Age | Commit message (Collapse) | Author | Files | Lines |
|
With a raw socket bound to IPPROTO_RAW (ie with hdrincl enabled), the
protocol field of the flow structure, build by raw_sendmsg() /
rawv6_sendmsg()), is set to IPPROTO_RAW. This breaks the ipsec policy
lookup when some policies are defined with a protocol in the selector.
For ipv6, the sin6_port field from 'struct sockaddr_in6' could be used to
specify the protocol. Just accept all values for IPPROTO_RAW socket.
For ipv4, the sin_port field of 'struct sockaddr_in' could not be used
without breaking backward compatibility (the value of this field was never
checked). Let's add a new kind of control message, so that the userland
could specify which protocol is used.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
CC: stable@vger.kernel.org
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Link: https://lore.kernel.org/r/20230522120820.1319391-1-nicolas.dichtel@6wind.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
Users who want to share a single public IP address for outgoing connections
between several hosts traditionally reach for SNAT. However, SNAT requires
state keeping on the node(s) performing the NAT.
A stateless alternative exists, where a single IP address used for egress
can be shared between several hosts by partitioning the available ephemeral
port range. In such a setup:
1. Each host gets assigned a disjoint range of ephemeral ports.
2. Applications open connections from the host-assigned port range.
3. Return traffic gets routed to the host based on both, the destination IP
and the destination port.
An application which wants to open an outgoing connection (connect) from a
given port range today can choose between two solutions:
1. Manually pick the source port by bind()'ing to it before connect()'ing
the socket.
This approach has a couple of downsides:
a) Search for a free port has to be implemented in the user-space. If
the chosen 4-tuple happens to be busy, the application needs to retry
from a different local port number.
Detecting if 4-tuple is busy can be either easy (TCP) or hard
(UDP). In TCP case, the application simply has to check if connect()
returned an error (EADDRNOTAVAIL). That is assuming that the local
port sharing was enabled (REUSEADDR) by all the sockets.
# Assume desired local port range is 60_000-60_511
s = socket(AF_INET, SOCK_STREAM)
s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
s.bind(("192.0.2.1", 60_000))
s.connect(("1.1.1.1", 53))
# Fails only if 192.0.2.1:60000 -> 1.1.1.1:53 is busy
# Application must retry with another local port
In case of UDP, the network stack allows binding more than one socket
to the same 4-tuple, when local port sharing is enabled
(REUSEADDR). Hence detecting the conflict is much harder and involves
querying sock_diag and toggling the REUSEADDR flag [1].
b) For TCP, bind()-ing to a port within the ephemeral port range means
that no connecting sockets, that is those which leave it to the
network stack to find a free local port at connect() time, can use
the this port.
IOW, the bind hash bucket tb->fastreuse will be 0 or 1, and the port
will be skipped during the free port search at connect() time.
2. Isolate the app in a dedicated netns and use the use the per-netns
ip_local_port_range sysctl to adjust the ephemeral port range bounds.
The per-netns setting affects all sockets, so this approach can be used
only if:
- there is just one egress IP address, or
- the desired egress port range is the same for all egress IP addresses
used by the application.
For TCP, this approach avoids the downsides of (1). Free port search and
4-tuple conflict detection is done by the network stack:
system("sysctl -w net.ipv4.ip_local_port_range='60000 60511'")
s = socket(AF_INET, SOCK_STREAM)
s.setsockopt(SOL_IP, IP_BIND_ADDRESS_NO_PORT, 1)
s.bind(("192.0.2.1", 0))
s.connect(("1.1.1.1", 53))
# Fails if all 4-tuples 192.0.2.1:60000-60511 -> 1.1.1.1:53 are busy
For UDP this approach has limited applicability. Setting the
IP_BIND_ADDRESS_NO_PORT socket option does not result in local source
port being shared with other connected UDP sockets.
Hence relying on the network stack to find a free source port, limits the
number of outgoing UDP flows from a single IP address down to the number
of available ephemeral ports.
To put it another way, partitioning the ephemeral port range between hosts
using the existing Linux networking API is cumbersome.
To address this use case, add a new socket option at the SOL_IP level,
named IP_LOCAL_PORT_RANGE. The new option can be used to clamp down the
ephemeral port range for each socket individually.
