1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay OCS AES Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/swab.h>
#include <asm/byteorder.h>
#include <asm/errno.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include "ocs-aes.h"
#define AES_COMMAND_OFFSET 0x0000
#define AES_KEY_0_OFFSET 0x0004
#define AES_KEY_1_OFFSET 0x0008
#define AES_KEY_2_OFFSET 0x000C
#define AES_KEY_3_OFFSET 0x0010
#define AES_KEY_4_OFFSET 0x0014
#define AES_KEY_5_OFFSET 0x0018
#define AES_KEY_6_OFFSET 0x001C
#define AES_KEY_7_OFFSET 0x0020
#define AES_IV_0_OFFSET 0x0024
#define AES_IV_1_OFFSET 0x0028
#define AES_IV_2_OFFSET 0x002C
#define AES_IV_3_OFFSET 0x0030
#define AES_ACTIVE_OFFSET 0x0034
#define AES_STATUS_OFFSET 0x0038
#define AES_KEY_SIZE_OFFSET 0x0044
#define AES_IER_OFFSET 0x0048
#define AES_ISR_OFFSET 0x005C
#define AES_MULTIPURPOSE1_0_OFFSET 0x0200
#define AES_MULTIPURPOSE1_1_OFFSET 0x0204
#define AES_MULTIPURPOSE1_2_OFFSET 0x0208
#define AES_MULTIPURPOSE1_3_OFFSET 0x020C
#define AES_MULTIPURPOSE2_0_OFFSET 0x0220
#define AES_MULTIPURPOSE2_1_OFFSET 0x0224
#define AES_MULTIPURPOSE2_2_OFFSET 0x0228
#define AES_MULTIPURPOSE2_3_OFFSET 0x022C
#define AES_BYTE_ORDER_CFG_OFFSET 0x02C0
#define AES_TLEN_OFFSET 0x0300
#define AES_T_MAC_0_OFFSET 0x0304
#define AES_T_MAC_1_OFFSET 0x0308
#define AES_T_MAC_2_OFFSET 0x030C
#define AES_T_MAC_3_OFFSET 0x0310
#define AES_PLEN_OFFSET 0x0314
#define AES_A_DMA_SRC_ADDR_OFFSET 0x0400
#define AES_A_DMA_DST_ADDR_OFFSET 0x0404
#define AES_A_DMA_SRC_SIZE_OFFSET 0x0408
#define AES_A_DMA_DST_SIZE_OFFSET 0x040C
#define AES_A_DMA_DMA_MODE_OFFSET 0x0410
#define AES_A_DMA_NEXT_SRC_DESCR_OFFSET 0x0418
#define AES_A_DMA_NEXT_DST_DESCR_OFFSET 0x041C
#define AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET 0x0420
#define AES_A_DMA_LOG_OFFSET 0x0424
#define AES_A_DMA_STATUS_OFFSET 0x0428
#define AES_A_DMA_PERF_CNTR_OFFSET 0x042C
#define AES_A_DMA_MSI_ISR_OFFSET 0x0480
#define AES_A_DMA_MSI_IER_OFFSET 0x0484
#define AES_A_DMA_MSI_MASK_OFFSET 0x0488
#define AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET 0x0600
#define AES_A_DMA_OUTBUFFER_READ_FIFO_OFFSET 0x0700
/*
* AES_A_DMA_DMA_MODE register.
* Default: 0x00000000.
* bit[31] ACTIVE
* This bit activates the DMA. When the DMA finishes, it resets
* this bit to zero.
* bit[30:26] Unused by this driver.
* bit[25] SRC_LINK_LIST_EN
* Source link list enable bit. When the linked list is terminated
* this bit is reset by the DMA.
* bit[24] DST_LINK_LIST_EN
* Destination link list enable bit. When the linked list is
* terminated this bit is reset by the DMA.
* bit[23:0] Unused by this driver.
