summaryrefslogtreecommitdiff
path: root/src/cairo-wideint.c
diff options
context:
space:
mode:
authorJoonas Pihlaja <jpihlaja@cc.helsinki.fi>2006-11-15 19:57:04 +0200
committerCarl Worth <cworth@cworth.org>2006-11-22 17:55:53 -0800
commit1da14262ea059836ae63b875c987fdb5c526db83 (patch)
tree6f6ea29d6d75795358b2e0ba3d4a237c25221090 /src/cairo-wideint.c
parent762bd1330d5e3148ddd60949866227cb75b782d6 (diff)
A 96 by 64 bit divrem that produces a 32 bit quotient and 64 bit remainder.
Diffstat (limited to 'src/cairo-wideint.c')
-rw-r--r--src/cairo-wideint.c152
1 files changed, 152 insertions, 0 deletions
diff --git a/src/cairo-wideint.c b/src/cairo-wideint.c
index da68f1be..4de39943 100644
--- a/src/cairo-wideint.c
+++ b/src/cairo-wideint.c
@@ -656,3 +656,155 @@ _cairo_int128_divrem (cairo_int128_t num, cairo_int128_t den)
qr.quo = uqr.quo;
return qr;
}
+
+/**
+ * _cairo_uint_96by64_32x64_divrem:
+ *
+ * Compute a 32 bit quotient and 64 bit remainder of a 96 bit unsigned
+ * dividend and 64 bit divisor. If the quotient doesn't fit into 32
+ * bits then the returned remainder is equal to the divisor, and the
+ * qoutient is the largest representable 64 bit integer. It is an
+ * error to call this function with the high 32 bits of @num being
+ * non-zero. */
+cairo_uquorem64_t
+_cairo_uint_96by64_32x64_divrem (cairo_uint128_t num,
+ cairo_uint64_t den)
+{
+ cairo_uquorem64_t result;
+ uint64_t B = _cairo_uint32s_to_uint64 (1, 0);
+
+ /* These are the high 64 bits of the *96* bit numerator. We're
+ * going to represent the numerator as xB + y, where x is a 64,
+ * and y is a 32 bit number. */
+ cairo_uint64_t x = _cairo_uint128_to_uint64 (_cairo_uint128_rsl(num, 32));
+
+ /* Initialise the result to indicate overflow. */
+ result.quo = _cairo_uint32s_to_uint64 (-1U, -1U);
+ result.rem = den;
+
+ /* Don't bother if the quotient is going to overflow. */
+ if (_cairo_uint64_ge (x, den)) {
+ return /* overflow */ result;
+ }
+
+ if (_cairo_uint64_lt (x, B)) {
+ /* When the final quotient is known to fit in 32 bits, then
+ * num < 2^64 if and only if den < 2^32. */
+ return _cairo_uint64_divrem (_cairo_uint128_to_uint64 (num), den);
+ }
+ else {
+ /* Denominator is >= 2^32. the numerator is >= 2^64, and the
+ * division won't overflow: need two divrems. Write the
+ * numerator and denominator as
+ *
+ * num = xB + y x : 64 bits, y : 32 bits
+ * den = uB + v u, v : 32 bits
+ */
+ uint32_t y = _cairo_uint128_to_uint32 (num);
+ uint32_t u = uint64_hi (den);
+ uint32_t v = _cairo_uint64_to_uint32 (den);
+
+ /* Compute a lower bound approximate quotient of num/den
+ * from x/(u+1). Then we have
+ *
+ * x = q(u+1) + r ; q : 32 bits, r <= u : 32 bits.
+ *
+ * xB + y = q(u+1)B + (rB+y)
+ * = q(uB + B + v - v) + (rB+y)
+ * = q(uB + v) + qB - qv + (rB+y)
+ * = q(uB + v) + q(B-v) + (rB+y)
+ *
+ * The true quotient of num/den then is q plus the
+ * contribution of q(B-v) + (rB+y). The main contribution
+ * comes from the term q(B-v), with the term (rB+y) only
+ * contributing at most one part.
+ *
+ * The term q(B-v) must fit into 64 bits, since q fits into 32
+ * bits on account of being a lower bound to the true
+ * quotient, and as B-v <= 2^32, we may safely use a single
+ * 64/64 bit division to find its contribution. */
+
+ cairo_uquorem64_t quorem;
+ cairo_uint64_t remainder; /* will contain final remainder */
+ uint32_t quotient; /* will contain final quotient. */
+ uint32_t q;
+ uint32_t r;
+
+ /* Approximate quotient by dividing the high 64 bits of num by
+ * u+1. Watch out for overflow of u+1. */
+ if (u+1) {
+ quorem = _cairo_uint64_divrem (x, _cairo_uint32_to_uint64 (u+1));
+ q = _cairo_uint64_to_uint32 (quorem.quo);
+ r = _cairo_uint64_to_uint32 (quorem.rem);
+ }
+ else {
+ q = uint64_hi (x);
+ r = _cairo_uint64_to_uint32 (x);
+ }
+ quotient = q;
+
+ /* Add the main term's contribution to quotient. Note B-v =
+ * -v as an uint32 (unless v = 0) */
+ if (v)
+ quorem = _cairo_uint64_divrem (_cairo_uint32x32_64_mul (q, -v), den);
+ else
+ quorem = _cairo_uint64_divrem (_cairo_uint32s_to_uint64 (q, 0), den);
+ quotient += _cairo_uint64_to_uint32 (quorem.quo);
+
+ /* Add the contribution of the subterm and start computing the
+ * true remainder. */
+ remainder = _cairo_uint32s_to_uint64 (r, y);
+ if (_cairo_uint64_ge (remainder, den)) {
+ remainder = _cairo_uint64_sub (remainder, den);
+ quotient++;
+ }
+
+ /* Add the contribution of the main term's remainder. The
+ * funky test here checks that remainder + main_rem >= den,
+ * taking into account overflow of the addition. */
+ remainder = _cairo_uint64_add (remainder, quorem.rem);
+ if (_cairo_uint64_ge (remainder, den) ||
+ _cairo_uint64_lt (remainder, quorem.rem))
+ {
+ remainder = _cairo_uint64_sub (remainder, den);
+ quotient++;
+ }
+
+ result.quo = _cairo_uint32_to_uint64 (quotient);
+ result.rem = remainder;
+ }
+ return result;
+}
+
+cairo_quorem64_t
+_cairo_int_96by64_32x64_divrem (cairo_int128_t num, cairo_int64_t den)
+{
+ int num_neg = _cairo_int128_negative (num);
+ int den_neg = _cairo_int64_negative (den);
+ cairo_int64_t nonneg_den = den;
+ cairo_uquorem64_t uqr;
+ cairo_quorem64_t qr;
+
+ if (num_neg)
+ num = _cairo_int128_negate (num);
+ if (den_neg)
+ nonneg_den = _cairo_int64_negate (den);
+
+ uqr = _cairo_uint_96by64_32x64_divrem (num, nonneg_den);
+ if (_cairo_uint64_eq (uqr.rem, nonneg_den)) {
+ /* bail on overflow. */
+ qr.quo = _cairo_uint32s_to_uint64 (0x7FFFFFFF, -1U);;
+ qr.rem = den;
+ return qr;
+ }
+
+ if (num_neg)
+ qr.rem = _cairo_int64_negate (uqr.rem);
+ else
+ qr.rem = uqr.rem;
+ if (num_neg != den_neg)
+ qr.quo = _cairo_int64_negate (uqr.quo);
+ else
+ qr.quo = uqr.quo;
+ return qr;
+}