The option can be used only to narrow down the per-netns local port
range. If the per-socket range lies outside of the per-netns range, the
latter takes precedence.
UAPI-wise, the low and high range bounds are passed to the kernel as a pair
of u16 values in host byte order packed into a u32. This avoids pointer
passing.
PORT_LO = 40_000
PORT_HI = 40_511
s = socket(AF_INET, SOCK_STREAM)
v = struct.pack("I", PORT_HI << 16 | PORT_LO)
s.setsockopt(SOL_IP, IP_LOCAL_PORT_RANGE, v)
s.bind(("127.0.0.1", 0))
s.getsockname()
# Local address between ("127.0.0.1", 40_000) and ("127.0.0.1", 40_511),
# if there is a free port. EADDRINUSE otherwise.
[1] https://github.com/cloudflare/cloudflare-blog/blob/232b432c1d57/2022-02-connectx/connectx.py#L116
Reviewed-by: Marek Majkowski <marek@cloudflare.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
__DECLARE_FLEX_ARRAY is defined in include/uapi/linux/stddef.h but
doesn't seem to be explicitly included from include/uapi/linux/in.h,
which breaks BPF selftests builds (once we sync linux/stddef.h into
tools/include directory in the next patch). Fix this by explicitly
including linux/stddef.h.
Given this affects BPF CI and bpf tree, targeting this for bpf tree.
Fixes: 5854a09b4957 ("net/ipv4: Use __DECLARE_FLEX_ARRAY() helper")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20221102182517.2675301-1-andrii@kernel.org
|
|
IPPROTO_L2TP is currently defined in l2tp.h, but most of
ip protocols are defined in in.h file. Move it there in order
to keep code clean.
Acked-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Wojciech Drewek <wojciech.drewek@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
We now have a cleaner way to keep compatibility with user-space
(a.k.a. not breaking it) when we need to keep in place a one-element
array (for its use in user-space) together with a flexible-array
member (for its use in kernel-space) without making it hard to read
at the source level. This is through the use of the new
__DECLARE_FLEX_ARRAY() helper macro.
The size and memory layout of the structure is preserved after the
changes. See below.
Before changes:
$ pahole -C ip_msfilter net/ipv4/igmp.o
struct ip_msfilter {
union {
struct {
__be32 imsf_multiaddr_aux; /* 0 4 */
__be32 imsf_interface_aux; /* 4 4 */
__u32 imsf_fmode_aux; /* 8 4 */
__u32 imsf_numsrc_aux; /* 12 4 */
__be32 imsf_slist[1]; /* 16 4 */
}; /* 0 20 */
struct {
__be32 imsf_multiaddr; /* 0 4 */
__be32 imsf_interface; /* 4 4 */
__u32 imsf_fmode; /* 8 4 */
__u32 imsf_numsrc; /* 12 4 */
__be32 imsf_slist_flex[0]; /* 16 0 */
}; /* 0 16 */
}; /* 0 20 */
/* size: 20, cachelines: 1, members: 1 */
/* last cacheline: 20 bytes */
};
After changes:
$ pahole -C ip_msfilter net/ipv4/igmp.o
struct ip_msfilter {
__be32 imsf_multiaddr; /* 0 4 */
__be32 imsf_interface; /* 4 4 */
__u32 imsf_fmode; /* 8 4 */
__u32 imsf_numsrc; /* 12 4 */
union {
__be32 imsf_slist[1]; /* 16 4 */
struct {
struct {
} __empty_imsf_slist_flex; /* 16 0 */
__be32 imsf_slist_flex[0]; /* 16 0 */
}; /* 16 0 */
}; /* 16 4 */
/* size: 20, cachelines: 1, members: 5 */
/* last cacheline: 20 bytes */
};
In the past, we had to duplicate the whole original structure within
a union, and update the names of all the members. Now, we just need to
declare the flexible-array member to be used in kernel-space through
the __DECLARE_FLEX_ARRAY() helper together with the one-element array,
within a union. This makes the source code more clean and easier to read.
Link: https://github.com/KSPP/linux/issues/193
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There is a regular need in the kernel to provide a way to declare having
a dynamically sized set of trailing elements in a structure. Kernel code
should always use “flexible array members”[1] for these cases. The older
style of one-element or zero-length arrays should no longer be used[2].
