summaryrefslogtreecommitdiff
path: root/arch/mips/mm/context.c
blob: 966f40066f03f74f12f117a739c9a4deb7a0edd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// SPDX-License-Identifier: GPL-2.0
#include <linux/atomic.h>
#include <linux/mmu_context.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>

static DEFINE_RAW_SPINLOCK(cpu_mmid_lock);

static atomic64_t mmid_version;
static unsigned int num_mmids;
static unsigned long *mmid_map;

static DEFINE_PER_CPU(u64, reserved_mmids);
static cpumask_t tlb_flush_pending;

static bool asid_versions_eq(int cpu, u64 a, u64 b)
{
	return ((a ^ b) & asid_version_mask(cpu)) == 0;
}

void get_new_mmu_context(struct mm_struct *mm)
{
	unsigned int cpu;
	u64 asid;

	/*
	 * This function is specific to ASIDs, and should not be called when
	 * MMIDs are in use.
	 */
	if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid))
		return;

	cpu = smp_processor_id();
	asid = asid_cache(cpu);

	if (!((asid += cpu_asid_inc()) & cpu_asid_mask(&cpu_data[cpu]))) {
		if (cpu_has_vtag_icache)
			flush_icache_all();
		local_flush_tlb_all();	/* start new asid cycle */
	}

	set_cpu_context(cpu, mm, asid);
	asid_cache(cpu) = asid;
}
EXPORT_SYMBOL_GPL(get_new_mmu_context);

void check_mmu_context(struct mm_struct *mm)
{
	unsigned int cpu = smp_processor_id();

	/*
	 * This function is specific to ASIDs, and should not be called when
	 * MMIDs are in use.
	 */
	if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid))
		return;

	/* Check if our ASID is of an older version and thus invalid */
	if (!asid_versions_eq(cpu, cpu_context(cpu, mm), asid_cache(cpu)))
		get_new_mmu_context(mm);
}
EXPORT_SYMBOL_GPL(check_mmu_context);

static void flush_context(void)
{
	u64 mmid;
	int cpu;

	/* Update the list of reserved MMIDs and the MMID bitmap */
	bitmap_zero(mmid_map, num_mmids);

	/* Reserve an MMID for kmap/wired entries */
	__set_bit(MMID_KERNEL_WIRED, mmid_map);

	for_each_possible_cpu(cpu) {
		mmid = xchg_relaxed(&cpu_data[cpu].asid_cache, 0);

		/*
		 * If this CPU has already been through a
		 * rollover, but hasn't run another task in
		 * the meantime, we must preserve its reserved
		 * MMID, as this is the only trace we have of
		 * the process it is still running.
		 */
		if (mmid == 0)
			mmid = per_cpu(reserved_mmids, cpu);

		__set_bit(mmid & cpu_asid_mask(&cpu_data[cpu]), mmid_map);
		per_cpu(reserved_mmids, cpu) = mmid;
	}

	/*
	 * Queue a TLB invalidation for each CPU to perform on next
	 * context-switch
	 */
	cpumask_setall(&tlb_flush_pending);
}

static bool check_update_reserved_mmid(u64 mmid, u64 newmmid)
{
	bool hit;
	int cpu;

	/*
	 * Iterate over the set of reserved MMIDs looking for a match.
	 * If we find one, then we can update our mm to use newmmid
	 * (i.e. the same MMID in the current generation) but we can't
	 * exit the loop early, since we need to ensure that all copies
	 * of the old MMID are updated to reflect the mm. Failure to do
	 * so could result in us missing the reserved MMID in a future
	 * generation.
	 */
	hit = false;
	for_each_possible_cpu(cpu) {
		if (per_cpu(reserved_mmids, cpu) == mmid) {
			hit = true;
			per_cpu(reserved_mmids, cpu) = newmmid;
		}
	}

	return hit;
}

static u64 get_new_mmid(struct mm_struct *mm)
{
	static u32 cur_idx = MMID_KERNEL_WIRED + 1;
	u64 mmid, version, mmid_mask;

	mmid = cpu_context(0, mm);
	version = atomic64_read(&mmid_version);
	mmid_mask = cpu_asid_mask(&boot_cpu_data);

	if (!asid_versions_eq(0, mmid, 0)) {
		u64 newmmid = version | (mmid & mmid_mask);

		/*
		 * If our current MMID was active during a rollover, we
		 * can continue to use it and this was just a false alarm.
		 */
		if (check_update_reserved_mmid(mmid, newmmid)) {
			mmid = newmmid;
			goto set_context;
		}

		/*
		 * We had a valid MMID in a previous life, so try to re-use
		 * it if possible.
		 */
		if (!__test_and_set_bit(mmid & mmid_mask, mmid_map)) {
			mmid = newmmid;
			goto set_context;
		}
	}

	/* Allocate a free MMID */
	mmid = find_next_zero_bit(mmid_map, num_mmids, cur_idx);
	if (mmid != num_mmids)
		goto reserve_mmid;

