summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/pmu.c
blob: edb89b51b3838155f8262431b06f89c2b8fcd6d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
 *
 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Avi Kivity   <avi@redhat.com>
 *   Gleb Natapov <gleb@redhat.com>
 *   Wei Huang    <wei@redhat.com>
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/types.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
#include <linux/bsearch.h>
#include <linux/sort.h>
#include <asm/perf_event.h>
#include <asm/cpu_device_id.h>
#include "x86.h"
#include "cpuid.h"
#include "lapic.h"
#include "pmu.h"

/* This is enough to filter the vast majority of currently defined events. */
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300

struct x86_pmu_capability __read_mostly kvm_pmu_cap;
EXPORT_SYMBOL_GPL(kvm_pmu_cap);

/* Precise Distribution of Instructions Retired (PDIR) */
static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
	/* Instruction-Accurate PDIR (PDIR++) */
	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
	{}
};

/* Precise Distribution (PDist) */
static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
	{}
};

/* NOTE:
 * - Each perf counter is defined as "struct kvm_pmc";
 * - There are two types of perf counters: general purpose (gp) and fixed.
 *   gp counters are stored in gp_counters[] and fixed counters are stored
 *   in fixed_counters[] respectively. Both of them are part of "struct
 *   kvm_pmu";
 * - pmu.c understands the difference between gp counters and fixed counters.
 *   However AMD doesn't support fixed-counters;
 * - There are three types of index to access perf counters (PMC):
 *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
 *        has MSR_K7_PERFCTRn and, for families 15H and later,
 *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
 *        aliased to MSR_K7_PERFCTRn.
 *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
 *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
 *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
 *        that it also supports fixed counters. idx can be used to as index to
 *        gp and fixed counters.
 *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
 *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
 *        all perf counters (both gp and fixed). The mapping relationship
 *        between pmc and perf counters is as the following:
 *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
 *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
 *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
 *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
 */

static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;

#define KVM_X86_PMU_OP(func)					     \
	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
				*(((struct kvm_pmu_ops *)0)->func));
#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
#include <asm/kvm-x86-pmu-ops.h>

void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
{
	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));

#define __KVM_X86_PMU_OP(func) \
	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
#define KVM_X86_PMU_OP(func) \
	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
#include <asm/kvm-x86-pmu-ops.h>
#undef __KVM_X86_PMU_OP
}

static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
{
	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);

	kvm_pmu_deliver_pmi(vcpu);
}

static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
{
	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
	bool skip_pmi = false;

	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
		if (!in_pmi) {
			/*
			 * TODO: KVM is currently _choosing_ to not generate records
			 * for emulated instructions, avoiding BUFFER_OVF PMI when
			 * there are no records. Strictly speaking, it should be done
			 * as well in the right context to improve sampling accuracy.
			 */
			skip_pmi = true;
		} else {
			/* Indicate PEBS overflow PMI to guest. */
			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
						      (unsigned long *)&pmu->global_status);
		}
	} else {
		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
	}

	if (!pmc->intr || skip_pmi)
		return;

	/*
	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
	 * can be ejected on a guest mode re-entry. Otherwise we can't
	 * be sure that vcpu wasn't executing hlt instruction at the
	 * time of vmexit and is not going to re-enter guest mode until
	 * woken up. So we should wake it, but this is impossible from
	 * NMI context. Do it from irq work instead.
	 */
	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
	else
		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
}

static void kvm_perf_overflow(struct perf_event *perf_event,
			      struct perf_sample_data *data,
			      struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;

	/*
	 * Ignore overflow events for counters that are scheduled to be
	 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
	 * handling of a related guest WRMSR.
	 */
	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
		return;

	__kvm_perf_overflow(pmc, true);

	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
}

static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
{
	/*
	 * For some model specific pebs counters with special capabilities
	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
	 * level to the maximum value (currently 3, backwards compatible)
	 * so that the perf subsystem would assign specific hardware counter
	 * with that capability for vPMC.
	 */
	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
		return 3;

