summaryrefslogtreecommitdiff
path: root/src/cairo-bentley-ottmann.c
blob: 6e46476e188e7ba7d94c9d6ce368809bc5a3d12a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
/*
 * Copyright © 2004 Carl Worth
 * Copyright © 2006 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Carl Worth
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 */

/* Provide definitions for standalone compilation */
#include "cairoint.h"

#include "cairo-skiplist-private.h"
#include "cairo-freelist-private.h"

#define DEBUG_VALIDATE 0
#define DEBUG_PRINT_STATE 0

typedef cairo_point_t cairo_bo_point32_t;

typedef struct _cairo_bo_point128 {
    cairo_int128_t x;
    cairo_int128_t y;
} cairo_bo_point128_t;

typedef struct _cairo_bo_intersect_ordinate {
    int32_t ordinate;
    enum { EXACT, INEXACT } exactness;
} cairo_bo_intersect_ordinate_t;

typedef struct _cairo_bo_intersect_point {
    cairo_bo_intersect_ordinate_t x;
    cairo_bo_intersect_ordinate_t y;
} cairo_bo_intersect_point_t;

typedef struct _cairo_bo_edge cairo_bo_edge_t;
typedef struct _sweep_line_elt sweep_line_elt_t;
typedef struct _cairo_bo_trap cairo_bo_trap_t;
typedef struct _cairo_bo_traps cairo_bo_traps_t;

/* A deferred trapezoid of an edge. */
struct _cairo_bo_trap {
    cairo_bo_edge_t *right;
    int32_t top;
};

struct _cairo_bo_traps {
    cairo_traps_t *traps;
    cairo_freelist_t freelist;

    /* These form the closed bounding box of the original input
     * points. */
    cairo_fixed_t xmin;
    cairo_fixed_t ymin;
    cairo_fixed_t xmax;
    cairo_fixed_t ymax;
};

struct _cairo_bo_edge {
    cairo_bo_point32_t top;
    cairo_bo_point32_t middle;
    cairo_bo_point32_t bottom;
    cairo_bool_t reversed;
    cairo_bo_edge_t *prev;
    cairo_bo_edge_t *next;
    cairo_bo_trap_t *deferred_trap;
    sweep_line_elt_t *sweep_line_elt;
};

struct _sweep_line_elt {
    cairo_bo_edge_t *edge;
    skip_elt_t elt;
};

#define SKIP_ELT_TO_EDGE_ELT(elt)	SKIP_LIST_ELT_TO_DATA (sweep_line_elt_t, (elt))
#define SKIP_ELT_TO_EDGE(elt) 		(SKIP_ELT_TO_EDGE_ELT (elt)->edge)

typedef enum {
    CAIRO_BO_STATUS_INTERSECTION,
    CAIRO_BO_STATUS_PARALLEL,
    CAIRO_BO_STATUS_NO_INTERSECTION
} cairo_bo_status_t;

typedef enum {
    CAIRO_BO_EVENT_TYPE_START,
    CAIRO_BO_EVENT_TYPE_STOP,
    CAIRO_BO_EVENT_TYPE_INTERSECTION
} cairo_bo_event_type_t;

typedef struct _cairo_bo_event {
    cairo_bo_event_type_t type;
    cairo_bo_edge_t *e1;
    cairo_bo_edge_t *e2;
    cairo_bo_point32_t point;
    skip_elt_t elt;
} cairo_bo_event_t;

#define SKIP_ELT_TO_EVENT(elt) SKIP_LIST_ELT_TO_DATA (cairo_bo_event_t, (elt))

typedef struct _cairo_bo_event_queue {
    cairo_skip_list_t intersection_queue;

    cairo_bo_event_t *startstop_events;
    cairo_bo_event_t **sorted_startstop_event_ptrs;
    unsigned next_startstop_event_index;
    unsigned num_startstop_events;
} cairo_bo_event_queue_t;

/* This structure extends #cairo_skip_list_t, which must come first. */
typedef struct _cairo_bo_sweep_line {
    cairo_skip_list_t active_edges;
    cairo_bo_edge_t *head;
    cairo_bo_edge_t *tail;
    int32_t current_y;
} cairo_bo_sweep_line_t;


static inline int
_cairo_bo_point32_compare (cairo_bo_point32_t const *a,
			   cairo_bo_point32_t const *b)
{
    int cmp = a->y - b->y;
    if (cmp) return cmp;
    return a->x - b->x;
}

/* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
 * slope a is respectively greater than, equal to, or less than the
 * slope of b.
 *
 * For each edge, consider the direction vector formed from:
 *
 *	top -> bottom
 *
 * which is:
 *
 *	(dx, dy) = (bottom.x - top.x, bottom.y - top.y)
 *
 * We then define the slope of each edge as dx/dy, (which is the
 * inverse of the slope typically used in math instruction). We never
 * compute a slope directly as the value approaches infinity, but we
 * can derive a slope comparison without division as follows, (where
 * the ? represents our compare operator).
 *
 * 1.	   slope(a) ? slope(b)
 * 2.	    adx/ady ? bdx/bdy
 * 3.	(adx * bdy) ? (bdx * ady)
 *
 * Note that from step 2 to step 3 there is no change needed in the
 * sign of the result since both ady and bdy are guaranteed to be
 * greater than or equal to 0.
 *
 * When using this slope comparison to sort edges, some care is needed
 * when interpreting the results. Since the slope compare operates on
 * distance vectors from top to bottom it gives a correct left to
 * right sort for edges that have a common top point, (such as two
 * edges with start events at the same location). On the other hand,
 * the sense of the result will be exactly reversed for two edges that
 * have a common stop point.
 */
static int
_slope_compare (cairo_bo_edge_t *a,
		cairo_bo_edge_t *b)
{
    /* XXX: We're assuming here that dx and dy will still fit in 32
     * bits. That's not true in general as there could be overflow. We
     * should prevent that before the tessellation algorithm
     * begins.
     */
    int32_t adx = a->bottom.x - a->top.x;
    int32_t bdx = b->bottom.x - b->top.x;

    /* Since the dy's are all positive by construction we can fast
     * path the case where the two edges point in different directions
     * with respect to x. */
    if ((adx ^ bdx) < 0) {
	return adx < 0 ? -1 : +1;
    }
    else {
	int32_t ady = a->bottom.y - a->top.y;
	int32_t bdy = b->bottom.y - b->top.y;
	int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
	int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);

	/* if (adx * bdy > bdx * ady) */
	if (_cairo_int64_gt (adx_bdy, bdx_ady))
	    return 1;

	/* if (adx * bdy < bdx * ady) */
	if (_cairo_int64_lt (adx_bdy, bdx_ady))
	    return -1;
	return 0;
    }
}

static cairo_quorem64_t
edge_x_for_y (cairo_bo_edge_t *edge,
	      int32_t y)
{
    /* XXX: We're assuming here that dx and dy will still fit in 32
     * bits. That's not true in general as there could be overflow. We
     * should prevent that before the tessellation algorithm
     * begins.
     */
    int32_t dx = edge->bottom.x - edge->top.x;
    int32_t dy = edge->bottom.y - edge->top.y;
    int64_t numerator;
    cairo_quorem64_t quorem;

    if (edge->middle.y == y) {
       quorem.quo = edge->middle.x;
       quorem.rem = 0;
       return quorem;
    }
    if (edge->bottom.y == y) {
       quorem.quo = edge->bottom.x;
       quorem.rem = 0;
       return quorem;
    }
    if (dy == 0) {
	quorem.quo = _cairo_int32_to_int64 (edge->top.x);
	quorem.rem = 0;
	return quorem;
    }

