Age | Commit message (Collapse) | Author | Files | Lines |
|
The Fujitsu FRV kernel port has been around for a long time, but has not
seen regular updates in several years and instead was marked 'Orphaned'
in 2016 by long-time maintainer David Howells.
The SoC product line apparently is apparently still around in the form
of the Socionext Milbeaut image processor, but this one no longer uses
the FRV CPU cores.
This removes all FRV specific files from the kernel.
Link: http://www.socionext.com/en/products/assp/milbeaut/
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
license
Many user space API headers are missing licensing information, which
makes it hard for compliance tools to determine the correct license.
By default are files without license information under the default
license of the kernel, which is GPLV2. Marking them GPLV2 would exclude
them from being included in non GPLV2 code, which is obviously not
intended. The user space API headers fall under the syscall exception
which is in the kernels COPYING file:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
otherwise syscall usage would not be possible.
Update the files which contain no license information with an SPDX
license identifier. The chosen identifier is 'GPL-2.0 WITH
Linux-syscall-note' which is the officially assigned identifier for the
Linux syscall exception. SPDX license identifiers are a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The send call ignores unknown flags. Legacy applications may already
unwittingly pass MSG_ZEROCOPY. Continue to ignore this flag unless a
socket opts in to zerocopy.
Introduce socket option SO_ZEROCOPY to enable MSG_ZEROCOPY processing.
Processes can also query this socket option to detect kernel support
for the feature. Older kernels will return ENOPROTOOPT.
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This adds the new getsockopt(2) option SO_PEERGROUPS on SOL_SOCKET to
retrieve the auxiliary groups of the remote peer. It is designed to
naturally extend SO_PEERCRED. That is, the underlying data is from the
same credentials. Regarding its syntax, it is based on SO_PEERSEC. That
is, if the provided buffer is too small, ERANGE is returned and @optlen
is updated. Otherwise, the information is copied, @optlen is set to the
actual size, and 0 is returned.
While SO_PEERCRED (and thus `struct ucred') already returns the primary
group, it lacks the auxiliary group vector. However, nearly all access
controls (including kernel side VFS and SYSVIPC, but also user-space
polkit, DBus, ...) consider the entire set of groups, rather than just
the primary group. But this is currently not possible with pure
SO_PEERCRED. Instead, user-space has to work around this and query the
system database for the auxiliary groups of a UID retrieved via
SO_PEERCRED.
Unfortunately, there is no race-free way to query the auxiliary groups
of the PID/UID retrieved via SO_PEERCRED. Hence, the current user-space
solution is to use getgrouplist(3p), which itself falls back to NSS and
whatever is configured in nsswitch.conf(3). This effectively checks
which groups we *would* assign to the user if it logged in *now*. On
normal systems it is as easy as reading /etc/group, but with NSS it can
resort to quering network databases (eg., LDAP), using IPC or network
communication.
Long story short: Whenever we want to use auxiliary groups for access
checks on IPC, we need further IPC to talk to the user/group databases,
rather than just relying on SO_PEERCRED and the incoming socket. This
is unfortunate, and might even result in dead-locks if the database
query uses the same IPC as the original request.
So far, those recursions / dead-locks have been avoided by using
primitive IPC for all crucial NSS modules. However, we want to avoid
re-inventing the wheel for each NSS module that might be involved in
user/group queries. Hence, we would preferably make DBus (and other IPC
that supports access-management based on groups) work without resorting
to the user/group database. This new SO_PEERGROUPS ioctl would allow us
to make dbus-daemon work without ever calling into NSS.
Cc: Michal Sekletar <msekleta@redhat.com>
Cc: Simon McVittie <simon.mcvittie@collabora.co.uk>
Reviewed-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
A definition was only provided for asm-generic/socket.h
using platforms, define it for the others as well
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Introduce a new getsockopt operation to retrieve the socket cookie
for a specific socket based on the socket fd. It returns a unique
non-decreasing cookie for each socket.
Tested: https://android-review.googlesource.com/#/c/358163/
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Chenbo Feng <fengc@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This socket option returns the NAPI ID associated with the queue on which
the last frame is received. This information can be used by the apps to
split the incoming flows among the threads based on the Rx queue on which
they are received.
If the NAPI ID actually represents a sender_cpu then the value is ignored
and 0 is returned.
Signed-off-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Allows reading of SK_MEMINFO_VARS via socket option. This way an
application can get all meminfo related information in single socket
option call instead of multiple calls.
