvd[i]->residue = tlen;
		}

		cvd[i]->parent = cvd[0];

		/* update the src, dest, len, prev_tx for the next CVD */
		src += tlen;
		dest += tlen;
		len -= tlen;
		prev_tx = tx;
	}

	return &cvd[0]->vd.tx;
}

static void mtk_cqdma_free_inactive_desc(struct dma_chan *c)
{
	struct virt_dma_chan *vc = to_virt_chan(c);
	unsigned long flags;
	LIST_HEAD(head);

	/*
	 * set desc_allocated, desc_submitted,
	 * and desc_issued as the candicates to be freed
	 */
	spin_lock_irqsave(&vc->lock, flags);
	list_splice_tail_init(&vc->desc_allocated, &head);
	list_splice_tail_init(&vc->desc_submitted, &head);
	list_splice_tail_init(&vc->desc_issued, &head);
	spin_unlock_irqrestore(&vc->lock, flags);

	/* free descriptor lists */
	vchan_dma_desc_free_list(vc, &head);
}

static void mtk_cqdma_free_active_desc(struct dma_chan *c)
{
	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
	bool sync_needed = false;
	unsigned long pc_flags;
	unsigned long vc_flags;

	/* acquire PC's lock first due to lock dependency in dma ISR */
	spin_lock_irqsave(&cvc->pc->lock, pc_flags);
	spin_lock_irqsave(&cvc->vc.lock, vc_flags);

	/* synchronization is required if this VC is active */
	if (mtk_cqdma_is_vchan_active(cvc)) {
		cvc->issue_synchronize = true;
		sync_needed = true;
	}

	spin_unlock_irqrestore(&cvc->vc.lock, vc_flags);
	spin_unlock_irqrestore(&cvc->pc->lock, pc_flags);

	/* waiting for the completion of this VC */
	if (sync_needed)
		wait_for_completion(&cvc->issue_completion);

	/* free all descriptors in list desc_completed */
	vchan_synchronize(&cvc->vc);

	WARN_ONCE(!list_empty(&cvc->vc.desc_completed),
		  "Desc pending still in list desc_completed\n");
}

static int mtk_cqdma_terminate_all(struct dma_chan *c)
{
	/* free descriptors not processed yet by hardware */
	mtk_cqdma_free_inactive_desc(c);

	/* free descriptors being processed by hardware */
	mtk_cqdma_free_active_desc(c);

	return 0;
}

static int mtk_cqdma_alloc_chan_resources(struct dma_chan *c)
{
	struct mtk_cqdma_device *cqdma = to_cqdma_dev(c);
	struct mtk_cqdma_vchan *vc = to_cqdma_vchan(c);
	struct mtk_cqdma_pchan *pc = NULL;
	u32 i, min_refcnt = U32_MAX, refcnt;
	unsigned long flags;

	/* allocate PC with the minimun refcount */
	for (i = 0; i < cqdma->dma_channels; ++i) {
		refcnt = refcount_read(&cqdma->pc[i]->refcnt);
		if (refcnt < min_refcnt) {
			pc = cqdma->pc[i];
			min_refcnt = refcnt;
		}
	}

	if (!pc)
		return -ENOSPC;

	spin_lock_irqsave(&pc->lock, flags);

	if (!refcount_read(&pc->refcnt)) {
		/* allocate PC when the refcount is zero */
		mtk_cqdma_hard_reset(pc);

		/* enable interrupt for this PC */
		mtk_dma_set(pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT);

		/*
		 * refcount_inc would complain increment on 0; use-after-free.
		 * Thus, we need to explicitly set it as 1 initially.
		 */
		refcount_set(&pc->refcnt, 1);
	} else {
		refcount_inc(&pc->refcnt);
	}

	spin_unlock_irqrestore(&pc->lock, flags);

	vc->pc = pc;

	return 0;
}

static void mtk_cqdma_free_chan_resources(struct dma_chan *c)
{
	struct mtk_cqdma_vchan *cvc = to_cqdma_vchan(c);
	unsigned long flags;

	/* free all descriptors in all lists on the VC */
	mtk_cqdma_terminate_all(c);

	spin_lock_irqsave(&cvc->pc->lock, flags);

	/* PC is not freed until there is no VC mapped to it */
	if (refcount_dec_and_test(&cvc->pc->refcnt)) {
		/* start the flush operation and stop the engine */
		mtk_dma_set(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT);

		/* wait for the completion of flush operation */
		if (mtk_cqdma_poll_engine_done(cvc->pc, true) < 0)
			dev_err(cqdma2dev(to_cqdma_dev(c)), "cqdma flush timeout\n");

