diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-05-24 11:58:10 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-05-24 11:58:10 -0700 |
commit | ac2ab99072cce553c78f326ea22d72856f570d88 (patch) | |
tree | 6c3e9edca79ae971f89c598105212434e3946fb7 /lib/Kconfig.debug | |
parent | eadb2f47a3ced5c64b23b90fd2a3463f63726066 (diff) | |
parent | 1ce6c8d68f8ac587f54d0a271ac594d3d51f3efb (diff) |
Merge tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"These updates continue to refine the work began in 5.17 and 5.18 of
modernizing the RNG's crypto and streamlining and documenting its
code.
New for 5.19, the updates aim to improve entropy collection methods
and make some initial decisions regarding the "premature next" problem
and our threat model. The cloc utility now reports that random.c is
931 lines of code and 466 lines of comments, not that basic metrics
like that mean all that much, but at the very least it tells you that
this is very much a manageable driver now.
Here's a summary of the various updates:
- The random_get_entropy() function now always returns something at
least minimally useful. This is the primary entropy source in most
collectors, which in the best case expands to something like RDTSC,
but prior to this change, in the worst case it would just return 0,
contributing nothing. For 5.19, additional architectures are wired
up, and architectures that are entirely missing a cycle counter now
have a generic fallback path, which uses the highest resolution
clock available from the timekeeping subsystem.
Some of those clocks can actually be quite good, despite the CPU
not having a cycle counter of its own, and going off-core for a
stamp is generally thought to increase jitter, something positive
from the perspective of entropy gathering. Done very early on in
the development cycle, this has been sitting in next getting some
testing for a while now and has relevant acks from the archs, so it
should be pretty well tested and fine, but is nonetheless the thing
I'll be keeping my eye on most closely.
- Of particular note with the random_get_entropy() improvements is
MIPS, which, on CPUs that lack the c0 count register, will now
combine the high-speed but short-cycle c0 random register with the
lower-speed but long-cycle generic fallback path.
- With random_get_entropy() now always returning something useful,
the interrupt handler now collects entropy in a consistent
construction.
- Rather than comparing two samples of random_get_entropy() for the
jitter dance, the algorithm now tests many samples, and uses the
amount of differing ones to determine whether or not jitter entropy
is usable and how laborious it must be. The problem with comparing
only two samples was that if the cycle counter was extremely slow,
but just so happened to be on the cusp of a change, the slowness
wouldn't be detected. Taking many samples fixes that to some
degree.
This, combined with the other improvements to random_get_entropy(),
should make future unification of /dev/random and /dev/urandom
maybe more possible. At the very least, were we to attempt it again
today (we're not), it wouldn't break any of Guenter's test rigs
that broke when we tried it with 5.18. So, not today, but perhaps
down the road, that's something we can revisit.
- We attempt to reseed the RNG immediately upon waking up from system
suspend or hibernation, making use of the various timestamps about
suspend time and such available, as well as the usual inputs such
as RDRAND when available.
- Batched randomness now falls back to ordinary randomness before the
RNG is initialized. This provides more consistent guarantees to the
types of random numbers being returned by the various accessors.
- The "pre-init injection" code is now gone for good. I suspect you
in particular will be happy to read that, as I recall you
expressing your distaste for it a few months ago. Instead, to avoid
a "premature first" issue, while still allowing for maximal amount
of entropy availability during system boot, the first 128 bits of
estimated entropy are used immediately as it arrives, with the next
128 bits being buffered. And, as before, after the RNG has been
fully initialized, it winds up reseeding anyway a few seconds later
in most cases. This resulted in a pretty big simplification of the
initialization code and let us remove various ad-hoc mechanisms
like the ugly crng_pre_init_inject().
- The RNG no longer pretends to handle the "premature next" security
model, something that various academics and other RNG designs have
tried to care about in the past. After an interesting mailing list
thread, these issues are thought to be a) mainly academic and not
practical at all, and b) actively harming the real security of the
RNG by delaying new entropy additions after a potential compromise,
making a potentially bad situation even worse. As well, in the
first place, our RNG never even properly handled the premature next
issue, so removing an incomplete solution to a fake problem was
particularly nice.