*/
#define AES_A_DMA_DMA_MODE_ACTIVE BIT(31)
#define AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN BIT(25)
#define AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN BIT(24)
/*
* AES_ACTIVE register
* default 0x00000000
* bit[31:10] Reserved
* bit[9] LAST_ADATA
* bit[8] LAST_GCX
* bit[7:2] Reserved
* bit[1] TERMINATION
* bit[0] TRIGGER
*/
#define AES_ACTIVE_LAST_ADATA BIT(9)
#define AES_ACTIVE_LAST_CCM_GCM BIT(8)
#define AES_ACTIVE_TERMINATION BIT(1)
#define AES_ACTIVE_TRIGGER BIT(0)
#define AES_DISABLE_INT 0x00000000
#define AES_DMA_CPD_ERR_INT BIT(8)
#define AES_DMA_OUTBUF_RD_ERR_INT BIT(7)
#define AES_DMA_OUTBUF_WR_ERR_INT BIT(6)
#define AES_DMA_INBUF_RD_ERR_INT BIT(5)
#define AES_DMA_INBUF_WR_ERR_INT BIT(4)
#define AES_DMA_BAD_COMP_INT BIT(3)
#define AES_DMA_SAI_INT BIT(2)
#define AES_DMA_SRC_DONE_INT BIT(0)
#define AES_COMPLETE_INT BIT(1)
#define AES_DMA_MSI_MASK_CLEAR BIT(0)
#define AES_128_BIT_KEY 0x00000000
#define AES_256_BIT_KEY BIT(0)
#define AES_DEACTIVATE_PERF_CNTR 0x00000000
#define AES_ACTIVATE_PERF_CNTR BIT(0)
#define AES_MAX_TAG_SIZE_U32 4
#define OCS_LL_DMA_FLAG_TERMINATE BIT(31)
/*
* There is an inconsistency in the documentation. This is documented as a
* 11-bit value, but it is actually 10-bits.
*/
#define AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK 0x3FF
/*
* During CCM decrypt, the OCS block needs to finish processing the ciphertext
* before the tag is written. For 128-bit mode this required delay is 28 OCS
* clock cycles. For 256-bit mode it is 36 OCS clock cycles.
*/
#define CCM_DECRYPT_DELAY_TAG_CLK_COUNT 36UL
/*
* During CCM decrypt there must be a delay of at least 42 OCS clock cycles
* between setting the TRIGGER bit in AES_ACTIVE and setting the LAST_CCM_GCM
* bit in the same register (as stated in the OCS databook)
*/
#define CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT 42UL
/* See RFC3610 section 2.2 */
#define L_PRIME_MIN (1)
#define L_PRIME_MAX (7)
/*
* CCM IV format from RFC 3610 section 2.3
*
* Octet Number Contents
* ------------ ---------
* 0 Flags
* 1 ... 15-L Nonce N
* 16-L ... 15 Counter i
*
* Flags = L' = L - 1
*/
#define L_PRIME_IDX 0
#define COUNTER_START(lprime) (16 - ((lprime) + 1))
#define COUNTER_LEN(lprime) ((lprime) + 1)
enum aes_counter_mode {
AES_CTR_M_NO_INC = 0,
AES_CTR_M_32_INC = 1,
AES_CTR_M_64_INC = 2,
AES_CTR_M_128_INC = 3,
};
/**
* struct ocs_dma_linked_list - OCS DMA linked list entry.
* @src_addr: Source address of the data.
* @src_len: Length of data to be fetched.
* @next: Next dma_list to fetch.
* @ll_flags: Flags (Freeze @ terminate) for the DMA engine.
*/
struct ocs_dma_linked_list {
u32 src_addr;
u32 src_len;
u32 next;
u32 ll_flags;
} __packed;
/*
* Set endianness of inputs and outputs
* AES_BYTE_ORDER_CFG
* default 0x00000000
* bit [10] - KEY_HI_LO_SWAP
* bit [9] - KEY_HI_SWAP_DWORDS_IN_OCTWORD
* bit [8] - KEY_HI_SWAP_BYTES_IN_DWORD
* bit [7] - KEY_LO_SWAP_DWORDS_IN_OCTWORD
* bit [6] - KEY_LO_SWAP_BYTES_IN_DWORD
* bit [5] - IV_SWAP_DWORDS_IN_OCTWORD
* bit [4] - IV_SWAP_BYTES_IN_DWORD
* bit [3] - DOUT_SWAP_DWORDS_IN_OCTWORD
* bit [2] - DOUT_SWAP_BYTES_IN_DWORD
* bit [1] - DOUT_SWAP_DWORDS_IN_OCTWORD
* bit [0] - DOUT_SWAP_BYTES_IN_DWORD
*/
static inline void aes_a_set_endianness(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0x7FF, aes_dev->base_reg + AES_BYTE_ORDER_CFG_OFFSET);
}
/* Trigger AES process start. */
static inline void aes_a_op_trigger(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_TRIGGER, aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Indicate last bulk of data. */
static inline void aes_a_op_termination(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_TERMINATION,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/*
* Set LAST_CCM_GCM in AES_ACTIVE register and clear all other bits.