	/*
	 * The non-zero precision level of guest event makes the ordinary
	 * guest event becomes a guest PEBS event and triggers the host
	 * PEBS PMI handler to determine whether the PEBS overflow PMI
	 * comes from the host counters or the guest.
	 */
	return 1;
}

static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
				 bool exclude_user, bool exclude_kernel,
				 bool intr)
{
	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
	struct perf_event *event;
	struct perf_event_attr attr = {
		.type = type,
		.size = sizeof(attr),
		.pinned = true,
		.exclude_idle = true,
		.exclude_host = 1,
		.exclude_user = exclude_user,
		.exclude_kernel = exclude_kernel,
		.config = config,
	};
	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);

	attr.sample_period = get_sample_period(pmc, pmc->counter);

	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
	    guest_cpuid_is_intel(pmc->vcpu)) {
		/*
		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
		 * period. Just clear the sample period so at least
		 * allocating the counter doesn't fail.
		 */
		attr.sample_period = 0;
	}
	if (pebs) {
		/*
		 * For most PEBS hardware events, the difference in the software
		 * precision levels of guest and host PEBS events will not affect
		 * the accuracy of the PEBS profiling result, because the "event IP"
		 * in the PEBS record is calibrated on the guest side.
		 */
		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
	}

	event = perf_event_create_kernel_counter(&attr, -1, current,
						 kvm_perf_overflow, pmc);
	if (IS_ERR(event)) {
		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
			    PTR_ERR(event), pmc->idx);
		return PTR_ERR(event);
	}

	pmc->perf_event = event;
	pmc_to_pmu(pmc)->event_count++;
	pmc->is_paused = false;
	pmc->intr = intr || pebs;
	return 0;
}

static void pmc_pause_counter(struct kvm_pmc *pmc)
{
	u64 counter = pmc->counter;

	if (!pmc->perf_event || pmc->is_paused)
		return;

	/* update counter, reset event value to avoid redundant accumulation */
	counter += perf_event_pause(pmc->perf_event, true);
	pmc->counter = counter & pmc_bitmask(pmc);
	pmc->is_paused = true;
}

static bool pmc_resume_counter(struct kvm_pmc *pmc)
{
	if (!pmc->perf_event)
		return false;

	/* recalibrate sample period and check if it's accepted by perf core */
	if (is_sampling_event(pmc->perf_event) &&
	    perf_event_period(pmc->perf_event,
			      get_sample_period(pmc, pmc->counter)))
		return false;

	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
	    (!!pmc->perf_event->attr.precise_ip))
		return false;

	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
	perf_event_enable(pmc->perf_event);
	pmc->is_paused = false;

	return true;
}

static int filter_cmp(const void *pa, const void *pb, u64 mask)
{
	u64 a = *(u64 *)pa & mask;
	u64 b = *(u64 *)pb & mask;

	return (a > b) - (a < b);
}


static int filter_sort_cmp(const void *pa, const void *pb)
{
	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
}

/*
 * For the event filter, searching is done on the 'includes' list and
 * 'excludes' list separately rather than on the 'events' list (which
 * has both).  As a result the exclude bit can be ignored.
 */
static int filter_event_cmp(const void *pa, const void *pb)
{
	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
}

static int find_filter_index(u64 *events, u64 nevents, u64 key)
{
	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
			  filter_event_cmp);

	if (!fe)
		return -1;

	return fe - events;
}

static bool is_filter_entry_match(u64 filter_event, u64 umask)
{
	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;

	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
		     ARCH_PERFMON_EVENTSEL_UMASK);

	return (umask & mask) == match;
}

static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
{
	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
	int i, index;

	index = find_filter_index(events, nevents, event_select);
	if (index < 0)
		return false;