Use an anonymous union with a couple of anonymous structs in order to
keep userspace unchanged and refactor the related code accordingly:
$ pahole -C group_filter net/ipv4/ip_sockglue.o
struct group_filter {
union {
struct {
__u32 gf_interface_aux; /* 0 4 */
/* XXX 4 bytes hole, try to pack */
struct __kernel_sockaddr_storage gf_group_aux; /* 8 128 */
/* --- cacheline 2 boundary (128 bytes) was 8 bytes ago --- */
__u32 gf_fmode_aux; /* 136 4 */
__u32 gf_numsrc_aux; /* 140 4 */
struct __kernel_sockaddr_storage gf_slist[1]; /* 144 128 */
}; /* 0 272 */
struct {
__u32 gf_interface; /* 0 4 */
/* XXX 4 bytes hole, try to pack */
struct __kernel_sockaddr_storage gf_group; /* 8 128 */
/* --- cacheline 2 boundary (128 bytes) was 8 bytes ago --- */
__u32 gf_fmode; /* 136 4 */
__u32 gf_numsrc; /* 140 4 */
struct __kernel_sockaddr_storage gf_slist_flex[0]; /* 144 0 */
}; /* 0 144 */
}; /* 0 272 */
/* size: 272, cachelines: 5, members: 1 */
/* last cacheline: 16 bytes */
};
$ pahole -C compat_group_filter net/ipv4/ip_sockglue.o
struct compat_group_filter {
union {
struct {
__u32 gf_interface_aux; /* 0 4 */
struct __kernel_sockaddr_storage gf_group_aux __attribute__((__aligned__(4))); /* 4 128 */
/* --- cacheline 2 boundary (128 bytes) was 4 bytes ago --- */
__u32 gf_fmode_aux; /* 132 4 */
__u32 gf_numsrc_aux; /* 136 4 */
struct __kernel_sockaddr_storage gf_slist[1] __attribute__((__aligned__(4))); /* 140 128 */
} __attribute__((__packed__)) __attribute__((__aligned__(4))); /* 0 268 */
struct {
__u32 gf_interface; /* 0 4 */
struct __kernel_sockaddr_storage gf_group __attribute__((__aligned__(4))); /* 4 128 */
/* --- cacheline 2 boundary (128 bytes) was 4 bytes ago --- */
__u32 gf_fmode; /* 132 4 */
__u32 gf_numsrc; /* 136 4 */
struct __kernel_sockaddr_storage gf_slist_flex[0] __attribute__((__aligned__(4))); /* 140 0 */
} __attribute__((__packed__)) __attribute__((__aligned__(4))); /* 0 140 */
} __attribute__((__aligned__(1))); /* 0 268 */
/* size: 268, cachelines: 5, members: 1 */
/* forced alignments: 1 */
/* last cacheline: 12 bytes */
} __attribute__((__packed__));
This helps with the ongoing efforts to globally enable -Warray-bounds
and get us closer to being able to tighten the FORTIFY_SOURCE routines
on memcpy().
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.10/process/deprecated.html#zero-length-and-one-element-arrays
Link: https://github.com/KSPP/linux/issues/79
Link: https://github.com/KSPP/linux/issues/109
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There is a regular need in the kernel to provide a way to declare having
a dynamically sized set of trailing elements in a structure. Kernel code
should always use “flexible array members”[1] for these cases. The older
style of one-element or zero-length arrays should no longer be used[2].
Use an anonymous union with a couple of anonymous structs in order to
keep userspace unchanged:
$ pahole -C ip_msfilter net/ipv4/ip_sockglue.o
struct ip_msfilter {
union {
struct {
__be32 imsf_multiaddr_aux; /* 0 4 */
__be32 imsf_interface_aux; /* 4 4 */
__u32 imsf_fmode_aux; /* 8 4 */
__u32 imsf_numsrc_aux; /* 12 4 */
__be32 imsf_slist[1]; /* 16 4 */
}; /* 0 20 */
struct {
__be32 imsf_multiaddr; /* 0 4 */
__be32 imsf_interface; /* 4 4 */
__u32 imsf_fmode; /* 8 4 */
__u32 imsf_numsrc; /* 12 4 */
__be32 imsf_slist_flex[0]; /* 16 0 */
}; /* 0 16 */
}; /* 0 20 */
/* size: 20, cachelines: 1, members: 1 */
/* last cacheline: 20 bytes */
};
Also, refactor the code accordingly and make use of the struct_size()
and flex_array_size() helpers.