This allowed for numerous other simplifications in the code, which
is a lot cleaner as a consequence. If you didn't see it before,
https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a
thread worth skimming through.
- While the interrupt handler received a separate code path years ago
that avoids locks by using per-cpu data structures and a faster
mixing algorithm, in order to reduce interrupt latency, input and
disk events that are triggered in hardirq handlers were still
hitting locks and more expensive algorithms. Those are now
redirected to use the faster per-cpu data structures.
- Rather than having the fake-crypto almost-siphash-based random32
implementation be used right and left, and in many places where
cryptographically secure randomness is desirable, the batched
entropy code is now fast enough to replace that.
- As usual, numerous code quality and documentation cleanups. For
example, the initialization state machine now uses enum symbolic
constants instead of just hard coding numbers everywhere.
- Since the RNG initializes once, and then is always initialized
thereafter, a pretty heavy amount of code used during that
initialization is never used again. It is now completely cordoned
off using static branches and it winds up in the .text.unlikely
section so that it doesn't reduce cache compactness after the RNG
is ready.
- A variety of functions meant for waiting on the RNG to be
initialized were only used by vsprintf, and in not a particularly
optimal way. Replacing that usage with a more ordinary setup made
it possible to remove those functions.
- A cleanup of how we warn userspace about the use of uninitialized
/dev/urandom and uninitialized get_random_bytes() usage.
Interestingly, with the change you merged for 5.18 that attempts to
use jitter (but does not block if it can't), the majority of users
should never see those warnings for /dev/urandom at all now, and
the one for in-kernel usage is mainly a debug thing.
- The file_operations struct for /dev/[u]random now implements
.read_iter and .write_iter instead of .read and .write, allowing it
to also implement .splice_read and .splice_write, which makes
splice(2) work again after it was broken here (and in many other
places in the tree) during the set_fs() removal. This was a bit of
a last minute arrival from Jens that hasn't had as much time to
bake, so I'll be keeping my eye on this as well, but it seems
fairly ordinary. Unfortunately, read_iter() is around 3% slower
than read() in my tests, which I'm not thrilled about. But Jens and
Al, spurred by this observation, seem to be making progress in
removing the bottlenecks on the iter paths in the VFS layer in
general, which should remove the performance gap for all drivers.
- Assorted other bug fixes, cleanups, and optimizations.
- A small SipHash cleanup"
* tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits)
random: check for signals after page of pool writes
random: wire up fops->splice_{read,write}_iter()
random: convert to using fops->write_iter()
random: convert to using fops->read_iter()
random: unify batched entropy implementations
random: move randomize_page() into mm where it belongs
random: remove mostly unused async readiness notifier
random: remove get_random_bytes_arch() and add rng_has_arch_random()
random: move initialization functions out of hot pages
random: make consistent use of buf and len
random: use proper return types on get_random_{int,long}_wait()
random: remove extern from functions in header
random: use static branch for crng_ready()
random: credit architectural init the exact amount
random: handle latent entropy and command line from random_init()
random: use proper jiffies comparison macro
random: remove ratelimiting for in-kernel unseeded randomness
random: move initialization out of reseeding hot path
random: avoid initializing twice in credit race
random: use symbolic constants for crng_init states
...
Diffstat (limited to 'lib/Kconfig.debug')
-rw-r--r-- | lib/Kconfig.debug | 3 |
1 files changed, 1 insertions, 2 deletions
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index 55b9acb2f524..a30d5279efda 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -1617,8 +1617,7 @@ config WARN_ALL_UNSEEDED_RANDOM so architecture maintainers really need to do what they can to get the CRNG seeded sooner after the system is booted. However, since users cannot do anything actionable to - address this, by default the kernel will issue only a single - warning for the first use of unseeded randomness. + address this, by default this option is disabled. Say Y here if you want to receive warnings for all uses of unseeded randomness. This will be of use primarily for |