*
* Called when DMA is programmed to fetch the last batch of data.
* - For AES-CCM it is called for the last batch of Payload data and Ciphertext
* data.
* - For AES-GCM, it is called for the last batch of Plaintext data and
* Ciphertext data.
*/
static inline void aes_a_set_last_gcx(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_LAST_CCM_GCM,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Wait for LAST_CCM_GCM bit to be unset. */
static inline void aes_a_wait_last_gcx(const struct ocs_aes_dev *aes_dev)
{
u32 aes_active_reg;
do {
aes_active_reg = ioread32(aes_dev->base_reg +
AES_ACTIVE_OFFSET);
} while (aes_active_reg & AES_ACTIVE_LAST_CCM_GCM);
}
/* Wait for 10 bits of input occupancy. */
static void aes_a_dma_wait_input_buffer_occupancy(const struct ocs_aes_dev *aes_dev)
{
u32 reg;
do {
reg = ioread32(aes_dev->base_reg + AES_A_DMA_STATUS_OFFSET);
} while (reg & AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK);
}
/*
* Set LAST_CCM_GCM and LAST_ADATA bits in AES_ACTIVE register (and clear all
* other bits).
*
* Called when DMA is programmed to fetch the last batch of Associated Data
* (CCM case) or Additional Authenticated Data (GCM case).
*/
static inline void aes_a_set_last_gcx_and_adata(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_LAST_ADATA | AES_ACTIVE_LAST_CCM_GCM,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Set DMA src and dst transfer size to 0 */
static inline void aes_a_dma_set_xfer_size_zero(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
}
/* Activate DMA for zero-byte transfer case. */
static inline void aes_a_dma_active(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable src linked list */
static inline void aes_a_dma_active_src_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable dst linked list */
static inline void aes_a_dma_active_dst_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable src and dst linked lists */
static inline void aes_a_dma_active_src_dst_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN |
AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Reset PERF_CNTR to 0 and activate it */
static inline void aes_a_dma_reset_and_activate_perf_cntr(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0x00000000, aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET);
iowrite32(AES_ACTIVATE_PERF_CNTR,
aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
}
/* Wait until PERF_CNTR is > delay, then deactivate it */
static inline void aes_a_dma_wait_and_deactivate_perf_cntr(const struct ocs_aes_dev *aes_dev,
int delay)
{
while (ioread32(aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET) < delay)
;
iowrite32(AES_DEACTIVATE_PERF_CNTR,
aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
}
/* Disable AES and DMA IRQ. */
static void aes_irq_disable(struct ocs_aes_dev *aes_dev)
{
u32 isr_val = 0;
/* Disable interrupts */
iowrite32(AES_DISABLE_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
/* Clear any pending interrupt */
isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
if (isr_val)
iowrite32(isr_val,
aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
if (isr_val)
iowrite32(isr_val,
aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
