summaryrefslogtreecommitdiff
path: root/Documentation/scheduler
diff options
context:
space:
mode:
authorBjorn Helgaas <bhelgaas@google.com>2023-08-14 16:28:22 -0500
committerJonathan Corbet <corbet@lwn.net>2023-08-18 11:29:03 -0600
commitd56b699d76d1b352f7a3d3a0a3e91c79b8612d94 (patch)
tree2a368f3e2e17f7a516bf39e055f79d8c79a74885 /Documentation/scheduler
parentebab9426cd73c45945b44344ca904b343f0ca070 (diff)
Documentation: Fix typos
Fix typos in Documentation. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Link: https://lore.kernel.org/r/20230814212822.193684-4-helgaas@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/scheduler')
-rw-r--r--Documentation/scheduler/sched-bwc.rst2
-rw-r--r--Documentation/scheduler/sched-energy.rst4
2 files changed, 3 insertions, 3 deletions
diff --git a/Documentation/scheduler/sched-bwc.rst b/Documentation/scheduler/sched-bwc.rst
index f166b182ff95..41ed2ceafc92 100644
--- a/Documentation/scheduler/sched-bwc.rst
+++ b/Documentation/scheduler/sched-bwc.rst
@@ -186,7 +186,7 @@ average usage, albeit over a longer time window than a single period. This
also limits the burst ability to no more than 1ms per cpu. This provides
better more predictable user experience for highly threaded applications with
small quota limits on high core count machines. It also eliminates the
-propensity to throttle these applications while simultanously using less than
+propensity to throttle these applications while simultaneously using less than
quota amounts of cpu. Another way to say this, is that by allowing the unused
portion of a slice to remain valid across periods we have decreased the
possibility of wastefully expiring quota on cpu-local silos that don't need a
diff --git a/Documentation/scheduler/sched-energy.rst b/Documentation/scheduler/sched-energy.rst
index 8fbce5e767d9..fc853c8cc346 100644
--- a/Documentation/scheduler/sched-energy.rst
+++ b/Documentation/scheduler/sched-energy.rst
@@ -82,7 +82,7 @@ through the arch_scale_cpu_capacity() callback.
The rest of platform knowledge used by EAS is directly read from the Energy
Model (EM) framework. The EM of a platform is composed of a power cost table
per 'performance domain' in the system (see Documentation/power/energy-model.rst
-for futher details about performance domains).
+for further details about performance domains).
The scheduler manages references to the EM objects in the topology code when the
scheduling domains are built, or re-built. For each root domain (rd), the
@@ -281,7 +281,7 @@ mechanism called 'over-utilization'.
From a general standpoint, the use-cases where EAS can help the most are those
involving a light/medium CPU utilization. Whenever long CPU-bound tasks are
being run, they will require all of the available CPU capacity, and there isn't
-much that can be done by the scheduler to save energy without severly harming
+much that can be done by the scheduler to save energy without severely harming
throughput. In order to avoid hurting performance with EAS, CPUs are flagged as
'over-utilized' as soon as they are used at more than 80% of their compute
capacity. As long as no CPUs are over-utilized in a root domain, load balancing