	/*
	 * Entries are sorted by the event select.  Walk the list in both
	 * directions to process all entries with the targeted event select.
	 */
	for (i = index; i < nevents; i++) {
		if (filter_event_cmp(&events[i], &event_select))
			break;

		if (is_filter_entry_match(events[i], umask))
			return true;
	}

	for (i = index - 1; i >= 0; i--) {
		if (filter_event_cmp(&events[i], &event_select))
			break;

		if (is_filter_entry_match(events[i], umask))
			return true;
	}

	return false;
}

static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
				u64 eventsel)
{
	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
		return f->action == KVM_PMU_EVENT_ALLOW;

	return f->action == KVM_PMU_EVENT_DENY;
}

static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
				   int idx)
{
	int fixed_idx = idx - INTEL_PMC_IDX_FIXED;

	if (filter->action == KVM_PMU_EVENT_DENY &&
	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
		return false;
	if (filter->action == KVM_PMU_EVENT_ALLOW &&
	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
		return false;

	return true;
}

static bool check_pmu_event_filter(struct kvm_pmc *pmc)
{
	struct kvm_x86_pmu_event_filter *filter;
	struct kvm *kvm = pmc->vcpu->kvm;

	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
	if (!filter)
		return true;

	if (pmc_is_gp(pmc))
		return is_gp_event_allowed(filter, pmc->eventsel);

	return is_fixed_event_allowed(filter, pmc->idx);
}

static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
{
	return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
	       static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
	       check_pmu_event_filter(pmc);
}

static void reprogram_counter(struct kvm_pmc *pmc)
{
	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
	u64 eventsel = pmc->eventsel;
	u64 new_config = eventsel;
	u8 fixed_ctr_ctrl;

	pmc_pause_counter(pmc);

	if (!pmc_event_is_allowed(pmc))
		goto reprogram_complete;

	if (pmc->counter < pmc->prev_counter)
		__kvm_perf_overflow(pmc, false);

	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
		printk_once("kvm pmu: pin control bit is ignored\n");

	if (pmc_is_fixed(pmc)) {
		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
						  pmc->idx - INTEL_PMC_IDX_FIXED);
		if (fixed_ctr_ctrl & 0x1)
			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
		if (fixed_ctr_ctrl & 0x2)
			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
		if (fixed_ctr_ctrl & 0x8)
			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
		new_config = (u64)fixed_ctr_ctrl;
	}

	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
		goto reprogram_complete;

	pmc_release_perf_event(pmc);

	pmc->current_config = new_config;

	/*
	 * If reprogramming fails, e.g. due to contention, leave the counter's
	 * regprogram bit set, i.e. opportunistically try again on the next PMU
	 * refresh.  Don't make a new request as doing so can stall the guest
	 * if reprogramming repeatedly fails.
	 */
	if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
				  (eventsel & pmu->raw_event_mask),
				  !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
				  !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
				  eventsel & ARCH_PERFMON_EVENTSEL_INT))
		return;

reprogram_complete:
	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
	pmc->prev_counter = 0;
}

void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	int bit;

	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
		struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);

		if (unlikely(!pmc)) {
			clear_bit(bit, pmu->reprogram_pmi);
			continue;
		}

		reprogram_counter(pmc);
	}

	/*
	 * Unused perf_events are only released if the corresponding MSRs
	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
	 * triggers KVM_REQ_PMU if cleanup is needed.
	 */
	if (unlikely(pmu->need_cleanup))
		kvm_pmu_cleanup(vcpu);
}

/* check if idx is a valid index to access PMU */
bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
{
	return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
}

bool is_vmware_backdoor_pmc(u32 pmc_idx)
{
	switch (pmc_idx) {
	case VMWARE_BACKDOOR_PMC_HOST_TSC:
	case VMWARE_BACKDOOR_PMC_REAL_TIME:
	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
		return true;
	}
	return false;
}

static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
{
	u64 ctr_val;

	switch (idx) {
	case VMWARE_BACKDOOR_PMC_HOST_TSC:
		ctr_val = rdtsc();
		break;
	case VMWARE_BACKDOOR_PMC_REAL_TIME:
		ctr_val = ktime_get_boottime_ns();
		break;
	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
		ctr_val = ktime_get_boottime_ns() +
			vcpu->kvm->arch.kvmclock_offset;
		break;
	default:
		return 1;
	}

