Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that we have a subsystem for compute accelerators, move the
habanalabs driver to it.
This patch only moves the files and fixes the Makefiles. Future
patches will change the existing code to register to the accel
subsystem and expose the accel device char files instead of the
habanalabs device char files.
Update the MAINTAINERS file to reflect this change.
Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
|
|
Newer ASICs code changes more often, has more chance to fail
compilation. So, let's compile them first so errors in those files
will fail compilation sooner.
Signed-off-by: Ohad Sharabi <osharabi@habana.ai>
Reviewed-by: Oded Gabbay <ogabbay@kernel.org>
Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
|
|
Add the ASIC-specific code for Gaudi2. Supply (almost) all of the
function callbacks that the driver's common code need to initialize,
finalize and submit workloads to the Gaudi2 ASIC.
It also contains the code to initialize the F/W of the Gaudi2 ASIC
and to receive events from the F/W.
It contains new debugfs entry to dump razwi events. razwi is a case
where the device's engines create a transaction that reaches an
invalid destination.
Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
|
|
For internal needs of our CI we need to move all the common code into a
common folder instead of putting them in the root folder of the driver.
Same applies to the common header files under include/
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Reviewed-by: Omer Shpigelman <oshpigelman@habana.ai>
|
|
Add the ASIC-dependent code for GAUDI. Supply (almost) all of the function
callbacks that the driver's common code need to initialize, finalize and
submit workloads to the GAUDI ASIC.
It also contains the code to initialize the F/W of the GAUDI ASIC and to
receive events from the F/W.
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
|
|
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Move duplicated PCI-related code from ASIC-specific files into the common
pci.c file.
Signed-off-by: Tomer Tayar <ttayar@habana.ai>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
|
|
This patch moves the code that is responsible of the communication
vs. the F/W to a dedicated file. This will allow us to share the code
between different ASICs.
Signed-off-by: Tomer Tayar <ttayar@habana.ai>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
|
|
This patch adds debugfs support to the driver. It allows the user-space to
display information that is contained in the internal structures of the
driver, such as:
- active command submissions
- active user virtual memory mappings
- number of allocated command buffers
It also enables the user to perform reads and writes through Goya's PCI
bars.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the Virtual Memory and MMU modules.
Goya has an internal MMU which provides process isolation on the internal
DDR. The internal MMU also performs translations for transactions that go
from Goya to the Host.
The driver is responsible for allocating and freeing memory on the DDR
upon user request. It also provides an interface to map and unmap DDR and
Host memory to the device address space.
The MMU in Goya supports 3-level and 4-level page tables. With 3-level, the
size of each page is 2MB, while with 4-level the size of each page is 4KB.
In the DDR, the physical pages are always 2MB.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Omer Shpigelman <oshpigelman@habana.ai>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the main flow for the user to submit work to the device.
Each work is described by a command submission object (CS). The CS contains
3 arrays of command buffers: One for execution, and two for context-switch
(store and restore).
For each CB, the user specifies on which queue to put that CB. In case of
an internal queue, the entry doesn't contain a pointer to the CB but the
address in the on-chip memory that the CB resides at.
The driver parses some of the CBs to enforce security restrictions.
The user receives a sequence number that represents the CS object. The user
can then query the driver regarding the status of the CS, using that
sequence number.
In case the CS doesn't finish before the timeout expires, the driver will
perform a soft-reset of the device.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch add the sysfs and hwmon entries that are exposed by the driver.
Goya has several sensors, from various categories such as temperature,
voltage, current, etc. The driver exposes those sensors in the standard
hwmon mechanism.
In addition, the driver exposes a couple of interfaces in sysfs, both for
configuration and for providing status of the device or driver.
The configuration attributes is for Power Management:
- Automatic or manual
- Frequency value when moving to high frequency mode
- Maximum power the device is allowed to consume
The rest of the attributes are read-only and provide the following
information:
- Versions of the various firmwares running on the device
- Contents of the device's EEPROM
- The device type (currently only Goya is supported)
- PCI address of the device (to allow user-space to connect between
/dev/hlX to PCI address)
- Status of the device (operational, malfunction, in_reset)
- How many processes are open on the device's file
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the H/W queues module and the code to initialize Goya's
various compute and DMA engines and their queues.
Goya has 5 DMA channels, 8 TPC engines and a single MME engine. For each
channel/engine, there is a H/W queue logic which is used to pass commands
from the user to the H/W. That logic is called QMAN.
There are two types of QMANs: external and internal. The DMA QMANs are
considered external while the TPC and MME QMANs are considered internal.
For each external queue there is a completion queue, which is located on
the Host memory.
The differences between external and internal QMANs are:
1. The location of the queue's memory. External QMANs are located on the
Host memory while internal QMANs are located on the on-chip memory.
2. The external QMAN write an entry to a completion queue and sends an
MSI-X interrupt upon completion of a command buffer that was given to
it. The internal QMAN doesn't do that.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the command buffer (CB) module, which allows the user to
create and destroy CBs and to map them to the user's process
address-space.
A command buffer is a memory blocks that reside in DMA-able address-space
and is physically contiguous so it can be accessed by the device without
MMU translation. The command buffer memory is allocated using the
coherent DMA API.
When creating a new CB, the IOCTL returns a handle of it, and the
user-space process needs to use that handle to mmap the buffer to get a VA
in the user's address-space.
Before destroying (freeing) a CB, the user must unmap the CB's VA using the
CB handle.
Each CB has a reference counter, which tracks its usage in command
submissions and also its mmaps (only a single mmap is allowed).
The driver maintains a pool of pre-allocated CBs in order to reduce
latency during command submissions. In case the pool is empty, the driver
will go to the slow-path of allocating a new CB, i.e. calling
dma_alloc_coherent.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds two modules - ASID and context.
Each user process that opens a device's file must have at least one
context before it is able to "work" with the device. Each context has its
own device address-space and contains information about its runtime state
(its active command submissions).
To have address-space separation between contexts, each context is assigned
a unique ASID, which stands for "address-space id". Goya supports up to
1024 ASIDs.
Currently, the driver doesn't support multiple contexts. Therefore, the
user doesn't need to actively create a context. A "primary context" is
created automatically when the user opens the device's file.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds a basic support for the Goya device. The code initializes
the device's PCI controller and PCI bars. It also initializes various S/W
structures and adds some basic helper functions.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the habanalabs skeleton driver. The driver does nothing at
this stage except very basic operations. It contains the minimal code to
insmod and rmmod the driver and to create a /dev/hlX file per PCI device.
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|