This helps with the ongoing efforts to globally enable -Warray-bounds
and get us closer to being able to tighten the FORTIFY_SOURCE routines
on memcpy().
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.10/process/deprecated.html#zero-length-and-one-element-arrays
Link: https://github.com/KSPP/linux/issues/79
Link: https://github.com/KSPP/linux/issues/109
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When constructing ICMP response messages, the kernel will try to pick a
suitable source address for the outgoing packet. However, if no IPv4
addresses are configured on the system at all, this will fail and we end up
producing an ICMP message with a source address of 0.0.0.0. This can happen
on a box routing IPv4 traffic via v6 nexthops, for instance.
Since 0.0.0.0 is not generally routable on the internet, there's a good
chance that such ICMP messages will never make it back to the sender of the
original packet that the ICMP message was sent in response to. This, in
turn, can create connectivity and PMTUd problems for senders. Fortunately,
RFC7600 reserves a dummy address to be used as a source for ICMP
messages (192.0.0.8/32), so let's teach the kernel to substitute that
address as a last resort if the regular source address selection procedure
fails.
Below is a quick example reproducing this issue with network namespaces:
ip netns add ns0
ip l add type veth peer netns ns0
ip l set dev veth0 up
ip a add 10.0.0.1/24 dev veth0
ip a add fc00:dead:cafe:42::1/64 dev veth0
ip r add 10.1.0.0/24 via inet6 fc00:dead:cafe:42::2
ip -n ns0 l set dev veth0 up
ip -n ns0 a add fc00:dead:cafe:42::2/64 dev veth0
ip -n ns0 r add 10.0.0.0/24 via inet6 fc00:dead:cafe:42::1
ip netns exec ns0 sysctl -w net.ipv4.icmp_ratelimit=0
ip netns exec ns0 sysctl -w net.ipv4.ip_forward=1
tcpdump -tpni veth0 -c 2 icmp &
ping -w 1 10.1.0.1 > /dev/null
tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
listening on veth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
IP 10.0.0.1 > 10.1.0.1: ICMP echo request, id 29, seq 1, length 64
IP 0.0.0.0 > 10.0.0.1: ICMP net 10.1.0.1 unreachable, length 92
2 packets captured
2 packets received by filter
0 packets dropped by kernel
With this patch the above capture changes to:
IP 10.0.0.1 > 10.1.0.1: ICMP echo request, id 31127, seq 1, length 64
IP 192.0.0.8 > 10.0.0.1: ICMP net 10.1.0.1 unreachable, length 92
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: Juliusz Chroboczek <jch@irif.fr>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix some comments, including wrong function name, duplicated word and so
on.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add setsockopt SOL_IP/IP_RECVERR_4884 to return the offset to an
extension struct if present.
ICMP messages may include an extension structure after the original
datagram. RFC 4884 standardized this behavior. It stores the offset
in words to the extension header in u8 icmphdr.un.reserved[1].
The field is valid only for ICMP types destination unreachable, time
exceeded and parameter problem, if length is at least 128 bytes and
entire packet does not exceed 576 bytes.
Return the offset to the start of the extension struct when reading an
ICMP error from the error queue, if it matches the above constraints.
Do not return the raw u8 field. Return the offset from the start of
the user buffer, in bytes. The kernel does not return the network and
transport headers, so subtract those.
Also validate the headers. Return the offset regardless of validation,
as an invalid extension must still not be misinterpreted as part of
the original datagram. Note that !invalid does not imply valid. If
the extension version does not match, no validation can take place,
for instance.
For backward compatibility, make this optional, set by setsockopt
SOL_IP/IP_RECVERR_RFC4884. For API example and feature test, see
github.com/wdebruij/kerneltools/blob/master/tests/recv_icmp_v2.c
For forward compatibility, reserve only setsockopt value 1, leaving
other bits for additional icmp extensions.
Changes
v1->v2:
- convert word offset to byte offset from start of user buffer
- return in ee_data as u8 may be insufficient
- define extension struct and object header structs
- return len only if constraints met
- if returning len, also validate
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The Internet Assigned Numbers Authority (IANA) has recently assigned
a protocol number value of 143 for Ethernet [1].
