1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/mmc/mmc-controller.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MMC Controller Generic Binding
maintainers:
- Ulf Hansson <ulf.hansson@linaro.org>
description: |
These properties are common to multiple MMC host controllers. Any host
that requires the respective functionality should implement them using
these definitions.
It is possible to assign a fixed index mmcN to an MMC host controller
(and the corresponding mmcblkN devices) by defining an alias in the
/aliases device tree node.
properties:
$nodename:
pattern: "^mmc(@.*)?$"
"#address-cells":
const: 1
description: |
The cell is the slot ID if a function subnode is used.
"#size-cells":
const: 0
# Card Detection.
# If none of these properties are supplied, the host native card
# detect will be used. Only one of them should be provided.
broken-cd:
$ref: /schemas/types.yaml#/definitions/flag
description:
There is no card detection available; polling must be used.
cd-gpios:
maxItems: 1
description:
The card detection will be done using the GPIO provided.
non-removable:
$ref: /schemas/types.yaml#/definitions/flag
description:
Non-removable slot (like eMMC); assume always present.
# *NOTE* on CD and WP polarity. To use common for all SD/MMC host
# controllers line polarity properties, we have to fix the meaning
# of the "normal" and "inverted" line levels. We choose to follow
# the SDHCI standard, which specifies both those lines as "active
# low." Therefore, using the "cd-inverted" property means, that the
# CD line is active high, i.e. it is high, when a card is
# inserted. Similar logic applies to the "wp-inverted" property.
#
# CD and WP lines can be implemented on the hardware in one of two
# ways: as GPIOs, specified in cd-gpios and wp-gpios properties, or
# as dedicated pins. Polarity of dedicated pins can be specified,
# using *-inverted properties. GPIO polarity can also be specified
# using the GPIO_ACTIVE_LOW flag. This creates an ambiguity in the
# latter case. We choose to use the XOR logic for GPIO CD and WP
# lines. This means, the two properties are "superimposed," for
# example leaving the GPIO_ACTIVE_LOW flag clear and specifying the
# respective *-inverted property property results in a
# double-inversion and actually means the "normal" line polarity is
# in effect.
wp-inverted:
$ref: /schemas/types.yaml#/definitions/flag
description:
The Write Protect line polarity is inverted.
cd-inverted:
$ref: /schemas/types.yaml#/definitions/flag
description:
The CD line polarity is inverted.
# Other properties
bus-width:
description:
Number of data lines.
$ref: /schemas/types.yaml#/definitions/uint32
enum: [1, 4, 8]
default: 1
max-frequency:
description: |
Maximum operating frequency of the bus:
- for eMMC, the maximum supported frequency is 200MHz,
- for SD/SDIO cards the SDR104 mode has a max supported
frequency of 208MHz,
- some mmc host controllers do support a max frequency upto
384MHz.
So, lets keep the maximum supported value here.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 400000
maximum: 384000000
disable-wp:
$ref: /schemas/types.yaml#/definitions/flag
description:
When set, no physical write-protect line is present. This
property should only be specified when the controller has a
dedicated write-protect detection logic. If a GPIO is always used
for the write-protect detection logic, it is sufficient to not
specify the wp-gpios property in the absence of a write-protect
line. Not used in combination with eMMC or SDIO.
wp-gpios:
maxItems: 1
description:
GPIO to use for the write-protect detection.
cd-debounce-delay-ms:
description:
Set delay time before detecting card after card insert
interrupt.
no-1-8-v:
$ref: /schemas/types.yaml#/definitions/flag
description:
When specified, denotes that 1.8V card voltage is not supported
on this system, even if the controller claims it.
cap-sd-highspeed:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD high-speed timing is supported.
cap-mmc-highspeed:
$ref: /schemas/types.yaml#/definitions/flag
description:
MMC high-speed timing is supported.
sd-uhs-sdr12:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD UHS SDR12 speed is supported.
sd-uhs-sdr25:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD UHS SDR25 speed is supported.
sd-uhs-sdr50:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD UHS SDR50 speed is supported.
sd-uhs-sdr104:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD UHS SDR104 speed is supported.
sd-uhs-ddr50:
$ref: /schemas/types.yaml#/definitions/flag
description:
SD UHS DDR50 speed is supported.
cap-power-off-card:
$ref: /schemas/types.yaml#/definitions/flag
description:
Powering off the card is safe.
cap-mmc-hw-reset:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC hardware reset is supported
cap-sdio-irq:
$ref: /schemas/types.yaml#/definitions/flag
description:
enable SDIO IRQ signalling on this interface
full-pwr-cycle:
$ref: /schemas/types.yaml#/definitions/flag
description:
Full power cycle of the card is supported.
full-pwr-cycle-in-suspend:
$ref: /schemas/types.yaml#/definitions/flag
description:
Full power cycle of the card in suspend is supported.