    /* edge->top.x + (y - edge->top.y) * dx / dy */
    numerator = _cairo_int32x32_64_mul ((y - edge->top.y), dx);
    quorem = _cairo_int64_divrem (numerator, dy);
    quorem.quo += edge->top.x;

    return quorem;
}

static int
_cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t	*sweep_line,
				    cairo_bo_edge_t		*a,
				    cairo_bo_edge_t		*b)
{
    cairo_quorem64_t ax;
    cairo_quorem64_t bx;
    int cmp;

    if (a == b)
	return 0;

    /* don't bother solving for abscissa if the edges' bounding boxes
     * can be used to order them. */
    {
           int32_t amin, amax;
           int32_t bmin, bmax;
           if (a->middle.x < a->bottom.x) {
                   amin = a->middle.x;
                   amax = a->bottom.x;
           } else {
                   amin = a->bottom.x;
                   amax = a->middle.x;
           }
           if (b->middle.x < b->bottom.x) {
                   bmin = b->middle.x;
                   bmax = b->bottom.x;
           } else {
                   bmin = b->bottom.x;
                   bmax = b->middle.x;
           }
           if (amax < bmin) return -1;
           if (amin > bmax) return +1;
    }

    ax = edge_x_for_y (a, sweep_line->current_y);
    bx = edge_x_for_y (b, sweep_line->current_y);
    if (ax.quo > bx.quo)
	return 1;
    else if (ax.quo < bx.quo)
	return -1;

    /* Quotients are identical, test remainder. */
    if (ax.rem > bx.rem)
	return 1;
    else if (ax.rem < bx.rem)
	return -1;

    /* The two edges intersect exactly at y, so fall back on slope
     * comparison. We know that this compare_edges function will be
     * called only when starting a new edge, (not when stopping an
     * edge), so we don't have to worry about conditionally inverting
     * the sense of _slope_compare. */
    cmp = _slope_compare (a, b);
    if (cmp)
	return cmp;

    /* We've got two collinear edges now. */

    /* Since we're dealing with start events, prefer comparing top
     * edges before bottom edges. */
    cmp = _cairo_bo_point32_compare (&a->top, &b->top);
    if (cmp)
	return cmp;

    cmp = _cairo_bo_point32_compare (&a->bottom, &b->bottom);
    if (cmp)
	return cmp;

    /* Finally, we've got two identical edges. Let's finally
     * discriminate by a simple pointer comparison, (which works only
     * because we "know" the edges are all in a single array and don't
     * move. */
    if (a > b)
	return 1;
    else
	return -1;
}

static int
_sweep_line_elt_compare (void	*list,
			 void	*a,
			 void	*b)
{
    cairo_bo_sweep_line_t *sweep_line = list;
    sweep_line_elt_t *edge_elt_a = a;
    sweep_line_elt_t *edge_elt_b = b;

    return _cairo_bo_sweep_line_compare_edges (sweep_line,
					       edge_elt_a->edge,
					       edge_elt_b->edge);
}

static inline int
cairo_bo_event_compare (cairo_bo_event_t const *a,
			cairo_bo_event_t const *b)
{
    int cmp;

    /* The major motion of the sweep line is vertical (top-to-bottom),
     * and the minor motion is horizontal (left-to-right), dues to the
     * infinitesimal tilt rule.
     *
     * Our point comparison function respects these rules.
     */
    cmp = _cairo_bo_point32_compare (&a->point, &b->point);
    if (cmp)
	return cmp;

    /* The events share a common point, so further discrimination is
     * determined by the event type. Due to the infinitesimal
     * shortening rule, stop events come first, then intersection
     * events, then start events.
     */
    if (a->type != b->type) {
	if (a->type == CAIRO_BO_EVENT_TYPE_STOP)
	    return -1;
	if (a->type == CAIRO_BO_EVENT_TYPE_START)
	    return 1;

	if (b->type == CAIRO_BO_EVENT_TYPE_STOP)
	    return 1;
	if (b->type == CAIRO_BO_EVENT_TYPE_START)
	    return -1;
    }

    /* At this stage we are looking at two events of the same type at
     * the same point. The final sort key is a slope comparison. We
     * need a different sense for start and stop events based on the
     * shortening rule.
     *
     * Note: Fortunately, we get to ignore errors in the relative
     * ordering of intersection events. This means we don't even have
     * to look at e2 here, nor worry about which sense of the slope
     * comparison test is used for intersection events.
     */
    cmp = _slope_compare (a->e1, b->e1);
    if (cmp) {
	if (a->type == CAIRO_BO_EVENT_TYPE_START)
	    return cmp;
	else
	    return - cmp;
    }

    /* Next look at the opposite point. This leaves ambiguities only
     * for identical edges. */
    if (a->type == CAIRO_BO_EVENT_TYPE_START) {
	cmp = _cairo_bo_point32_compare (&b->e1->bottom,
					 &a->e1->bottom);
	if (cmp)
	    return cmp;
    }
    else if (a->type == CAIRO_BO_EVENT_TYPE_STOP) {
	cmp = _cairo_bo_point32_compare (&a->e1->top,
					 &b->e1->top);
	if (cmp)
	    return cmp;
    }
    else { /* CAIRO_BO_EVENT_TYPE_INTERSECT */
	/* For two intersection events at the identical point, we
	 * don't care what order they sort in, but we do care that we
	 * have a stable sort. In particular intersections between
	 * different pairs of edges must never return 0. */
	cmp = _cairo_bo_point32_compare (&a->e2->top, &b->e2->top);
	if (cmp)
	    return cmp;
	cmp = _cairo_bo_point32_compare (&a->e2->bottom, &b->e2->bottom);
	if (cmp)
	    return cmp;
	cmp = _cairo_bo_point32_compare (&a->e1->top, &b->e1->top);
	if (cmp)
	    return cmp;
	cmp = _cairo_bo_point32_compare (&a->e1->bottom, &b->e1->bottom);
	if (cmp)
	    return cmp;
     }

    /* Discrimination based on the edge pointers. */
    if (a->e1 < b->e1)
	return -1;
    if (a->e1 > b->e1)
	return +1;
    if (a->e2 < b->e2)
	return -1;
    if (a->e2 > b->e2)
	return +1;
    return 0;
}

static int
cairo_bo_event_compare_abstract (void		*list,
				 void	*a,
				 void	*b)
{
    cairo_bo_event_t *event_a = a;
    cairo_bo_event_t *event_b = b;

    return cairo_bo_event_compare (event_a, event_b);
}

static int
cairo_bo_event_compare_pointers (void const *voida,
				 void const *voidb)
{
    cairo_bo_event_t const * const *a = voida;
    cairo_bo_event_t const * const *b = voidb;
    if (*a != *b) {
	int cmp = cairo_bo_event_compare (*a, *b);
	if (cmp)
	    return cmp;
	if (*a < *b)
	    return -1;
	if (*a > *b)
	    return +1;
    }
    return 0;
}

static inline cairo_int64_t
det32_64 (int32_t a,
	  int32_t b,
	  int32_t c,
	  int32_t d)
{
    cairo_int64_t ad;
    cairo_int64_t bc;