	*data = ctr_val;
	return 0;
}

int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
{
	bool fast_mode = idx & (1u << 31);
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;
	u64 mask = fast_mode ? ~0u : ~0ull;

	if (!pmu->version)
		return 1;

	if (is_vmware_backdoor_pmc(idx))
		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);

	pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
	if (!pmc)
		return 1;

	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
	    kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
		return 1;

	*data = pmc_read_counter(pmc) & mask;
	return 0;
}

void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
{
	if (lapic_in_kernel(vcpu)) {
		static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
	}
}

bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
{
	switch (msr) {
	case MSR_CORE_PERF_GLOBAL_STATUS:
	case MSR_CORE_PERF_GLOBAL_CTRL:
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
	default:
		break;
	}
	return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
		static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
}

static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);

	if (pmc)
		__set_bit(pmc->idx, pmu->pmc_in_use);
}

int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	u32 msr = msr_info->index;

	switch (msr) {
	case MSR_CORE_PERF_GLOBAL_STATUS:
	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
		msr_info->data = pmu->global_status;
		break;
	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
	case MSR_CORE_PERF_GLOBAL_CTRL:
		msr_info->data = pmu->global_ctrl;
		break;
	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		msr_info->data = 0;
		break;
	default:
		return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
	}

	return 0;
}

int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	u32 msr = msr_info->index;
	u64 data = msr_info->data;
	u64 diff;

	/*
	 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
	 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
	 */
	switch (msr) {
	case MSR_CORE_PERF_GLOBAL_STATUS:
		if (!msr_info->host_initiated)
			return 1; /* RO MSR */
		fallthrough;
	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
		/* Per PPR, Read-only MSR. Writes are ignored. */
		if (!msr_info->host_initiated)
			break;

		if (data & pmu->global_status_mask)
			return 1;

		pmu->global_status = data;
		break;
	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
		data &= ~pmu->global_ctrl_mask;
		fallthrough;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (!kvm_valid_perf_global_ctrl(pmu, data))
			return 1;

		if (pmu->global_ctrl != data) {
			diff = pmu->global_ctrl ^ data;
			pmu->global_ctrl = data;
			reprogram_counters(pmu, diff);
		}
		break;
	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
		/*
		 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
		 * GLOBAL_STATUS, and so the set of reserved bits is the same.
		 */
		if (data & pmu->global_status_mask)
			return 1;
		fallthrough;
	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
		if (!msr_info->host_initiated)
			pmu->global_status &= ~data;
		break;
	default:
		kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
		return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
	}

	return 0;
}

/* refresh PMU settings. This function generally is called when underlying
 * settings are changed (such as changes of PMU CPUID by guest VMs), which
 * should rarely happen.
 */
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
{
	if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
		return;

	bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
	static_call(kvm_x86_pmu_refresh)(vcpu);
}

void kvm_pmu_reset(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);

	irq_work_sync(&pmu->irq_work);
	static_call(kvm_x86_pmu_reset)(vcpu);
}

void kvm_pmu_init(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);

	memset(pmu, 0, sizeof(*pmu));
	static_call(kvm_x86_pmu_init)(vcpu);
	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
	pmu->event_count = 0;
	pmu->need_cleanup = false;
	kvm_pmu_refresh(vcpu);
}

/* Release perf_events for vPMCs that have been unused for a full time slice.  */
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc = NULL;
	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
	int i;

	pmu->need_cleanup = false;

	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
		      pmu->pmc_in_use, X86_PMC_IDX_MAX);

	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);

		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
			pmc_stop_counter(pmc);
	}

	static_call_cond(kvm_x86_pmu_cleanup)(vcpu);