Before this assignment, encapsulation mechanisms such as Segment Routing
used the IPv6-NoNxt protocol number (59) to indicate that the encapsulated
payload is an Ethernet frame.
In this patch, we add the definition of the Ethernet protocol number to the
kernel headers and update the SRv6 L2 tunnels to use it.
[1] https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
Signed-off-by: Paolo Lungaroni <paolo.lungaroni@cnit.it>
Reviewed-by: Andrea Mayer <andrea.mayer@uniroma2.it>
Acked-by: Ahmed Abdelsalam <ahmed.abdelsalam@gssi.it>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
To open a MPTCP socket with socket(AF_INET, SOCK_STREAM, IPPROTO_MPTCP),
IPPROTO_MPTCP needs a value that differs from IPPROTO_TCP. The existing
IPPROTO numbers mostly map directly to IANA-specified protocol numbers.
MPTCP does not have a protocol number allocated because MPTCP packets
use the TCP protocol number. Use private number not used OTA.
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Next to snooping IGMP/MLD queries RFC4541, section 2.1.1.a) recommends
to snoop multicast router advertisements to detect multicast routers.
Multicast router advertisements are sent to an "all-snoopers"
multicast address. To be able to receive them reliably, we need to
join this group.
Otherwise other snooping switches might refrain from forwarding these
advertisements to us.
Signed-off-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Commit 65cab850f0ee ("net: Allow class-e address assignment via ifconfig
ioctl") modified the IN_BADCLASS macro a bit, but unfortunatly one too
many '(' characters were added to the line, making any code that used
it, not build properly.
Also, the macro now compares an unsigned with a signed value, which
isn't ok, so fix that up by making both types match properly.
Reported-by: Christopher Ferris <cferris@google.com>
Fixes: 65cab850f0ee ("net: Allow class-e address assignment via ifconfig ioctl")
Cc: Dave Taht <dave.taht@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
While most distributions long ago switched to the iproute2 suite
of utilities, which allow class-e (240.0.0.0/4) address assignment,
distributions relying on busybox, toybox and other forms of
ifconfig cannot assign class-e addresses without this kernel patch.
While CIDR has been obsolete for 2 decades, and a survey of all the
open source code in the world shows the IN_whatever macros are also
obsolete... rather than obsolete CIDR from this ioctl entirely, this
patch merely enables class-e assignment, sanely.
Signed-off-by: Dave Taht <dave.taht@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be. This makes it hard for
compliance tools to determine the correct license.
Update these files with an SPDX license identifier. The identifier was
chosen based on the license information in the file.
GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.
Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier. The format
is:
((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text. The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The IP stack records the largest fragment of a reassembled packet
in IPCB(skb)->frag_max_size. When reading a datagram or raw packet
that arrived fragmented, expose the value to allow applications to
estimate receive path MTU.
Tested:
Sent data over a veth pair of which the source has a small mtu.
Sent data using netcat, received using a dedicated process.
Verified that the cmsg IP_RECVFRAGSIZE is returned only when
data arrives fragmented, and in that cases matches the veth mtu.
ip link add veth0 type veth peer name veth1
ip netns add from
ip netns add to
ip link set dev veth1 netns to
ip netns exec to ip addr add dev veth1 192.168.10.1/24
ip netns exec to ip link set dev veth1 up
ip link set dev veth0 netns from
ip netns exec from ip addr add dev veth0 192.168.10.2/24
ip netns exec from ip link set dev veth0 up
ip netns exec from ip link set dev veth0 mtu 1300
ip netns exec from ethtool -K veth0 ufo off
dd if=/dev/zero bs=1 count=1400 2>/dev/null > payload
ip netns exec to ./recv_cmsg_recvfragsize -4 -u -p 6000 &
ip netns exec from nc -q 1 -u 192.168.10.1 6000 < payload
using github.com/wdebruij/kerneltools/blob/master/tests/recvfragsize.c
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
u
This fixes breakage to iproute2 build with recent kernel headers
caused by:
commit a263653ed798216c0069922d7b5237ca49436007
Author: Pablo Neira Ayuso <pablo@netfilter.org>
Date: Wed Jun 17 10:28:27 2015 -0500
netfilter: don't pull include/linux/netfilter.h from netns headers
The issue is that definitions in linux/in.h overlap with those
in netinet/in.h. This patch solves this by introducing the same
mechanism as was used to solve the same problem with linux/in6.h
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When an application needs to force a source IP on an active TCP socket
it has to use bind(IP, port=x).