isr_val = ioread32(aes_dev->base_reg + AES_ISR_OFFSET);
if (isr_val)
iowrite32(isr_val, aes_dev->base_reg + AES_ISR_OFFSET);
}
/* Enable AES or DMA IRQ. IRQ is disabled once fired. */
static void aes_irq_enable(struct ocs_aes_dev *aes_dev, u8 irq)
{
if (irq == AES_COMPLETE_INT) {
/* Ensure DMA error interrupts are enabled */
iowrite32(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
/*
* AES_IER
* default 0x00000000
* bits [31:3] - reserved
* bit [2] - EN_SKS_ERR
* bit [1] - EN_AES_COMPLETE
* bit [0] - reserved
*/
iowrite32(AES_COMPLETE_INT, aes_dev->base_reg + AES_IER_OFFSET);
return;
}
if (irq == AES_DMA_SRC_DONE_INT) {
/* Ensure AES interrupts are disabled */
iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
/*
* DMA_MSI_IER
* default 0x00000000
* bits [31:9] - reserved
* bit [8] - CPD_ERR_INT_EN
* bit [7] - OUTBUF_RD_ERR_INT_EN
* bit [6] - OUTBUF_WR_ERR_INT_EN
* bit [5] - INBUF_RD_ERR_INT_EN
* bit [4] - INBUF_WR_ERR_INT_EN
* bit [3] - BAD_COMP_INT_EN
* bit [2] - SAI_INT_EN
* bit [1] - DST_DONE_INT_EN
* bit [0] - SRC_DONE_INT_EN
*/
iowrite32(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT |
AES_DMA_SRC_DONE_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
}
}
/* Enable and wait for IRQ (either from OCS AES engine or DMA) */
static int ocs_aes_irq_enable_and_wait(struct ocs_aes_dev *aes_dev, u8 irq)
{
int rc;
reinit_completion(&aes_dev->irq_completion);
aes_irq_enable(aes_dev, irq);
rc = wait_for_completion_interruptible(&aes_dev->irq_completion);
if (rc)
return rc;
return aes_dev->dma_err_mask ? -EIO : 0;
}
/* Configure DMA to OCS, linked list mode */
static inline void dma_to_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
dma_addr_t dma_list)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
iowrite32(dma_list,
aes_dev->base_reg + AES_A_DMA_NEXT_SRC_DESCR_OFFSET);
}
/* Configure DMA from OCS, linked list mode */
static inline void dma_from_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
dma_addr_t dma_list)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
iowrite32(dma_list,
aes_dev->base_reg + AES_A_DMA_NEXT_DST_DESCR_OFFSET);
}
irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id)
{
struct ocs_aes_dev *aes_dev = dev_id;
u32 aes_dma_isr;
/* Read DMA ISR status. */
aes_dma_isr = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
/* Disable and clear interrupts. */
aes_irq_disable(aes_dev);
/* Save DMA error status. */
aes_dev->dma_err_mask = aes_dma_isr &
(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT);
/* Signal IRQ completion. */
complete(&aes_dev->irq_completion);
return IRQ_HANDLED;
}
/**
* ocs_aes_set_key() - Write key into OCS AES hardware.
* @aes_dev: The OCS AES device to write the key to.
* @key_size: The size of the key (in bytes).
* @key: The key to write.
* @cipher: The cipher the key is for.
*
* For AES @key_size must be either 16 or 32. For SM4 @key_size must be 16.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, u32 key_size, const u8 *key,
enum ocs_cipher cipher)
{
const u32 *key_u32;
u32 val;
int i;
/* OCS AES supports 128-bit and 256-bit keys only. */
if (cipher == OCS_AES && !(key_size == 32 || key_size == 16)) {
dev_err(aes_dev->dev,
"%d-bit keys not supported by AES cipher\n",
key_size * 8);
