diff options
author | Joonas Pihlaja <jpihlaja@cc.helsinki.fi> | 2006-11-15 19:57:04 +0200 |
---|---|---|
committer | Carl Worth <cworth@cworth.org> | 2006-11-22 17:55:53 -0800 |
commit | 1da14262ea059836ae63b875c987fdb5c526db83 (patch) | |
tree | 6f6ea29d6d75795358b2e0ba3d4a237c25221090 /src/cairo-wideint.c | |
parent | 762bd1330d5e3148ddd60949866227cb75b782d6 (diff) |
A 96 by 64 bit divrem that produces a 32 bit quotient and 64 bit remainder.
Diffstat (limited to 'src/cairo-wideint.c')
-rw-r--r-- | src/cairo-wideint.c | 152 |
1 files changed, 152 insertions, 0 deletions
diff --git a/src/cairo-wideint.c b/src/cairo-wideint.c index da68f1be..4de39943 100644 --- a/src/cairo-wideint.c +++ b/src/cairo-wideint.c @@ -656,3 +656,155 @@ _cairo_int128_divrem (cairo_int128_t num, cairo_int128_t den) qr.quo = uqr.quo; return qr; } + +/** + * _cairo_uint_96by64_32x64_divrem: + * + * Compute a 32 bit quotient and 64 bit remainder of a 96 bit unsigned + * dividend and 64 bit divisor. If the quotient doesn't fit into 32 + * bits then the returned remainder is equal to the divisor, and the + * qoutient is the largest representable 64 bit integer. It is an + * error to call this function with the high 32 bits of @num being + * non-zero. */ +cairo_uquorem64_t +_cairo_uint_96by64_32x64_divrem (cairo_uint128_t num, + cairo_uint64_t den) +{ + cairo_uquorem64_t result; + uint64_t B = _cairo_uint32s_to_uint64 (1, 0); + + /* These are the high 64 bits of the *96* bit numerator. We're + * going to represent the numerator as xB + y, where x is a 64, + * and y is a 32 bit number. */ + cairo_uint64_t x = _cairo_uint128_to_uint64 (_cairo_uint128_rsl(num, 32)); + + /* Initialise the result to indicate overflow. */ + result.quo = _cairo_uint32s_to_uint64 (-1U, -1U); + result.rem = den; + + /* Don't bother if the quotient is going to overflow. */ + if (_cairo_uint64_ge (x, den)) { + return /* overflow */ result; + } + + if (_cairo_uint64_lt (x, B)) { + /* When the final quotient is known to fit in 32 bits, then + * num < 2^64 if and only if den < 2^32. */ + return _cairo_uint64_divrem (_cairo_uint128_to_uint64 (num), den); + } + else { + /* Denominator is >= 2^32. the numerator is >= 2^64, and the + * division won't overflow: need two divrems. Write the + * numerator and denominator as + * + * num = xB + y x : 64 bits, y : 32 bits + * den = uB + v u, v : 32 bits + */ + uint32_t y = _cairo_uint128_to_uint32 (num); + uint32_t u = uint64_hi (den); + uint32_t v = _cairo_uint64_to_uint32 (den); + + /* Compute a lower bound approximate quotient of num/den + * from x/(u+1). Then we have + * + * x = q(u+1) + r ; q : 32 bits, r <= u : 32 bits. + * + * xB + y = q(u+1)B + (rB+y) + * = q(uB + B + v - v) + (rB+y) + * = q(uB + v) + qB - qv + (rB+y) + * = q(uB + v) + q(B-v) + (rB+y) + * + * The true quotient of num/den then is q plus the + * contribution of q(B-v) + (rB+y). The main contribution + * comes from the term q(B-v), with the term (rB+y) only + * contributing at most one part. + * + * The term q(B-v) must fit into 64 bits, since q fits into 32 + * bits on account of being a lower bound to the true + * quotient, and as B-v <= 2^32, we may safely use a single + * 64/64 bit division to find its contribution. */ + + cairo_uquorem64_t quorem; + cairo_uint64_t remainder; /* will contain final remainder */ + uint32_t quotient; /* will contain final quotient. */ + uint32_t q; + uint32_t r; + + /* Approximate quotient by dividing the high 64 bits of num by + * u+1. Watch out for overflow of u+1. */ + if (u+1) { + quorem = _cairo_uint64_divrem (x, _cairo_uint32_to_uint64 (u+1)); + q = _cairo_uint64_to_uint32 (quorem.quo); + r = _cairo_uint64_to_uint32 (quorem.rem); + } + else { + q = uint64_hi (x); + r = _cairo_uint64_to_uint32 (x); + } + quotient = q; + + /* Add the main term's contribution to quotient. Note B-v = + * -v as an uint32 (unless v = 0) */ + if (v) + quorem = _cairo_uint64_divrem (_cairo_uint32x32_64_mul (q, -v), den); + else + quorem = _cairo_uint64_divrem (_cairo_uint32s_to_uint64 (q, 0), den); + quotient += _cairo_uint64_to_uint32 (quorem.quo); + + /* Add the contribution of the subterm and start computing the + * true remainder. */ + remainder = _cairo_uint32s_to_uint64 (r, y); + if (_cairo_uint64_ge (remainder, den)) { + remainder = _cairo_uint64_sub (remainder, den); + quotient++; + } + + /* Add the contribution of the main term's remainder. The + * funky test here checks that remainder + main_rem >= den, + * taking into account overflow of the addition. */ + remainder = _cairo_uint64_add (remainder, quorem.rem); + if (_cairo_uint64_ge (remainder, den) || + _cairo_uint64_lt (remainder, quorem.rem)) + { + remainder = _cairo_uint64_sub (remainder, den); + quotient++; + } + + result.quo = _cairo_uint32_to_uint64 (quotient); + result.rem = remainder; + } + return result; +} + +cairo_quorem64_t +_cairo_int_96by64_32x64_divrem (cairo_int128_t num, cairo_int64_t den) +{ + int num_neg = _cairo_int128_negative (num); + int den_neg = _cairo_int64_negative (den); + cairo_int64_t nonneg_den = den; + cairo_uquorem64_t uqr; + cairo_quorem64_t qr; + + if (num_neg) + num = _cairo_int128_negate (num); + if (den_neg) + nonneg_den = _cairo_int64_negate (den); + + uqr = _cairo_uint_96by64_32x64_divrem (num, nonneg_den); + if (_cairo_uint64_eq (uqr.rem, nonneg_den)) { + /* bail on overflow. */ + qr.quo = _cairo_uint32s_to_uint64 (0x7FFFFFFF, -1U);; + qr.rem = den; + return qr; + } + + if (num_neg) + qr.rem = _cairo_int64_negate (uqr.rem); + else + qr.rem = uqr.rem; + if (num_neg != den_neg) + qr.quo = _cairo_int64_negate (uqr.quo); + else + qr.quo = uqr.quo; + return qr; +} |