As most applications do not want to deal with already used ports, x is
often set to 0, meaning the kernel is in charge to find an available
port.
But kernel does not know yet if this socket is going to be a listener or
be connected.
It has very limited choices (no full knowledge of final 4-tuple for a
connect())
With limited ephemeral port range (about 32K ports), it is very easy to
fill the space.
This patch adds a new SOL_IP socket option, asking kernel to ignore
the 0 port provided by application in bind(IP, port=0) and only
remember the given IP address.
The port will be automatically chosen at connect() time, in a way
that allows sharing a source port as long as the 4-tuples are unique.
This new feature is available for both IPv4 and IPv6 (Thanks Neal)
Tested:
Wrote a test program and checked its behavior on IPv4 and IPv6.
strace(1) shows sequences of bind(IP=127.0.0.2, port=0) followed by
connect().
Also getsockname() show that the port is still 0 right after bind()
but properly allocated after connect().
socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 5
setsockopt(5, SOL_IP, IP_BIND_ADDRESS_NO_PORT, [1], 4) = 0
bind(5, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("127.0.0.2")}, 16) = 0
getsockname(5, {sa_family=AF_INET, sin_port=htons(0), sin_addr=inet_addr("127.0.0.2")}, [16]) = 0
connect(5, {sa_family=AF_INET, sin_port=htons(53174), sin_addr=inet_addr("127.0.0.3")}, 16) = 0
getsockname(5, {sa_family=AF_INET, sin_port=htons(38050), sin_addr=inet_addr("127.0.0.2")}, [16]) = 0
IPv6 test :
socket(PF_INET6, SOCK_STREAM, IPPROTO_IP) = 7
setsockopt(7, SOL_IP, IP_BIND_ADDRESS_NO_PORT, [1], 4) = 0
bind(7, {sa_family=AF_INET6, sin6_port=htons(0), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, 28) = 0
getsockname(7, {sa_family=AF_INET6, sin6_port=htons(0), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, [28]) = 0
connect(7, {sa_family=AF_INET6, sin6_port=htons(57300), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, 28) = 0
getsockname(7, {sa_family=AF_INET6, sin6_port=htons(60964), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_flowinfo=0, sin6_scope_id=0}, [28]) = 0
I was able to bind()/connect() a million concurrent IPv4 sockets,
instead of ~32000 before patch.
lpaa23:~# ulimit -n 1000010
lpaa23:~# ./bind --connect --num-flows=1000000 &
1000000 sockets
lpaa23:~# grep TCP /proc/net/sockstat
TCP: inuse 2000063 orphan 0 tw 47 alloc 2000157 mem 66
Check that a given source port is indeed used by many different
connections :
lpaa23:~# ss -t src :40000 | head -10
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 0 127.0.0.2:40000 127.0.202.33:44983
ESTAB 0 0 127.0.0.2:40000 127.2.27.240:44983
ESTAB 0 0 127.0.0.2:40000 127.2.98.5:44983
ESTAB 0 0 127.0.0.2:40000 127.0.124.196:44983
ESTAB 0 0 127.0.0.2:40000 127.2.139.38:44983
ESTAB 0 0 127.0.0.2:40000 127.1.59.80:44983
ESTAB 0 0 127.0.0.2:40000 127.3.6.228:44983
ESTAB 0 0 127.0.0.2:40000 127.0.38.53:44983
ESTAB 0 0 127.0.0.2:40000 127.1.197.10:44983
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add uapi define for MPLS over IP.
Acked-by: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add ip_cmsg_recv_offset function which takes an offset argument
that indicates the starting offset in skb where data is being received
from. This will be useful in the case of UDP and provided checksum
to user space.
ip_cmsg_recv is an inline call to ip_cmsg_recv_offset with offset of
zero.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
IP_PMTUDISC_INTERFACE has a design error: because it does not allow the
generation of fragments if the interface mtu is exceeded, it is very
hard to make use of this option in already deployed name server software
for which I introduced this option.