return -EINVAL;
}
/* OCS SM4 supports 128-bit keys only. */
if (cipher == OCS_SM4 && key_size != 16) {
dev_err(aes_dev->dev,
"%d-bit keys not supported for SM4 cipher\n",
key_size * 8);
return -EINVAL;
}
if (!key)
return -EINVAL;
key_u32 = (const u32 *)key;
/* Write key to AES_KEY[0-7] registers */
for (i = 0; i < (key_size / sizeof(u32)); i++) {
iowrite32(key_u32[i],
aes_dev->base_reg + AES_KEY_0_OFFSET +
(i * sizeof(u32)));
}
/*
* Write key size
* bits [31:1] - reserved
* bit [0] - AES_KEY_SIZE
* 0 - 128 bit key
* 1 - 256 bit key
*/
val = (key_size == 16) ? AES_128_BIT_KEY : AES_256_BIT_KEY;
iowrite32(val, aes_dev->base_reg + AES_KEY_SIZE_OFFSET);
return 0;
}
/* Write AES_COMMAND */
static inline void set_ocs_aes_command(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_mode mode,
enum ocs_instruction instruction)
{
u32 val;
/* AES_COMMAND
* default 0x000000CC
* bit [14] - CIPHER_SELECT
* 0 - AES
* 1 - SM4
* bits [11:8] - OCS_AES_MODE
* 0000 - ECB
* 0001 - CBC
* 0010 - CTR
* 0110 - CCM
* 0111 - GCM
* 1001 - CTS
* bits [7:6] - AES_INSTRUCTION
* 00 - ENCRYPT
* 01 - DECRYPT
* 10 - EXPAND
* 11 - BYPASS
* bits [3:2] - CTR_M_BITS
* 00 - No increment
* 01 - Least significant 32 bits are incremented
* 10 - Least significant 64 bits are incremented
* 11 - Full 128 bits are incremented
*/
val = (cipher << 14) | (mode << 8) | (instruction << 6) |
(AES_CTR_M_128_INC << 2);
iowrite32(val, aes_dev->base_reg + AES_COMMAND_OFFSET);
}
static void ocs_aes_init(struct ocs_aes_dev *aes_dev,
enum ocs_mode mode,
enum ocs_cipher cipher,
enum ocs_instruction instruction)
{
/* Ensure interrupts are disabled and pending interrupts cleared. */
aes_irq_disable(aes_dev);
/* Set endianness recommended by data-sheet. */
aes_a_set_endianness(aes_dev);
/* Set AES_COMMAND register. */
set_ocs_aes_command(aes_dev, cipher, mode, instruction);
}
/*
* Write the byte length of the last AES/SM4 block of Payload data (without
* zero padding and without the length of the MAC) in register AES_PLEN.
*/
static inline void ocs_aes_write_last_data_blk_len(struct ocs_aes_dev *aes_dev,
u32 size)
{
u32 val;
if (size == 0) {
val = 0;
goto exit;
}
val = size % AES_BLOCK_SIZE;
if (val == 0)
val = AES_BLOCK_SIZE;
exit:
iowrite32(val, aes_dev->base_reg + AES_PLEN_OFFSET);
}
/*
* Validate inputs according to mode.
* If OK return 0; else return -EINVAL.
*/
static int ocs_aes_validate_inputs(dma_addr_t src_dma_list, u32 src_size,
const u8 *iv, u32 iv_size,
dma_addr_t aad_dma_list, u32 aad_size,
const u8 *tag, u32 tag_size,
enum ocs_cipher cipher, enum ocs_mode mode,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list)
{
/* Ensure cipher, mode and instruction are valid. */
if (!(cipher == OCS_AES || cipher == OCS_SM4))
return -EINVAL;
if (mode != OCS_MODE_ECB && mode != OCS_MODE_CBC &&
mode != OCS_MODE_CTR && mode != OCS_MODE_CCM &&
mode != OCS_MODE_GCM && mode != OCS_MODE_CTS)
return -EINVAL;
if (instruction != OCS_ENCRYPT && instruction != OCS_DECRYPT &&
instruction != OCS_EXPAND && instruction != OCS_BYPASS)
return -EINVAL;
/*
* When instruction is OCS_BYPASS, OCS simply copies data from source
* to destination using DMA.
*
* AES mode is irrelevant, but both source and destination DMA
* linked-list must be defined.