    /* det = a * d - b * c */
    ad = _cairo_int32x32_64_mul (a, d);
    bc = _cairo_int32x32_64_mul (b, c);

    return _cairo_int64_sub (ad, bc);
}

static inline cairo_int128_t
det64_128 (cairo_int64_t a,
	   cairo_int64_t b,
	   cairo_int64_t c,
	   cairo_int64_t d)
{
    cairo_int128_t ad;
    cairo_int128_t bc;

    /* det = a * d - b * c */
    ad = _cairo_int64x64_128_mul (a, d);
    bc = _cairo_int64x64_128_mul (b, c);

    return _cairo_int128_sub (ad, bc);
}

/* Compute the intersection of two lines as defined by two edges. The
 * result is provided as a coordinate pair of 128-bit integers.
 *
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
 */
static cairo_bo_status_t
intersect_lines (cairo_bo_edge_t		*a,
		 cairo_bo_edge_t		*b,
		 cairo_bo_intersect_point_t	*intersection)
{
    cairo_int64_t a_det, b_det;

    /* XXX: We're assuming here that dx and dy will still fit in 32
     * bits. That's not true in general as there could be overflow. We
     * should prevent that before the tessellation algorithm begins.
     * What we're doing to mitigate this is to perform clamping in
     * cairo_bo_tessellate_polygon().
     */
    int32_t dx1 = a->top.x - a->bottom.x;
    int32_t dy1 = a->top.y - a->bottom.y;

    int32_t dx2 = b->top.x - b->bottom.x;
    int32_t dy2 = b->top.y - b->bottom.y;

    cairo_int64_t den_det = det32_64 (dx1, dy1, dx2, dy2);
    cairo_quorem64_t qr;

    if (_cairo_int64_eq (den_det, 0))
	return CAIRO_BO_STATUS_PARALLEL;

    a_det = det32_64 (a->top.x, a->top.y,
		      a->bottom.x, a->bottom.y);
    b_det = det32_64 (b->top.x, b->top.y,
		      b->bottom.x, b->bottom.y);

    /* x = det (a_det, dx1, b_det, dx2) / den_det */
    qr = _cairo_int_96by64_32x64_divrem (det64_128 (a_det, dx1,
						    b_det, dx2),
					 den_det);
    if (_cairo_int64_eq (qr.rem,den_det))
	return CAIRO_BO_STATUS_NO_INTERSECTION;
    intersection->x.ordinate = qr.quo;
    intersection->x.exactness = qr.rem ? INEXACT : EXACT;

    /* y = det (a_det, dy1, b_det, dy2) / den_det */
    qr = _cairo_int_96by64_32x64_divrem (det64_128 (a_det, dy1,
						    b_det, dy2),
					 den_det);
    if (_cairo_int64_eq (qr.rem, den_det))
	return CAIRO_BO_STATUS_NO_INTERSECTION;
    intersection->y.ordinate = qr.quo;
    intersection->y.exactness = qr.rem ? INEXACT : EXACT;

    return CAIRO_BO_STATUS_INTERSECTION;
}

static int
_cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t	a,
					 int32_t			b)
{
    /* First compare the quotient */
    if (a.ordinate > b)
	return +1;
    if (a.ordinate < b)
	return -1;
    /* With quotient identical, if remainder is 0 then compare equal */
    /* Otherwise, the non-zero remainder makes a > b */
    return INEXACT == a.exactness;
}

/* Does the given edge contain the given point. The point must already
 * be known to be contained within the line determined by the edge,
 * (most likely the point results from an intersection of this edge
 * with another).
 *
 * If we had exact arithmetic, then this function would simply be a
 * matter of examining whether the y value of the point lies within
 * the range of y values of the edge. But since intersection points
 * are not exact due to being rounded to the nearest integer within
 * the available precision, we must also examine the x value of the
 * point.
 *
 * The definition of "contains" here is that the given intersection
 * point will be seen by the sweep line after the start event for the
 * given edge and before the stop event for the edge. See the comments
 * in the implementation for more details.
 */
static cairo_bool_t
_cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t		*edge,
					 cairo_bo_intersect_point_t	*point)
{
    int cmp_top, cmp_bottom;

    /* XXX: When running the actual algorithm, we don't actually need to
     * compare against edge->top at all here, since any intersection above
     * top is eliminated early via a slope comparison. We're leaving these
     * here for now only for the sake of the quadratic-time intersection
     * finder which needs them.
     */

    cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y, edge->top.y);
    cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y, edge->bottom.y);

    if (cmp_top < 0 || cmp_bottom > 0)
    {
	return FALSE;
    }

    if (cmp_top > 0 && cmp_bottom < 0)
    {
	return TRUE;
    }

    /* At this stage, the point lies on the same y value as either
     * edge->top or edge->bottom, so we have to examine the x value in
     * order to properly determine containment. */

    /* If the y value of the point is the same as the y value of the
     * top of the edge, then the x value of the point must be greater
     * to be considered as inside the edge. Similarly, if the y value
     * of the point is the same as the y value of the bottom of the
     * edge, then the x value of the point must be less to be
     * considered as inside. */

    if (cmp_top == 0)
	return (_cairo_bo_intersect_ordinate_32_compare (point->x, edge->top.x) > 0);
    else /* cmp_bottom == 0 */
	return (_cairo_bo_intersect_ordinate_32_compare (point->x, edge->bottom.x) < 0);
}

/* Compute the intersection of two edges. The result is provided as a
 * coordinate pair of 128-bit integers.
 *
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
 * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
 * intersection of the lines defined by the edges occurs outside of
 * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
 * are exactly parallel.
 *
 * Note that when determining if a candidate intersection is "inside"
 * an edge, we consider both the infinitesimal shortening and the
 * infinitesimal tilt rules described by John Hobby. Specifically, if
 * the intersection is exactly the same as an edge point, it is
 * effectively outside (no intersection is returned). Also, if the
 * intersection point has the same
 */
static cairo_bo_status_t
_cairo_bo_edge_intersect (cairo_bo_edge_t	*a,
			  cairo_bo_edge_t	*b,
			  cairo_bo_point32_t	*intersection)
{
    cairo_bo_status_t status;
    cairo_bo_intersect_point_t quorem;

    status = intersect_lines (a, b, &quorem);
    if (status)
	return status;

    if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
	return CAIRO_BO_STATUS_NO_INTERSECTION;

    if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
	return CAIRO_BO_STATUS_NO_INTERSECTION;

    /* Now that we've correctly compared the intersection point and
     * determined that it lies within the edge, then we know that we
     * no longer need any more bits of storage for the intersection
     * than we do for our edge coordinates. We also no longer need the
     * remainder from the division. */
    intersection->x = quorem.x.ordinate;
    intersection->y = quorem.y.ordinate;

    return CAIRO_BO_STATUS_INTERSECTION;
}

static void
_cairo_bo_event_init (cairo_bo_event_t		*event,
		      cairo_bo_event_type_t	 type,
		      cairo_bo_edge_t	*e1,
		      cairo_bo_edge_t	*e2,
		      cairo_bo_point32_t	 point)
{
    event->type = type;
    event->e1 = e1;
    event->e2 = e2;
    event->point = point;
}

static cairo_status_t
_cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue,
			      cairo_bo_event_t	     *event)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
    /* Don't insert if there's already an equivalent intersection event in the queue. */
    if (_cairo_skip_list_insert (&queue->intersection_queue, event,
		      event->type == CAIRO_BO_EVENT_TYPE_INTERSECTION) == NULL)
	status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
    return status;
}