mmc-ddr-1_2v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC high-speed DDR mode (1.2V I/O) is supported.
mmc-ddr-1_8v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC high-speed DDR mode (1.8V I/O) is supported.
mmc-ddr-3_3v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC high-speed DDR mode (3.3V I/O) is supported.
mmc-hs200-1_2v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC HS200 mode (1.2V I/O) is supported.
mmc-hs200-1_8v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC HS200 mode (1.8V I/O) is supported.
mmc-hs400-1_2v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC HS400 mode (1.2V I/O) is supported.
mmc-hs400-1_8v:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC HS400 mode (1.8V I/O) is supported.
mmc-hs400-enhanced-strobe:
$ref: /schemas/types.yaml#/definitions/flag
description:
eMMC HS400 enhanced strobe mode is supported
no-mmc-hs400:
$ref: /schemas/types.yaml#/definitions/flag
description:
All eMMC HS400 modes are not supported.
dsr:
description:
Value the card Driver Stage Register (DSR) should be programmed
with.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 0xffff
no-sdio:
$ref: /schemas/types.yaml#/definitions/flag
description:
Controller is limited to send SDIO commands during
initialization.
no-sd:
$ref: /schemas/types.yaml#/definitions/flag
description:
Controller is limited to send SD commands during initialization.
no-mmc:
$ref: /schemas/types.yaml#/definitions/flag
description:
Controller is limited to send MMC commands during
initialization.
fixed-emmc-driver-type:
description:
For non-removable eMMC, enforce this driver type. The value is
the driver type as specified in the eMMC specification (table
206 in spec version 5.1)
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 4
post-power-on-delay-ms:
description:
It was invented for MMC pwrseq-simple which could be referred to
mmc-pwrseq-simple.txt. But now it\'s reused as a tunable delay
waiting for I/O signalling and card power supply to be stable,
regardless of whether pwrseq-simple is used. Default to 10ms if
no available.
default: 10
supports-cqe:
$ref: /schemas/types.yaml#/definitions/flag
description:
The presence of this property indicates that the corresponding
MMC host controller supports HW command queue feature.
disable-cqe-dcmd:
$ref: /schemas/types.yaml#/definitions/flag
description:
The presence of this property indicates that the MMC
controller\'s command queue engine (CQE) does not support direct
commands (DCMDs).
keep-power-in-suspend:
$ref: /schemas/types.yaml#/definitions/flag
description:
SDIO only. Preserves card power during a suspend/resume cycle.
wakeup-source:
$ref: /schemas/types.yaml#/definitions/flag
description:
SDIO only. Enables wake up of host system on SDIO IRQ assertion.
vmmc-supply:
description:
Supply for the card power
vqmmc-supply:
description:
Supply for the bus IO line power, such as a level shifter.
If the level shifter is controlled by a GPIO line, this shall
be modeled as a "regulator-fixed" with a GPIO line for
switching the level shifter on/off.
mmc-pwrseq:
$ref: /schemas/types.yaml#/definitions/phandle
description:
System-on-Chip designs may specify a specific MMC power
sequence. To successfully detect an (e)MMC/SD/SDIO card, that
power sequence must be maintained while initializing the card.
patternProperties:
"^.*@[0-9]+$":
type: object
description: |
On embedded systems the cards connected to a host may need
additional properties. These can be specified in subnodes to the
host controller node. The subnodes are identified by the
standard \'reg\' property. Which information exactly can be
specified depends on the bindings for the SDIO function driver
for the subnode, as specified by the compatible string.
properties:
compatible:
description: |
Name of SDIO function following generic names recommended
practice
reg:
items:
- minimum: 0
maximum: 7
description:
Must contain the SDIO function number of the function this
subnode describes. A value of 0 denotes the memory SD
function, values from 1 to 7 denote the SDIO functions.
required:
- reg
"^clk-phase-(legacy|sd-hs|mmc-(hs|hs[24]00|ddr52)|uhs-(sdr(12|25|50|104)|ddr50))$":
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 2
maxItems: 2
items:
minimum: 0
maximum: 359
description:
Set the clock (phase) delays which are to be configured in the
controller while switching to particular speed mode. These values
are in pair of degrees.
dependencies:
cd-debounce-delay-ms: [ cd-gpios ]
fixed-emmc-driver-type: [ non-removable ]
additionalProperties: true
examples:
- |
mmc3: mmc@1c12000 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0x1c12000 0x200>;
pinctrl-names = "default";
pinctrl-0 = <&mmc3_pins_a>;
vmmc-supply = <®_vmmc3>;
bus-width = <4>;
non-removable;
mmc-pwrseq = <&sdhci0_pwrseq>;
brcmf: wifi@1 {
reg = <1>;
compatible = "brcm,bcm4329-fmac";
interrupt-parent = <&pio>;
interrupts = <10 8>;
interrupt-names = "host-wake";
};
};
|