This patch adds yet another new IP_MTU_DISCOVER option to not honor any
path mtu information and not accepting new icmp notifications destined for
the socket this option is enabled on. But we allow outgoing fragmentation
in case the packet size exceeds the outgoing interface mtu.
As such this new option can be used as a drop-in replacement for
IP_PMTUDISC_DONT, which is currently in use by most name server software
making the adoption of this option very smooth and easy.
The original advantage of IP_PMTUDISC_INTERFACE is still maintained:
ignoring incoming path MTU updates and not honoring discovered path MTUs
in the output path.
Fixes: 482fc6094afad5 ("ipv4: introduce new IP_MTU_DISCOVER mode IP_PMTUDISC_INTERFACE")
Cc: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Sockets marked with IP_PMTUDISC_INTERFACE won't do path mtu discovery,
their sockets won't accept and install new path mtu information and they
will always use the interface mtu for outgoing packets. It is guaranteed
that the packet is not fragmented locally. But we won't set the DF-Flag
on the outgoing frames.
Florian Weimer had the idea to use this flag to ensure DNS servers are
never generating outgoing fragments. They may well be fragmented on the
path, but the server never stores or usees path mtu values, which could
well be forged in an attack.
(The root of the problem with path MTU discovery is that there is
no reliable way to authenticate ICMP Fragmentation Needed But DF Set
messages because they are sent from intermediate routers with their
source addresses, and the IMCP payload will not always contain sufficient
information to identify a flow.)
Recent research in the DNS community showed that it is possible to
implement an attack where DNS cache poisoning is feasible by spoofing
fragments. This work was done by Amir Herzberg and Haya Shulman:
<https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf>
This issue was previously discussed among the DNS community, e.g.
<http://www.ietf.org/mail-archive/web/dnsext/current/msg01204.html>,
without leading to fixes.
This patch depends on the patch "ipv4: fix DO and PROBE pmtu mode
regarding local fragmentation with UFO/CORK" for the enforcement of the
non-fragmentable checks. If other users than ip_append_page/data should
use this semantic too, we have to add a new flag to IPCB(skb)->flags to
suppress local fragmentation and check for this in ip_finish_output.
Many thanks to Florian Weimer for the idea and feedback while implementing
this patch.
Cc: David S. Miller <davem@davemloft.net>
Suggested-by: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Solution:
=========
- Synchronize linux's `include/uapi/linux/in6.h'
with glibc's `inet/netinet/in.h'.
- Synchronize glibc's `inet/netinet/in.h with linux's
`include/uapi/linux/in6.h'.
- Allow including the headers in either other.
- First header included defines the structures and macros.
Details:
========
The kernel promises not to break the UAPI ABI so I don't
see why we can't just have the two userspace headers
coordinate?
If you include the kernel headers first you get those,
and if you include the glibc headers first you get those,
and the following patch arranges a coordination and
synchronization between the two.
Let's handle `include/uapi/linux/in6.h' from linux,
and `inet/netinet/in.h' from glibc and ensure they compile
in any order and preserve the required ABI.
These two patches pass the following compile tests:
cat >> test1.c <<EOF
int main (void) {
return 0;
}
EOF
gcc -c test1.c
cat >> test2.c <<EOF
int main (void) {
return 0;
}
EOF
gcc -c test2.c
One wrinkle is that the kernel has a different name for one of
the members in ipv6_mreq. In the kernel patch we create a macro
to cover the uses of the old name, and while that's not entirely
clean it's one of the best solutions (aside from an anonymous
union which has other issues).
I've reviewed the code and it looks to me like the ABI is
assured and everything matches on both sides.
Notes:
- You want netinet/in.h to include bits/in.h as early as possible,
but it needs in_addr so define in_addr early.
- You want bits/in.h included as early as possible so you can use
the linux specific code to define __USE_KERNEL_DEFS based on
the _UAPI_* macro definition and use those to cull in.h.
- glibc was missing IPPROTO_MH, added here.
Compile tested and inspected.
Reported-by: Thomas Backlund <tmb@mageia.org>
Cc: Thomas Backlund <tmb@mageia.org>
Cc: libc-alpha@sourceware.org
Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Cc: David S. Miller <davem@davemloft.net>
Tested-by: Cong Wang <amwang@redhat.com>
Signed-off-by: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
|