static void
_cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
			      cairo_bo_event_t	     *event)
{
    if (CAIRO_BO_EVENT_TYPE_INTERSECTION == event->type)
	_cairo_skip_list_delete_given ( &queue->intersection_queue, &event->elt );
}

static cairo_bo_event_t *
_cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
{
    skip_elt_t *elt = event_queue->intersection_queue.chains[0];
    cairo_bo_event_t *intersection = elt ? SKIP_ELT_TO_EVENT (elt) : NULL;
    cairo_bo_event_t *startstop;

    if (event_queue->next_startstop_event_index == event_queue->num_startstop_events)
	return intersection;
    startstop = event_queue->sorted_startstop_event_ptrs[
	event_queue->next_startstop_event_index];

    if (!intersection || cairo_bo_event_compare (startstop, intersection) <= 0)
    {
	event_queue->next_startstop_event_index++;
	return startstop;
    }
    return intersection;
}

static cairo_status_t
_cairo_bo_event_queue_init (cairo_bo_event_queue_t	*event_queue,
			    cairo_bo_edge_t	*edges,
			    int				 num_edges)
{
    int i;
    cairo_bo_event_t *events, **sorted_event_ptrs;
    unsigned num_events = 2*num_edges;

    memset (event_queue, 0, sizeof(*event_queue));

    _cairo_skip_list_init (&event_queue->intersection_queue,
		    cairo_bo_event_compare_abstract,
		    sizeof (cairo_bo_event_t));
    if (0 == num_edges)
	return CAIRO_STATUS_SUCCESS;

    /* The skip_elt_t field of a cairo_bo_event_t isn't used for start
     * or stop events, so this allocation is safe.  XXX: make the
     * event type a union so it doesn't always contain the skip
     * elt? */
    events = _cairo_malloc_ab (num_events, sizeof (cairo_bo_event_t) + sizeof(cairo_bo_event_t*));
    if (events == NULL)
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    sorted_event_ptrs = (cairo_bo_event_t **) (events + num_events);
    event_queue->startstop_events = events;
    event_queue->sorted_startstop_event_ptrs = sorted_event_ptrs;
    event_queue->num_startstop_events = num_events;
    event_queue->next_startstop_event_index = 0;

    for (i = 0; i < num_edges; i++) {
	sorted_event_ptrs[2*i] = &events[2*i];
	sorted_event_ptrs[2*i+1] = &events[2*i+1];

	/* Initialize "middle" to top */
	edges[i].middle = edges[i].top;

	_cairo_bo_event_init (&events[2*i],
			      CAIRO_BO_EVENT_TYPE_START,
			      &edges[i], NULL,
			      edges[i].top);

	_cairo_bo_event_init (&events[2*i+1],
			      CAIRO_BO_EVENT_TYPE_STOP,
			      &edges[i], NULL,
			      edges[i].bottom);
    }

    qsort (sorted_event_ptrs, num_events,
	   sizeof(cairo_bo_event_t *),
	   cairo_bo_event_compare_pointers);
    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
{
    _cairo_skip_list_fini (&event_queue->intersection_queue);
    if (event_queue->startstop_events)
	free (event_queue->startstop_events);
}

static cairo_status_t
_cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t	*event_queue,
							   cairo_bo_edge_t	*left,
							   cairo_bo_edge_t	*right)
{
    cairo_bo_status_t status;
    cairo_bo_point32_t intersection;
    cairo_bo_event_t event;

    if (left == NULL || right == NULL)
	return CAIRO_STATUS_SUCCESS;

    /* The names "left" and "right" here are correct descriptions of
     * the order of the two edges within the active edge list. So if a
     * slope comparison also puts left less than right, then we know
     * that the intersection of these two segments has oalready
     * occurred before the current sweep line position. */
    if (_slope_compare (left, right) < 0)
	return CAIRO_STATUS_SUCCESS;

    status = _cairo_bo_edge_intersect (left, right, &intersection);
    if (status == CAIRO_BO_STATUS_PARALLEL ||
	status == CAIRO_BO_STATUS_NO_INTERSECTION)
    {
	return CAIRO_STATUS_SUCCESS;
    }

    _cairo_bo_event_init (&event,
			  CAIRO_BO_EVENT_TYPE_INTERSECTION,
			  left, right,
			  intersection);

    return _cairo_bo_event_queue_insert (event_queue, &event);
}

static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
{
    _cairo_skip_list_init (&sweep_line->active_edges,
		    _sweep_line_elt_compare,
		    sizeof (sweep_line_elt_t));
    sweep_line->head = NULL;
    sweep_line->tail = NULL;
    sweep_line->current_y = 0;
}

static void
_cairo_bo_sweep_line_fini (cairo_bo_sweep_line_t *sweep_line)
{
    _cairo_skip_list_fini (&sweep_line->active_edges);
}

static cairo_status_t
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t	*sweep_line,
			     cairo_bo_edge_t		*edge)
{
    skip_elt_t *next_elt;
    sweep_line_elt_t *sweep_line_elt;
    cairo_bo_edge_t **prev_of_next, **next_of_prev;

    sweep_line_elt = _cairo_skip_list_insert (&sweep_line->active_edges, &edge,
				       1 /* unique inserts*/);
    if (sweep_line_elt == NULL)
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    next_elt = sweep_line_elt->elt.next[0];
    if (next_elt)
	prev_of_next = & (SKIP_ELT_TO_EDGE (next_elt)->prev);
    else
	prev_of_next = &sweep_line->tail;

    if (*prev_of_next)
	next_of_prev = &(*prev_of_next)->next;
    else
	next_of_prev = &sweep_line->head;

    edge->prev = *prev_of_next;
    edge->next = *next_of_prev;
    *prev_of_next = edge;
    *next_of_prev = edge;

    edge->sweep_line_elt = sweep_line_elt;

    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t	*sweep_line,
			     cairo_bo_edge_t	*edge)
{
    cairo_bo_edge_t **left_next, **right_prev;

    _cairo_skip_list_delete_given (&sweep_line->active_edges, &edge->sweep_line_elt->elt);

    left_next = &sweep_line->head;
    if (edge->prev)
	left_next = &edge->prev->next;

    right_prev = &sweep_line->tail;
    if (edge->next)
	right_prev = &edge->next->prev;

    *left_next = edge->next;
    *right_prev = edge->prev;
}

static void
_cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t	*sweep_line,
			   cairo_bo_edge_t		*left,
			   cairo_bo_edge_t		*right)
{
    sweep_line_elt_t *left_elt, *right_elt;
    cairo_bo_edge_t **before_left, **after_right;

    /* Within the skip list we can do the swap simply by swapping the
     * pointers to the edge elements and leaving all of the skip list
     * elements and pointers unchanged. */
    left_elt = left->sweep_line_elt;
    right_elt = SKIP_ELT_TO_EDGE_ELT (left_elt->elt.next[0]);

    left_elt->edge = right;
    right->sweep_line_elt = left_elt;

    right_elt->edge = left;
    left->sweep_line_elt = right_elt;