Adds helper function, sk_get_meminfo(), and uses that for both
getsockopt and sock_diag_put_meminfo().
Suggested by Eric Dumazet.
Signed-off-by: Josh Hunt <johunt@akamai.com>
Reviewed-by: Jason Baron <jbaron@akamai.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch exports the sender chronograph stats via the socket
SO_TIMESTAMPING channel. Currently we can instrument how long a
particular application unit of data was queued in TCP by tracking
SOF_TIMESTAMPING_TX_SOFTWARE and SOF_TIMESTAMPING_TX_SCHED. Having
these sender chronograph stats exported simultaneously along with
these timestamps allow further breaking down the various sender
limitation. For example, a video server can tell if a particular
chunk of video on a connection takes a long time to deliver because
TCP was experiencing small receive window. It is not possible to
tell before this patch without packet traces.
To prepare these stats, the user needs to set
SOF_TIMESTAMPING_OPT_STATS and SOF_TIMESTAMPING_OPT_TSONLY flags
while requesting other SOF_TIMESTAMPING TX timestamps. When the
timestamps are available in the error queue, the stats are returned
in a separate control message of type SCM_TIMESTAMPING_OPT_STATS,
in a list of TLVs (struct nlattr) of types: TCP_NLA_BUSY_TIME,
TCP_NLA_RWND_LIMITED, TCP_NLA_SNDBUF_LIMITED. Unit is microsecond.
Signed-off-by: Francis Yan <francisyyan@gmail.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch add the SO_CNX_ADVICE socket option (setsockopt only). The
purpose is to allow an application to give feedback to the kernel about
the quality of the network path for a connected socket. The value
argument indicates the type of quality report. For this initial patch
the only supported advice is a value of 1 which indicates "bad path,
please reroute"-- the action taken by the kernel is to call
dst_negative_advice which will attempt to choose a different ECMP route,
reset the TX hash for flow label and UDP source port in encapsulation,
etc.
This facility should be useful for connected UDP sockets where only the
application can provide any feedback about path quality. It could also
be useful for TCP applications that have additional knowledge about the
path outside of the normal TCP control loop.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Expose socket options for setting a classic or extended BPF program
for use when selecting sockets in an SO_REUSEPORT group. These options
can be used on the first socket to belong to a group before bind or
on any socket in the group after bind.
This change includes refactoring of the existing sk_filter code to
allow reuse of the existing BPF filter validation checks.
Signed-off-by: Craig Gallek <kraig@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
introduce new setsockopt() command:
setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd, sizeof(prog_fd))
where prog_fd was received from syscall bpf(BPF_PROG_LOAD, attr, ...)
and attr->prog_type == BPF_PROG_TYPE_SOCKET_FILTER
setsockopt() calls bpf_prog_get() which increments refcnt of the program,
so it doesn't get unloaded while socket is using the program.
The same eBPF program can be attached to multiple sockets.
User task exit automatically closes socket which calls sk_filter_uncharge()
which decrements refcnt of eBPF program
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Alternative to RPS/RFS is to use hardware support for multiple
queues.
Then split a set of million of sockets into worker threads, each
one using epoll() to manage events on its own socket pool.
Ideally, we want one thread per RX/TX queue/cpu, but we have no way to
know after accept() or connect() on which queue/cpu a socket is managed.
We normally use one cpu per RX queue (IRQ smp_affinity being properly
set), so remembering on socket structure which cpu delivered last packet
is enough to solve the problem.
After accept(), connect(), or even file descriptor passing around
processes, applications can use :
int cpu;
socklen_t len = sizeof(cpu);
getsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu, &len);
And use this information to put the socket into the right silo
for optimal performance, as all networking stack should run
on the appropriate cpu, without need to send IPI (RPS/RFS).
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For user space packet capturing libraries such as libpcap, there's
currently only one way to check which BPF extensions are supported
by the kernel, that is, commit aa1113d9f85d ("net: filter: return
-EINVAL if BPF_S_ANC* operation is not supported"). For querying all
extensions at once this might be rather inconvenient.
Therefore, this patch introduces a new option which can be used as
an argument for getsockopt(), and allows one to obtain information
about which BPF extensions are supported by the current kernel.