	/* We're out of MMIDs, so increment the global version */
	version = atomic64_add_return_relaxed(asid_first_version(0),
					      &mmid_version);

	/* Note currently active MMIDs & mark TLBs as requiring flushes */
	flush_context();

	/* We have more MMIDs than CPUs, so this will always succeed */
	mmid = find_first_zero_bit(mmid_map, num_mmids);

reserve_mmid:
	__set_bit(mmid, mmid_map);
	cur_idx = mmid;
	mmid |= version;
set_context:
	set_cpu_context(0, mm, mmid);
	return mmid;
}

void check_switch_mmu_context(struct mm_struct *mm)
{
	unsigned int cpu = smp_processor_id();
	u64 ctx, old_active_mmid;
	unsigned long flags;

	if (!cpu_has_mmid) {
		check_mmu_context(mm);
		write_c0_entryhi(cpu_asid(cpu, mm));
		goto setup_pgd;
	}

	/*
	 * MMID switch fast-path, to avoid acquiring cpu_mmid_lock when it's
	 * unnecessary.
	 *
	 * The memory ordering here is subtle. If our active_mmids is non-zero
	 * and the MMID matches the current version, then we update the CPU's
	 * asid_cache with a relaxed cmpxchg. Racing with a concurrent rollover
	 * means that either:
	 *
	 * - We get a zero back from the cmpxchg and end up waiting on
	 *   cpu_mmid_lock in check_mmu_context(). Taking the lock synchronises
	 *   with the rollover and so we are forced to see the updated
	 *   generation.
	 *
	 * - We get a valid MMID back from the cmpxchg, which means the
	 *   relaxed xchg in flush_context will treat us as reserved
	 *   because atomic RmWs are totally ordered for a given location.
	 */
	ctx = cpu_context(cpu, mm);
	old_active_mmid = READ_ONCE(cpu_data[cpu].asid_cache);
	if (!old_active_mmid ||
	    !asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version)) ||
	    !cmpxchg_relaxed(&cpu_data[cpu].asid_cache, old_active_mmid, ctx)) {
		raw_spin_lock_irqsave(&cpu_mmid_lock, flags);

		ctx = cpu_context(cpu, mm);
		if (!asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version)))
			ctx = get_new_mmid(mm);

		WRITE_ONCE(cpu_data[cpu].asid_cache, ctx);
		raw_spin_unlock_irqrestore(&cpu_mmid_lock, flags);
	}

	/*
	 * Invalidate the local TLB if needed. Note that we must only clear our
	 * bit in tlb_flush_pending after this is complete, so that the
	 * cpu_has_shared_ftlb_entries case below isn't misled.
	 */
	if (cpumask_test_cpu(cpu, &tlb_flush_pending)) {
		if (cpu_has_vtag_icache)
			flush_icache_all();
		local_flush_tlb_all();
		cpumask_clear_cpu(cpu, &tlb_flush_pending);
	}

	write_c0_memorymapid(ctx & cpu_asid_mask(&boot_cpu_data));

	/*
	 * If this CPU shares FTLB entries with its siblings and one or more of
	 * those siblings hasn't yet invalidated its TLB following a version
	 * increase then we need to invalidate any TLB entries for our MMID
	 * that we might otherwise pick up from a sibling.
	 *
	 * We ifdef on CONFIG_SMP because cpu_sibling_map isn't defined in
	 * CONFIG_SMP=n kernels.
	 */
#ifdef CONFIG_SMP
	if (cpu_has_shared_ftlb_entries &&
	    cpumask_intersects(&tlb_flush_pending, &cpu_sibling_map[cpu])) {
		/* Ensure we operate on the new MMID */
		mtc0_tlbw_hazard();

		/*
		 * Invalidate all TLB entries associated with the new
		 * MMID, and wait for the invalidation to complete.
		 */
		ginvt_mmid();
		sync_ginv();
	}
#endif

setup_pgd:
	TLBMISS_HANDLER_SETUP_PGD(mm->pgd);
}
EXPORT_SYMBOL_GPL(check_switch_mmu_context);

static int mmid_init(void)
{
	if (!cpu_has_mmid)
		return 0;

	/*
	 * Expect allocation after rollover to fail if we don't have at least
	 * one more MMID than CPUs.
	 */
	num_mmids = asid_first_version(0);
	WARN_ON(num_mmids <= num_possible_cpus());

	atomic64_set(&mmid_version, asid_first_version(0));
	mmid_map = bitmap_zalloc(num_mmids, GFP_KERNEL);
	if (!mmid_map)
		panic("Failed to allocate bitmap for %u MMIDs\n", num_mmids);

	/* Reserve an MMID for kmap/wired entries */
	__set_bit(MMID_KERNEL_WIRED, mmid_map);

	pr_info("MMID allocator initialised with %u entries\n", num_mmids);
	return 0;
}
early_initcall(mmid_init);