    /* Within the doubly-linked list of edges, there's a bit more
     * bookkeeping involved with the swap. */
    before_left = &sweep_line->head;
    if (left->prev)
	before_left = &left->prev->next;
    *before_left = right;

    after_right = &sweep_line->tail;
    if (right->next)
	after_right = &right->next->prev;
    *after_right = left;

    left->next = right->next;
    right->next = left;

    right->prev = left->prev;
    left->prev = right;
}

#if DEBUG_PRINT_STATE
static void
_cairo_bo_edge_print (cairo_bo_edge_t *edge)
{
    printf ("(0x%x, 0x%x)-(0x%x, 0x%x)",
	    edge->top.x, edge->top.y,
	    edge->bottom.x, edge->bottom.y);
}

static void
_cairo_bo_event_print (cairo_bo_event_t *event)
{
    switch (event->type) {
    case CAIRO_BO_EVENT_TYPE_START:
	printf ("Start: ");
	break;
    case CAIRO_BO_EVENT_TYPE_STOP:
	printf ("Stop: ");
	break;
    case CAIRO_BO_EVENT_TYPE_INTERSECTION:
	printf ("Intersection: ");
	break;
    }
    printf ("(%d, %d)\t", event->point.x, event->point.y);
    _cairo_bo_edge_print (event->e1);
    if (event->type == CAIRO_BO_EVENT_TYPE_INTERSECTION) {
	printf (" X ");
	_cairo_bo_edge_print (event->e2);
    }
    printf ("\n");
}

static void
_cairo_bo_event_queue_print (cairo_bo_event_queue_t *event_queue)
{
    skip_elt_t *elt;
    /* XXX: fixme to print the start/stop array too. */
    cairo_skip_list_t *queue = &event_queue->intersection_queue;
    cairo_bo_event_t *event;

    printf ("Event queue:\n");

    for (elt = queue->chains[0];
	 elt;
	 elt = elt->next[0])
    {
	event = SKIP_ELT_TO_EVENT (elt);
	_cairo_bo_event_print (event);
    }
}

static void
_cairo_bo_sweep_line_print (cairo_bo_sweep_line_t *sweep_line)
{
    cairo_bool_t first = TRUE;
    skip_elt_t *elt;
    cairo_bo_edge_t *edge;

    printf ("Sweep line (reversed):     ");

    for (edge = sweep_line->tail;
	 edge;
	 edge = edge->prev)
    {
	if (!first)
	    printf (", ");
	_cairo_bo_edge_print (edge);
	first = FALSE;
    }
    printf ("\n");


    printf ("Sweep line from edge list: ");
    first = TRUE;
    for (edge = sweep_line->head;
	 edge;
	 edge = edge->next)
    {
	if (!first)
	    printf (", ");
	_cairo_bo_edge_print (edge);
	first = FALSE;
    }
    printf ("\n");

    printf ("Sweep line from skip list: ");
    first = TRUE;
    for (elt = sweep_line->active_edges.chains[0];
	 elt;
	 elt = elt->next[0])
    {
	if (!first)
	    printf (", ");
	_cairo_bo_edge_print (SKIP_ELT_TO_EDGE (elt));
	first = FALSE;
    }
    printf ("\n");
}

static void
print_state (const char			*msg,
	     cairo_bo_event_queue_t	*event_queue,
	     cairo_bo_sweep_line_t	*sweep_line)
{
    printf ("%s\n", msg);
    _cairo_bo_event_queue_print (event_queue);
    _cairo_bo_sweep_line_print (sweep_line);
    printf ("\n");
}
#endif

/* Adds the trapezoid, if any, of the left edge to the #cairo_traps_t
 * of bo_traps. */
static cairo_status_t
_cairo_bo_edge_end_trap (cairo_bo_edge_t	*left,
			 int32_t		bot,
			 cairo_bo_traps_t	*bo_traps)
{
    cairo_fixed_t fixed_top, fixed_bot;
    cairo_bo_trap_t *trap = left->deferred_trap;
    cairo_bo_edge_t *right;

    if (!trap)
	return CAIRO_STATUS_SUCCESS;

     /* If the right edge of the trapezoid stopped earlier than the
      * left edge, then cut the trapezoid bottom early. */
    right = trap->right;
    if (right->bottom.y < bot)
	bot = right->bottom.y;

    fixed_top = trap->top;
    fixed_bot = bot;

    /* Only emit trapezoids with positive height. */
    if (fixed_top < fixed_bot) {
	cairo_line_t left_line;
	cairo_line_t right_line;
	cairo_fixed_t xmin = bo_traps->xmin;
	cairo_fixed_t ymin = bo_traps->ymin;
	fixed_top += ymin;
	fixed_bot += ymin;

	left_line.p1.x  = left->top.x + xmin;
	left_line.p1.y  = left->top.y + ymin;
	right_line.p1.x = right->top.x + xmin;
	right_line.p1.y = right->top.y + ymin;

	left_line.p2.x  = left->bottom.x + xmin;
	left_line.p2.y  = left->bottom.y + ymin;
	right_line.p2.x = right->bottom.x + xmin;
	right_line.p2.y = right->bottom.y + ymin;

	/* Avoid emitting the trapezoid if it is obviously degenerate.
	 * TODO: need a real collinearity test here for the cases
	 * where the trapezoid is degenerate, yet the top and bottom
	 * coordinates aren't equal.  */
	if (left_line.p1.x != right_line.p1.x ||
	    left_line.p1.y != right_line.p1.y ||
	    left_line.p2.x != right_line.p2.x ||
	    left_line.p2.y != right_line.p2.y)
	{
	    _cairo_traps_add_trap (bo_traps->traps,
				   fixed_top, fixed_bot,
				   &left_line, &right_line);

#if DEBUG_PRINT_STATE
	    printf ("Deferred trap: left=(%08x, %08x)-(%08x,%08x) "
		    "right=(%08x,%08x)-(%08x,%08x) top=%08x, bot=%08x\n",
		    left->top.x, left->top.y, left->bottom.x, left->bottom.y,
		    right->top.x, right->top.y, right->bottom.x, right->bottom.y,
		    trap->top, bot);
#endif
	}
    }

    _cairo_freelist_free (&bo_traps->freelist, trap);
    left->deferred_trap = NULL;

    return _cairo_traps_status (bo_traps->traps);
}

/* Start a new trapezoid at the given top y coordinate, whose edges
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
 * then either add it to the traps in `bo_traps', if the trapezoid's
 * right edge differs from `edge->next', or do nothing if the new
 * trapezoid would be a continuation of the existing one. */
static cairo_status_t
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t	*edge,
				       int32_t		top,
				       cairo_bo_traps_t	*bo_traps)
{
    cairo_status_t status;
    cairo_bo_trap_t *trap = edge->deferred_trap;

    if (trap) {
	if (trap->right == edge->next) return CAIRO_STATUS_SUCCESS;
	status = _cairo_bo_edge_end_trap (edge, top, bo_traps);
	if (status)
	    return status;
    }

    if (edge->next) {
	trap = edge->deferred_trap = _cairo_freelist_alloc (&bo_traps->freelist);
	if (!edge->deferred_trap)
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	trap->right = edge->next;
	trap->top = top;
    }
    return CAIRO_STATUS_SUCCESS;
}

static void
_cairo_bo_traps_init (cairo_bo_traps_t	*bo_traps,
		      cairo_traps_t	*traps,
		      cairo_fixed_t	 xmin,
		      cairo_fixed_t	 ymin,
		      cairo_fixed_t	 xmax,
		      cairo_fixed_t	 ymax)
{
    bo_traps->traps = traps;
    _cairo_freelist_init (&bo_traps->freelist, sizeof(cairo_bo_trap_t));
    bo_traps->xmin = xmin;
    bo_traps->ymin = ymin;
    bo_traps->xmax = xmax;
    bo_traps->ymax = ymax;
}

static void
_cairo_bo_traps_fini (cairo_bo_traps_t *bo_traps)
{
    _cairo_freelist_fini (&bo_traps->freelist);
}