As David Miller suggests, we do not need to define any bits right
now and status quo can just return 0 in order to state that this
versions supports SKF_AD_PROTOCOL up to SKF_AD_PAY_OFFSET. Later
additions to BPF extensions need to add their bits to the
bpf_tell_extensions() function, as documented in the comment.
Signed-off-by: Michal Sekletar <msekleta@redhat.com>
Cc: David Miller <davem@davemloft.net>
Reviewed-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As mentioned in commit afe4fd062416b ("pkt_sched: fq: Fair Queue packet
scheduler"), this patch adds a new socket option.
SO_MAX_PACING_RATE offers the application the ability to cap the
rate computed by transport layer. Value is in bytes per second.
u32 val = 1000000;
setsockopt(sockfd, SOL_SOCKET, SO_MAX_PACING_RATE, &val, sizeof(val));
To be effectively paced, a flow must use FQ packet scheduler.
Note that a packet scheduler takes into account the headers for its
computations. The effective payload rate depends on MSS and retransmits
if any.
I chose to make this pacing rate a SOL_SOCKET option instead of a
TCP one because this can be used by other protocols.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Steinar H. Gunderson <sesse@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Rename LL_SO to BUSY_POLL_SO
Rename sysctl_net_ll_{read,poll} to sysctl_busy_{read,poll}
Fix up users of these variables.
Fix documentation for sysctl.
a patch for the socket.7 man page will follow separately,
because of limitations of my mail setup.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
adds a socket option for low latency polling.
This allows overriding the global sysctl value with a per-socket one.
Unexport sysctl_net_ll_poll since for now it's not needed in modules.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently, when a socket receives something on the error queue it only wakes up
the socket on select if it is in the "read" list, that is the socket has
something to read. It is useful also to wake the socket if it is in the error
list, which would enable software to wait on error queue packets without waking
up for regular data on the socket. The main use case is for receiving
timestamped transmit packets which return the timestamp to the socket via the
error queue. This enables an application to select on the socket for the error
queue only instead of for the regular traffic.
-v2-
* Added the SO_SELECT_ERR_QUEUE socket option to every architechture specific file
* Modified every socket poll function that checks error queue
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Cc: Jeffrey Kirsher <jeffrey.t.kirsher@intel.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Matthew Vick <matthew.vick@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Definitions and macros for implementing soreusport.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
While a privileged program can open a raw socket, attach some
restrictive filter and drop its privileges (or send the socket to an
unprivileged program through some Unix socket), the filter can still
be removed or modified by the unprivileged program. This commit adds a
socket option to lock the filter (SO_LOCK_FILTER) preventing any
modification of a socket filter program.
This is similar to OpenBSD BIOCLOCK ioctl on bpf sockets, except even
root is not allowed change/drop the filter.
The state of the lock can be read with getsockopt(). No error is
triggered if the state is not changed. -EPERM is returned when a user
tries to remove the lock or to change/remove the filter while the lock
is active. The check is done directly in sk_attach_filter() and
sk_detach_filter() and does not affect only setsockopt() syscall.
Signed-off-by: Vincent Bernat <bernat@luffy.cx>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SO_ATTACH_FILTER option is set only. I propose to add the get
ability by using SO_ATTACH_FILTER in getsockopt. To be less
irritating to eyes the SO_GET_FILTER alias to it is declared. This
ability is required by checkpoint-restore project to be able to
save full state of a socket.
There are two issues with getting filter back.
First, kernel modifies the sock_filter->code on filter load, thus in
order to return the filter element back to user we have to decode it
into user-visible constants. Fortunately the modification in question
is interconvertible.
Second, the BPF_S_ALU_DIV_K code modifies the command argument k to
speed up the run-time division by doing kernel_k = reciprocal(user_k).
Bad news is that different user_k may result in same kernel_k, so we
can't get the original user_k back. Good news is that we don't have
to do it. What we need to is calculate a user2_k so, that
reciprocal(user2_k) == reciprocal(user_k) == kernel_k
i.e. if it's re-loaded back the compiled again value will be exactly
the same as it was. That said, the user2_k can be calculated like this
user2_k = reciprocal(kernel_k)
with an exception, that if kernel_k == 0, then user2_k == 1.
The optlen argument is treated like this -- when zero, kernel returns
the amount of sock_fprog elements in filter, otherwise it should be
large enough for the sock_fprog array.
changes since v1:
* Declared SO_GET_FILTER in all arch headers
* Added decode of vlan-tag codes
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
|