		/* clear the flush bit and interrupt flag */
		mtk_dma_clr(cvc->pc, MTK_CQDMA_FLUSH, MTK_CQDMA_FLUSH_BIT);
		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_FLAG,
			    MTK_CQDMA_INT_FLAG_BIT);

		/* disable interrupt for this PC */
		mtk_dma_clr(cvc->pc, MTK_CQDMA_INT_EN, MTK_CQDMA_INT_EN_BIT);
	}

	spin_unlock_irqrestore(&cvc->pc->lock, flags);
}

static int mtk_cqdma_hw_init(struct mtk_cqdma_device *cqdma)
{
	unsigned long flags;
	int err;
	u32 i;

	pm_runtime_enable(cqdma2dev(cqdma));
	pm_runtime_get_sync(cqdma2dev(cqdma));

	err = clk_prepare_enable(cqdma->clk);

	if (err) {
		pm_runtime_put_sync(cqdma2dev(cqdma));
		pm_runtime_disable(cqdma2dev(cqdma));
		return err;
	}

	/* reset all PCs */
	for (i = 0; i < cqdma->dma_channels; ++i) {
		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0) {
			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n");
			spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);

			clk_disable_unprepare(cqdma->clk);
			pm_runtime_put_sync(cqdma2dev(cqdma));
			pm_runtime_disable(cqdma2dev(cqdma));
			return -EINVAL;
		}
		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
	}

	return 0;
}

static void mtk_cqdma_hw_deinit(struct mtk_cqdma_device *cqdma)
{
	unsigned long flags;
	u32 i;

	/* reset all PCs */
	for (i = 0; i < cqdma->dma_channels; ++i) {
		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
		if (mtk_cqdma_hard_reset(cqdma->pc[i]) < 0)
			dev_err(cqdma2dev(cqdma), "cqdma hard reset timeout\n");
		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);
	}

	clk_disable_unprepare(cqdma->clk);

	pm_runtime_put_sync(cqdma2dev(cqdma));
	pm_runtime_disable(cqdma2dev(cqdma));
}

static const struct of_device_id mtk_cqdma_match[] = {
	{ .compatible = "mediatek,mt6765-cqdma" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mtk_cqdma_match);

static int mtk_cqdma_probe(struct platform_device *pdev)
{
	struct mtk_cqdma_device *cqdma;
	struct mtk_cqdma_vchan *vc;
	struct dma_device *dd;
	int err;
	u32 i;

	cqdma = devm_kzalloc(&pdev->dev, sizeof(*cqdma), GFP_KERNEL);
	if (!cqdma)
		return -ENOMEM;

	dd = &cqdma->ddev;

	cqdma->clk = devm_clk_get(&pdev->dev, "cqdma");
	if (IS_ERR(cqdma->clk)) {
		dev_err(&pdev->dev, "No clock for %s\n",
			dev_name(&pdev->dev));
		return PTR_ERR(cqdma->clk);
	}

	dma_cap_set(DMA_MEMCPY, dd->cap_mask);

	dd->copy_align = MTK_CQDMA_ALIGN_SIZE;
	dd->device_alloc_chan_resources = mtk_cqdma_alloc_chan_resources;
	dd->device_free_chan_resources = mtk_cqdma_free_chan_resources;
	dd->device_tx_status = mtk_cqdma_tx_status;
	dd->device_issue_pending = mtk_cqdma_issue_pending;
	dd->device_prep_dma_memcpy = mtk_cqdma_prep_dma_memcpy;
	dd->device_terminate_all = mtk_cqdma_terminate_all;
	dd->src_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS;
	dd->dst_addr_widths = MTK_CQDMA_DMA_BUSWIDTHS;
	dd->directions = BIT(DMA_MEM_TO_MEM);
	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
	dd->dev = &pdev->dev;
	INIT_LIST_HEAD(&dd->channels);

	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
						      "dma-requests",
						      &cqdma->dma_requests)) {
		dev_info(&pdev->dev,
			 "Using %u as missing dma-requests property\n",
			 MTK_CQDMA_NR_VCHANS);

		cqdma->dma_requests = MTK_CQDMA_NR_VCHANS;
	}

	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
						      "dma-channels",
						      &cqdma->dma_channels)) {
		dev_info(&pdev->dev,
			 "Using %u as missing dma-channels property\n",
			 MTK_CQDMA_NR_PCHANS);

		cqdma->dma_channels = MTK_CQDMA_NR_PCHANS;
	}

	cqdma->pc = devm_kcalloc(&pdev->dev, cqdma->dma_channels,
				 sizeof(*cqdma->pc), GFP_KERNEL);
	if (!cqdma->pc)
		return -ENOMEM;