#if DEBUG_VALIDATE
static void
_cairo_bo_sweep_line_validate (cairo_bo_sweep_line_t *sweep_line)
{
    cairo_bo_edge_t *edge;
    skip_elt_t *elt;

    /* March through both the skip list's singly-linked list and the
     * sweep line's own list through pointers in the edges themselves
     * and make sure they agree at every point. */

    for (edge = sweep_line->head, elt = sweep_line->active_edges.chains[0];
	 edge && elt;
	 edge = edge->next, elt = elt->next[0])
    {
	if (SKIP_ELT_TO_EDGE (elt) != edge) {
	    fprintf (stderr, "*** Error: Sweep line fails to validate: Inconsistent data in the two lists.\n");
	    exit (1);
	}
    }

    if (edge || elt) {
	fprintf (stderr, "*** Error: Sweep line fails to validate: One list ran out before the other.\n");
	exit (1);
    }
}
#endif


static cairo_status_t
_active_edges_to_traps (cairo_bo_edge_t		*head,
			int32_t			 top,
			cairo_fill_rule_t	 fill_rule,
			cairo_bo_traps_t	*bo_traps)
{
    cairo_status_t status;
    int in_out = 0;
    cairo_bo_edge_t *edge;

    for (edge = head; edge; edge = edge->next) {
	if (fill_rule == CAIRO_FILL_RULE_WINDING) {
	    if (edge->reversed)
		in_out++;
	    else
		in_out--;
	    if (in_out == 0) {
		status = _cairo_bo_edge_end_trap (edge, top, bo_traps);
		if (status)
		    return status;
		continue;
	    }
	} else {
	    in_out++;
	    if ((in_out & 1) == 0) {
		status = _cairo_bo_edge_end_trap (edge, top, bo_traps);
		if (status)
		    return status;
		continue;
	    }
	}

	status = _cairo_bo_edge_start_or_continue_trap (edge, top, bo_traps);
	if (status)
	    return status;
    }

    return CAIRO_STATUS_SUCCESS;
}

/* Execute a single pass of the Bentley-Ottmann algorithm on edges,
 * generating trapezoids according to the fill_rule and appending them
 * to traps. */
static cairo_status_t
_cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_edge_t	*edges,
					    int			 num_edges,
					    cairo_fill_rule_t	 fill_rule,
					    cairo_traps_t	*traps,
					    cairo_fixed_t	xmin,
					    cairo_fixed_t	ymin,
					    cairo_fixed_t	xmax,
					    cairo_fixed_t	ymax,
					    int			*num_intersections)
{
    cairo_status_t status;
    int intersection_count = 0;
    cairo_bo_event_queue_t event_queue;
    cairo_bo_sweep_line_t sweep_line;
    cairo_bo_traps_t bo_traps;
    cairo_bo_event_t *event, event_saved;
    cairo_bo_edge_t *edge;
    cairo_bo_edge_t *left, *right;
    cairo_bo_edge_t *edge1, *edge2;

    status = _cairo_bo_event_queue_init (&event_queue, edges, num_edges);
    if (status)
	return status;

    _cairo_bo_sweep_line_init (&sweep_line);
    _cairo_bo_traps_init (&bo_traps, traps, xmin, ymin, xmax, ymax);

#if DEBUG_PRINT_STATE
    print_state ("After initializing", &event_queue, &sweep_line);
#endif

    while (1)
    {
	event = _cairo_bo_event_dequeue (&event_queue);
	if (!event)
	    break;

	if (event->point.y != sweep_line.current_y) {
	    status = _active_edges_to_traps (sweep_line.head,
					     sweep_line.current_y,
					     fill_rule, &bo_traps);
	    if (status)
		goto unwind;

	    sweep_line.current_y = event->point.y;
	}

	event_saved = *event;
	_cairo_bo_event_queue_delete (&event_queue, event);
	event = &event_saved;

	switch (event->type) {
	case CAIRO_BO_EVENT_TYPE_START:
	    edge = event->e1;

	    status = _cairo_bo_sweep_line_insert (&sweep_line, edge);
	    if (status)
		goto unwind;
	    /* Cache the insert position for use in pass 2.
	    event->e2 = Sortlist::prev (sweep_line, edge);
	    */

	    left = edge->prev;
	    right = edge->next;

	    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, edge);
	    if (status)
		goto unwind;

	    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, edge, right);
	    if (status)
		goto unwind;

#if DEBUG_PRINT_STATE
	    print_state ("After processing start", &event_queue, &sweep_line);
#endif
	    break;

	case CAIRO_BO_EVENT_TYPE_STOP:
	    edge = event->e1;

	    left = edge->prev;
	    right = edge->next;

	    _cairo_bo_sweep_line_delete (&sweep_line, edge);

	    status = _cairo_bo_edge_end_trap (edge, edge->bottom.y, &bo_traps);
	    if (status)
		goto unwind;

	    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
	    if (status)
		goto unwind;

#if DEBUG_PRINT_STATE
	    print_state ("After processing stop", &event_queue, &sweep_line);
#endif
	    break;

	case CAIRO_BO_EVENT_TYPE_INTERSECTION:
	    edge1 = event->e1;
	    edge2 = event->e2;

	    /* skip this intersection if its edges are not adjacent */
	    if (edge2 != edge1->next)
		break;

	    intersection_count++;

	    edge1->middle = event->point;
	    edge2->middle = event->point;

	    left = edge1->prev;
	    right = edge2->next;

	    _cairo_bo_sweep_line_swap (&sweep_line, edge1, edge2);

	    /* after the swap e2 is left of e1 */

	    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue,
								       left, edge2);
	    if (status)
		goto unwind;

	    status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue,
								       edge1, right);
	    if (status)
		goto unwind;

#if DEBUG_PRINT_STATE
	    print_state ("After processing intersection", &event_queue, &sweep_line);
#endif
	    break;
	}
#if DEBUG_VALIDATE
	_cairo_bo_sweep_line_validate (&sweep_line);
#endif
    }

    *num_intersections = intersection_count;
 unwind:
    for (edge = sweep_line.head; edge; edge = edge->next) {
	cairo_status_t status2 = _cairo_bo_edge_end_trap (edge,
							  sweep_line.current_y,
							  &bo_traps);
	if (!status)
	    status = status2;
    }
    _cairo_bo_traps_fini (&bo_traps);
    _cairo_bo_sweep_line_fini (&sweep_line);
    _cairo_bo_event_queue_fini (&event_queue);
    return status;
}

static void
update_minmax(cairo_fixed_t *inout_min,
	      cairo_fixed_t *inout_max,
	      cairo_fixed_t v)
{
    if (v < *inout_min)
	*inout_min = v;
    if (v > *inout_max)
	*inout_max = v;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_polygon (cairo_traps_t	 *traps,
					   const cairo_polygon_t *polygon,
					   cairo_fill_rule_t	  fill_rule)
{
    int intersections;
    cairo_status_t status;
    cairo_bo_edge_t stack_edges[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_edge_t)];
    cairo_bo_edge_t *edges;
    cairo_fixed_t xmin = 0x7FFFFFFF;
    cairo_fixed_t ymin = 0x7FFFFFFF;
    cairo_fixed_t xmax = -0x80000000;
    cairo_fixed_t ymax = -0x80000000;
    cairo_box_t limit;
    cairo_bool_t has_limits;
    int num_bo_edges;
    int i;

    if (0 == polygon->num_edges)
	return CAIRO_STATUS_SUCCESS;

    has_limits = _cairo_traps_get_limit (traps, &limit);

    if (polygon->num_edges < ARRAY_LENGTH (stack_edges)) {
	edges = stack_edges;
    } else {
	edges = _cairo_malloc_ab (polygon->num_edges, sizeof (cairo_bo_edge_t));
	if (edges == NULL)
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
    }