	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
}

void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_pmu_reset(vcpu);
}

static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
{
	pmc->prev_counter = pmc->counter;
	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
	kvm_pmu_request_counter_reprogram(pmc);
}

static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
	unsigned int perf_hw_id)
{
	return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
		AMD64_RAW_EVENT_MASK_NB);
}

static inline bool cpl_is_matched(struct kvm_pmc *pmc)
{
	bool select_os, select_user;
	u64 config;

	if (pmc_is_gp(pmc)) {
		config = pmc->eventsel;
		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
	} else {
		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
					  pmc->idx - INTEL_PMC_IDX_FIXED);
		select_os = config & 0x1;
		select_user = config & 0x2;
	}

	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
}

void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
{
	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;
	int i;

	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);

		if (!pmc || !pmc_event_is_allowed(pmc))
			continue;

		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
			kvm_pmu_incr_counter(pmc);
	}
}
EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);

static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
{
	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
	int i;

	for (i = 0; i < filter->nevents; i++) {
		if (filter->events[i] & ~mask)
			return false;
	}

	return true;
}

static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
{
	int i, j;

	for (i = 0, j = 0; i < filter->nevents; i++) {
		/*
		 * Skip events that are impossible to match against a guest
		 * event.  When filtering, only the event select + unit mask
		 * of the guest event is used.  To maintain backwards
		 * compatibility, impossible filters can't be rejected :-(
		 */
		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
					  ARCH_PERFMON_EVENTSEL_UMASK))
			continue;
		/*
		 * Convert userspace events to a common in-kernel event so
		 * only one code path is needed to support both events.  For
		 * the in-kernel events use masked events because they are
		 * flexible enough to handle both cases.  To convert to masked
		 * events all that's needed is to add an "all ones" umask_mask,
		 * (unmasked filter events don't support EXCLUDE).
		 */
		filter->events[j++] = filter->events[i] |
				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
	}

	filter->nevents = j;
}

static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
{
	int i;

	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
		convert_to_masked_filter(filter);
	else if (!is_masked_filter_valid(filter))
		return -EINVAL;

	/*
	 * Sort entries by event select and includes vs. excludes so that all
	 * entries for a given event select can be processed efficiently during
	 * filtering.  The EXCLUDE flag uses a more significant bit than the
	 * event select, and so the sorted list is also effectively split into
	 * includes and excludes sub-lists.
	 */
	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
	     filter_sort_cmp, NULL);

	i = filter->nevents;
	/* Find the first EXCLUDE event (only supported for masked events). */
	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
		for (i = 0; i < filter->nevents; i++) {
			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
				break;
		}
	}

	filter->nr_includes = i;
	filter->nr_excludes = filter->nevents - filter->nr_includes;
	filter->includes = filter->events;
	filter->excludes = filter->events + filter->nr_includes;

	return 0;
}

int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
{
	struct kvm_pmu_event_filter __user *user_filter = argp;
	struct kvm_x86_pmu_event_filter *filter;
	struct kvm_pmu_event_filter tmp;
	struct kvm_vcpu *vcpu;
	unsigned long i;
	size_t size;
	int r;

	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
		return -EFAULT;

	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
	    tmp.action != KVM_PMU_EVENT_DENY)
		return -EINVAL;

	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
		return -EINVAL;

	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
		return -E2BIG;

	size = struct_size(filter, events, tmp.nevents);
	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
	if (!filter)
		return -ENOMEM;

	filter->action = tmp.action;
	filter->nevents = tmp.nevents;
	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
	filter->flags = tmp.flags;

	r = -EFAULT;
	if (copy_from_user(filter->events, user_filter->events,
			   sizeof(filter->events[0]) * filter->nevents))
		goto cleanup;

	r = prepare_filter_lists(filter);
	if (r)
		goto cleanup;

	mutex_lock(&kvm->lock);
	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
				     mutex_is_locked(&kvm->lock));
	mutex_unlock(&kvm->lock);
	synchronize_srcu_expedited(&kvm->srcu);

	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));

	kvm_for_each_vcpu(i, vcpu, kvm)
		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);

	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);

	r = 0;
cleanup:
	kfree(filter);
	return r;
}