	/* initialization for PCs */
	for (i = 0; i < cqdma->dma_channels; ++i) {
		cqdma->pc[i] = devm_kcalloc(&pdev->dev, 1,
					    sizeof(**cqdma->pc), GFP_KERNEL);
		if (!cqdma->pc[i])
			return -ENOMEM;

		INIT_LIST_HEAD(&cqdma->pc[i]->queue);
		spin_lock_init(&cqdma->pc[i]->lock);
		refcount_set(&cqdma->pc[i]->refcnt, 0);
		cqdma->pc[i]->base = devm_platform_ioremap_resource(pdev, i);
		if (IS_ERR(cqdma->pc[i]->base))
			return PTR_ERR(cqdma->pc[i]->base);

		/* allocate IRQ resource */
		err = platform_get_irq(pdev, i);
		if (err < 0)
			return err;
		cqdma->pc[i]->irq = err;

		err = devm_request_irq(&pdev->dev, cqdma->pc[i]->irq,
				       mtk_cqdma_irq, 0, dev_name(&pdev->dev),
				       cqdma);
		if (err) {
			dev_err(&pdev->dev,
				"request_irq failed with err %d\n", err);
			return -EINVAL;
		}
	}

	/* allocate resource for VCs */
	cqdma->vc = devm_kcalloc(&pdev->dev, cqdma->dma_requests,
				 sizeof(*cqdma->vc), GFP_KERNEL);
	if (!cqdma->vc)
		return -ENOMEM;

	for (i = 0; i < cqdma->dma_requests; i++) {
		vc = &cqdma->vc[i];
		vc->vc.desc_free = mtk_cqdma_vdesc_free;
		vchan_init(&vc->vc, dd);
		init_completion(&vc->issue_completion);
	}

	err = dma_async_device_register(dd);
	if (err)
		return err;

	err = of_dma_controller_register(pdev->dev.of_node,
					 of_dma_xlate_by_chan_id, cqdma);
	if (err) {
		dev_err(&pdev->dev,
			"MediaTek CQDMA OF registration failed %d\n", err);
		goto err_unregister;
	}

	err = mtk_cqdma_hw_init(cqdma);
	if (err) {
		dev_err(&pdev->dev,
			"MediaTek CQDMA HW initialization failed %d\n", err);
		goto err_unregister;
	}

	platform_set_drvdata(pdev, cqdma);

	/* initialize tasklet for each PC */
	for (i = 0; i < cqdma->dma_channels; ++i)
		tasklet_setup(&cqdma->pc[i]->tasklet, mtk_cqdma_tasklet_cb);

	dev_info(&pdev->dev, "MediaTek CQDMA driver registered\n");

	return 0;

err_unregister:
	dma_async_device_unregister(dd);

	return err;
}

static int mtk_cqdma_remove(struct platform_device *pdev)
{
	struct mtk_cqdma_device *cqdma = platform_get_drvdata(pdev);
	struct mtk_cqdma_vchan *vc;
	unsigned long flags;
	int i;

	/* kill VC task */
	for (i = 0; i < cqdma->dma_requests; i++) {
		vc = &cqdma->vc[i];

		list_del(&vc->vc.chan.device_node);
		tasklet_kill(&vc->vc.task);
	}

	/* disable interrupt */
	for (i = 0; i < cqdma->dma_channels; i++) {
		spin_lock_irqsave(&cqdma->pc[i]->lock, flags);
		mtk_dma_clr(cqdma->pc[i], MTK_CQDMA_INT_EN,
			    MTK_CQDMA_INT_EN_BIT);
		spin_unlock_irqrestore(&cqdma->pc[i]->lock, flags);

		/* Waits for any pending IRQ handlers to complete */
		synchronize_irq(cqdma->pc[i]->irq);

		tasklet_kill(&cqdma->pc[i]->tasklet);
	}

	/* disable hardware */
	mtk_cqdma_hw_deinit(cqdma);

	dma_async_device_unregister(&cqdma->ddev);
	of_dma_controller_free(pdev->dev.of_node);

	return 0;
}

static struct platform_driver mtk_cqdma_driver = {
	.probe = mtk_cqdma_probe,
	.remove = mtk_cqdma_remove,
	.driver = {
		.name           = KBUILD_MODNAME,
		.of_match_table = mtk_cqdma_match,
	},
};
module_platform_driver(mtk_cqdma_driver);

MODULE_DESCRIPTION("MediaTek CQDMA Controller Driver");
MODULE_AUTHOR("Shun-Chih Yu <shun-chih.yu@mediatek.com>");
MODULE_LICENSE("GPL v2");