    /* Figure out the bounding box of the input coordinates and
     * validate that we're not given invalid polygon edges. */
    for (i = 0; i < polygon->num_edges; i++) {
	update_minmax (&xmin, &xmax, polygon->edges[i].edge.p1.x);
	update_minmax (&ymin, &ymax, polygon->edges[i].edge.p1.y);
	update_minmax (&xmin, &xmax, polygon->edges[i].edge.p2.x);
	update_minmax (&ymin, &ymax, polygon->edges[i].edge.p2.y);
	assert (polygon->edges[i].edge.p1.y <= polygon->edges[i].edge.p2.y &&
		"BUG: tessellator given upside down or horizontal edges");
    }

    /* The tessellation functions currently assume that no line
     * segment extends more than 2^31-1 in either dimension.  We
     * guarantee this by offsetting the internal coordinates to the
     * range [0,2^31-1], and clamping to 2^31-1 if a coordinate
     * exceeds the range (and yes, this generates an incorrect
     * result).  First we have to clamp the bounding box itself. */
    /* XXX: Rather than changing the input values, a better approach
     * would be to detect out-of-bounds input and return a
     * CAIRO_STATUS_OVERFLOW value to the user. */
    if (xmax - xmin < 0)
	xmax = xmin + 0x7FFFFFFF;
    if (ymax - ymin < 0)
	ymax = ymin + 0x7FFFFFFF;

    for (i = 0, num_bo_edges = 0; i < polygon->num_edges; i++) {
	cairo_bo_edge_t *edge = &edges[num_bo_edges];
	cairo_point_t top = polygon->edges[i].edge.p1;
	cairo_point_t bot = polygon->edges[i].edge.p2;

	/* Discard the edge if it lies outside the limits of traps. */
	if (has_limits) {
	    /* Strictly above or below the limits? */
	    if (bot.y <= limit.p1.y || top.y >= limit.p2.y)
		continue;
	}

	/* Offset coordinates into the non-negative range. */
	top.x -= xmin;
	top.y -= ymin;
	bot.x -= xmin;
	bot.y -= ymin;

	/* If the coordinates are still negative, then their extent is
	 * overflowing 2^31-1.  We're going to kludge it and clamp the
	 * coordinates into the clamped bounding box.  */
	if (top.x < 0) top.x = xmax - xmin;
	if (top.y < 0) top.y = ymax - ymin;
	if (bot.x < 0) bot.x = xmax - xmin;
	if (bot.y < 0) bot.y = ymax - ymin;

	if (top.y == bot.y) {
	    /* Clamping might have produced horizontal edges.  Ignore
	     * those. */
	    continue;
	}
	assert (top.y < bot.y &&
		"BUG: clamping the input range flipped the "
		"orientation of an edge");

	edge->top.x = top.x;
	edge->top.y = top.y;
	edge->bottom.x = bot.x;
	edge->bottom.y = bot.y;
	/* XXX: The 'clockWise' name that cairo_polygon_t uses is
	 * totally bogus. It's really a (negated!) description of
	 * whether the edge is reversed. */
	edge->reversed = (! polygon->edges[i].clockWise);
	edge->deferred_trap = NULL;
	edge->prev = NULL;
	edge->next = NULL;
	edge->sweep_line_elt = NULL;

	num_bo_edges++;
    }

    /* XXX: This would be the convenient place to throw in multiple
     * passes of the Bentley-Ottmann algorithm. It would merely
     * require storing the results of each pass into a temporary
     * cairo_traps_t. */
    status = _cairo_bentley_ottmann_tessellate_bo_edges (edges, num_bo_edges,
							 fill_rule, traps,
							 xmin, ymin, xmax, ymax,
							 &intersections);

    if (edges != stack_edges)
	free (edges);

    return status;
}

#if 0
static cairo_bool_t
edges_have_an_intersection_quadratic (cairo_bo_edge_t	*edges,
				      int		 num_edges)

{
    int i, j;
    cairo_bo_edge_t *a, *b;
    cairo_bo_point32_t intersection;
    cairo_bo_status_t status;

    /* We must not be given any upside-down edges. */
    for (i = 0; i < num_edges; i++) {
	assert (_cairo_bo_point32_compare (&edges[i].top, &edges[i].bottom) < 0);
	edges[i].top.x <<= CAIRO_BO_GUARD_BITS;
	edges[i].top.y <<= CAIRO_BO_GUARD_BITS;
	edges[i].bottom.x <<= CAIRO_BO_GUARD_BITS;
	edges[i].bottom.y <<= CAIRO_BO_GUARD_BITS;
    }

    for (i = 0; i < num_edges; i++) {
	for (j = 0; j < num_edges; j++) {
	    if (i == j)
		continue;

	    a = &edges[i];
	    b = &edges[j];

	    status = _cairo_bo_edge_intersect (a, b, &intersection);
	    if (status == CAIRO_BO_STATUS_PARALLEL ||
		status == CAIRO_BO_STATUS_NO_INTERSECTION)
	    {
		continue;
	    }

	    printf ("Found intersection (%d,%d) between (%d,%d)-(%d,%d) and (%d,%d)-(%d,%d)\n",
		    intersection.x,
		    intersection.y,
		    a->top.x, a->top.y,
		    a->bottom.x, a->bottom.y,
		    b->top.x, b->top.y,
		    b->bottom.x, b->bottom.y);

	    return TRUE;
	}
    }
    return FALSE;
}

#define TEST_MAX_EDGES 10

typedef struct test {
    const char *name;
    const char *description;
    int num_edges;
    cairo_bo_edge_t edges[TEST_MAX_EDGES];
} test_t;

static test_t
tests[] = {
    {
	"3 near misses",
	"3 edges all intersecting very close to each other",
	3,
	{
	    { { 4, 2}, {0, 0}, { 9, 9}, NULL, NULL },
	    { { 7, 2}, {0, 0}, { 2, 3}, NULL, NULL },
	    { { 5, 2}, {0, 0}, { 1, 7}, NULL, NULL }
	}
    },
    {
	"inconsistent data",
	"Derived from random testing---was leading to skip list and edge list disagreeing.",
	2,
	{
	    { { 2, 3}, {0, 0}, { 8, 9}, NULL, NULL },
	    { { 2, 3}, {0, 0}, { 6, 7}, NULL, NULL }
	}
    },
    {
	"failed sort",
	"A test derived from random testing that leads to an inconsistent sort --- looks like we just can't attempt to validate the sweep line with edge_compare?",
	3,
	{
	    { { 6, 2}, {0, 0}, { 6, 5}, NULL, NULL },
	    { { 3, 5}, {0, 0}, { 5, 6}, NULL, NULL },
	    { { 9, 2}, {0, 0}, { 5, 6}, NULL, NULL },
	}
    },
    {
	"minimal-intersection",
	"Intersection of a two from among the smallest possible edges.",
	2,
	{
	    { { 0, 0}, {0, 0}, { 1, 1}, NULL, NULL },
	    { { 1, 0}, {0, 0}, { 0, 1}, NULL, NULL }
	}
    },
    {
	"simple",
	"A simple intersection of two edges at an integer (2,2).",
	2,
	{
	    { { 1, 1}, {0, 0}, { 3, 3}, NULL, NULL },
	    { { 2, 1}, {0, 0}, { 2, 3}, NULL, NULL }
	}
    },
    {
	"bend-to-horizontal",
	"With intersection truncation one edge bends to horizontal",
	2,
	{
	    { { 9, 1}, {0, 0}, {3, 7}, NULL, NULL },
	    { { 3, 5}, {0, 0}, {9, 9}, NULL, NULL }
	}
    }
};

/*
    {
	"endpoint",
	"An intersection that occurs at the endpoint of a segment.",
	{
	    { { 4, 6}, { 5, 6}, NULL, { { NULL }} },
	    { { 4, 5}, { 5, 7}, NULL, { { NULL }} },
	    { { 0, 0}, { 0, 0}, NULL, { { NULL }} },
	}
    }
    {
	name = "overlapping",
	desc = "Parallel segments that share an endpoint, with different slopes.",
	edges = {
	    { top = { x = 2, y = 0}, bottom = { x = 1, y = 1}},
	    { top = { x = 2, y = 0}, bottom = { x = 0, y = 2}},
	    { top = { x = 0, y = 3}, bottom = { x = 1, y = 3}},
	    { top = { x = 0, y = 3}, bottom = { x = 2, y = 3}},
	    { top = { x = 0, y = 4}, bottom = { x = 0, y = 6}},
	    { top = { x = 0, y = 5}, bottom = { x = 0, y = 6}}
	}
    },
    {
	name = "hobby_stage_3",
	desc = "A particularly tricky part of the 3rd stage of the 'hobby' test below.",
	edges = {
	    { top = { x = -1, y = -2}, bottom = { x =  4, y = 2}},
	    { top = { x =  5, y =  3}, bottom = { x =  9, y = 5}},
	    { top = { x =  5, y =  3}, bottom = { x =  6, y = 3}},
	}
    },
    {
	name = "hobby",
	desc = "Example from John Hobby's paper. Requires 3 passes of the iterative algorithm.",
	edges = {
	    { top = { x =   0, y =   0}, bottom = { x =   9, y =   5}},
	    { top = { x =   0, y =   0}, bottom = { x =  13, y =   6}},
	    { top = { x =  -1, y =  -2}, bottom = { x =   9, y =   5}}
	}
    },
    {
	name = "slope",
	desc = "Edges with same start/stop points but different slopes",
	edges = {
	    { top = { x = 4, y = 1}, bottom = { x = 6, y = 3}},
	    { top = { x = 4, y = 1}, bottom = { x = 2, y = 3}},
	    { top = { x = 2, y = 4}, bottom = { x = 4, y = 6}},
	    { top = { x = 6, y = 4}, bottom = { x = 4, y = 6}}
	}
    },
    {
	name = "horizontal",
	desc = "Test of a horizontal edge",
	edges = {
	    { top = { x = 1, y = 1}, bottom = { x = 6, y = 6}},
	    { top = { x = 2, y = 3}, bottom = { x = 5, y = 3}}
	}
    },
    {
	name = "vertical",
	desc = "Test of a vertical edge",
	edges = {
	    { top = { x = 5, y = 1}, bottom = { x = 5, y = 7}},
	    { top = { x = 2, y = 4}, bottom = { x = 8, y = 5}}
	}
    },
    {
	name = "congruent",
	desc = "Two overlapping edges with the same slope",
	edges = {
	    { top = { x = 5, y = 1}, bottom = { x = 5, y = 7}},
	    { top = { x = 5, y = 2}, bottom = { x = 5, y = 6}},
	    { top = { x = 2, y = 4}, bottom = { x = 8, y = 5}}
	}
    },
    {
	name = "multi",
	desc = "Several segments with a common intersection point",
	edges = {
	    { top = { x = 1, y = 2}, bottom = { x = 5, y = 4} },
	    { top = { x = 1, y = 1}, bottom = { x = 5, y = 5} },
	    { top = { x = 2, y = 1}, bottom = { x = 4, y = 5} },
	    { top = { x = 4, y = 1}, bottom = { x = 2, y = 5} },
	    { top = { x = 5, y = 1}, bottom = { x = 1, y = 5} },
	    { top = { x = 5, y = 2}, bottom = { x = 1, y = 4} }
	}
    }
};
*/

static int
run_test (const char		*test_name,
          cairo_bo_edge_t	*test_edges,
          int			 num_edges)
{
    int i, intersections, passes;
    cairo_bo_edge_t *edges;
    cairo_array_t intersected_edges;

    printf ("Testing: %s\n", test_name);

    _cairo_array_init (&intersected_edges, sizeof (cairo_bo_edge_t));

    intersections = _cairo_bentley_ottmann_intersect_edges (test_edges, num_edges, &intersected_edges);
    if (intersections)
	printf ("Pass 1 found %d intersections:\n", intersections);


    /* XXX: Multi-pass Bentley-Ottmmann. Preferable would be to add a
     * pass of Hobby's tolerance-square algorithm instead. */
    passes = 1;
    while (intersections) {
	int num_edges = _cairo_array_num_elements (&intersected_edges);
	passes++;
	edges = _cairo_malloc_ab (num_edges, sizeof (cairo_bo_edge_t));
	assert (edges != NULL);
	memcpy (edges, _cairo_array_index (&intersected_edges, 0), num_edges * sizeof (cairo_bo_edge_t));
	_cairo_array_fini (&intersected_edges);
	_cairo_array_init (&intersected_edges, sizeof (cairo_bo_edge_t));
	intersections = _cairo_bentley_ottmann_intersect_edges (edges, num_edges, &intersected_edges);
	free (edges);

	if (intersections){
	    printf ("Pass %d found %d remaining intersections:\n", passes, intersections);
	} else {
	    if (passes > 3)
		for (i = 0; i < passes; i++)
		    printf ("*");
	    printf ("No remainining intersections found after pass %d\n", passes);
	}
    }

    if (edges_have_an_intersection_quadratic (_cairo_array_index (&intersected_edges, 0),
					      _cairo_array_num_elements (&intersected_edges)))
	printf ("*** FAIL ***\n");
    else
	printf ("PASS\n");

    _cairo_array_fini (&intersected_edges);

    return 0;
}

#define MAX_RANDOM 300

int
main (void)
{
    char random_name[] = "random-XX";
    cairo_bo_edge_t random_edges[MAX_RANDOM], *edge;
    unsigned int i, num_random;
    test_t *test;

    for (i = 0; i < ARRAY_LENGTH (tests); i++) {
	test = &tests[i];
	run_test (test->name, test->edges, test->num_edges);
    }

    for (num_random = 0; num_random < MAX_RANDOM; num_random++) {
	srand (0);
	for (i = 0; i < num_random; i++) {
	    do {
		edge = &random_edges[i];
		edge->top.x = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
		edge->top.y = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
		edge->bottom.x = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
		edge->bottom.y = (int32_t) (10.0 * (rand() / (RAND_MAX + 1.0)));
		if (edge->top.y > edge->bottom.y) {
		    int32_t tmp = edge->top.y;
		    edge->top.y = edge->bottom.y;
		    edge->bottom.y = tmp;
		}
	    } while (edge->top.y == edge->bottom.y);
	}

	sprintf (random_name, "random-%02d", num_random);

	run_test (random_name, random_edges, num_random);
    }

    return 0;
}
#endif