*/
if (instruction == OCS_BYPASS) {
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
}
/*
* For performance reasons switch based on mode to limit unnecessary
* conditionals for each mode
*/
switch (mode) {
case OCS_MODE_ECB:
/* Ensure input length is multiple of block size */
if (src_size % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
case OCS_MODE_CBC:
/* Ensure input length is multiple of block size */
if (src_size % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTR:
/* Ensure input length of 1 byte or greater */
if (src_size == 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTS:
/* Ensure input length >= block size */
if (src_size < AES_BLOCK_SIZE)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_GCM:
/* Ensure IV is present and GCM_AES_IV_SIZE in length */
if (!iv || iv_size != GCM_AES_IV_SIZE)
return -EINVAL;
/*
* If input data present ensure source and destination linked
* lists are created
*/
if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR))
return -EINVAL;
/* If aad present ensure aad linked list is created */
if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure tag destination is set */
if (!tag)
return -EINVAL;
/* Just ensure that tag_size doesn't cause overflows. */
if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
return -EINVAL;
return 0;
case OCS_MODE_CCM:
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
/* 2 <= L <= 8, so 1 <= L' <= 7 */
if (iv[L_PRIME_IDX] < L_PRIME_MIN ||
iv[L_PRIME_IDX] > L_PRIME_MAX)
return -EINVAL;
/* If aad present ensure aad linked list is created */
if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Just ensure that tag_size doesn't cause overflows. */
if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
return -EINVAL;
if (instruction == OCS_DECRYPT) {
/*
* If input data present ensure source and destination
* linked lists are created
*/
if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR))
return -EINVAL;
/* Ensure input tag is present */
if (!tag)
return -EINVAL;
return 0;
}
/* Instruction == OCS_ENCRYPT */
/*
* Destination linked list always required (for tag even if no
* input data)
*/
if (dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* If input data present ensure src linked list is created */
if (src_size && src_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/**
* ocs_aes_op() - Perform AES/SM4 operation.
* @aes_dev: The OCS AES device to use.
* @mode: The mode to use (ECB, CBC, CTR, or CTS).
* @cipher: The cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The IV vector.
* @iv_size: The size (in bytes) of @iv.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_op(struct ocs_aes_dev *aes_dev,
enum ocs_mode mode,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
u32 iv_size)
{
u32 *iv32;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, iv_size, 0, 0,
NULL, 0, cipher, mode, instruction,
dst_dma_list);
if (rc)
return rc;
/*
* ocs_aes_validate_inputs() is a generic check, now ensure mode is not
* GCM or CCM.
*/
if (mode == OCS_MODE_GCM || mode == OCS_MODE_CCM)
return -EINVAL;
/* Cast IV to u32 array. */
iv32 = (u32 *)iv;
ocs_aes_init(aes_dev, mode, cipher, instruction);
if (mode == OCS_MODE_CTS) {
/* Write the byte length of the last data block to engine. */
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
}
/* ECB is the only mode that doesn't use IV. */
if (mode != OCS_MODE_ECB) {
iowrite32(iv32[0], aes_dev->base_reg + AES_IV_0_OFFSET);
iowrite32(iv32[1], aes_dev->base_reg + AES_IV_1_OFFSET);
iowrite32(iv32[2], aes_dev->base_reg + AES_IV_2_OFFSET);
iowrite32(iv32[3], aes_dev->base_reg + AES_IV_3_OFFSET);
}
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
/* Configure and activate input / output DMA. */
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
if (mode == OCS_MODE_CTS) {
/*
* For CTS mode, instruct engine to activate ciphertext
* stealing if last block of data is incomplete.
*/
aes_a_set_last_gcx(aes_dev);
} else {
/* For all other modes, just write the 'termination' bit. */
aes_a_op_termination(aes_dev);
}
/* Wait for engine to complete processing. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
if (mode == OCS_MODE_CTR) {
/* Read back IV for streaming mode */
iv32[0] = ioread32(aes_dev->base_reg + AES_IV_0_OFFSET);
iv32[1] = ioread32(aes_dev->base_reg + AES_IV_1_OFFSET);
iv32[2] = ioread32(aes_dev->base_reg + AES_IV_2_OFFSET);
iv32[3] = ioread32(aes_dev->base_reg + AES_IV_3_OFFSET);
}
return 0;
}
/* Compute and write J0 to engine registers. */
static void ocs_aes_gcm_write_j0(const struct ocs_aes_dev *aes_dev,
const u8 *iv)
{
const u32 *j0 = (u32 *)iv;
/*
* IV must be 12 bytes; Other sizes not supported as Linux crypto API
* does only expects/allows 12 byte IV for GCM
*/
iowrite32(0x00000001, aes_dev->base_reg + AES_IV_0_OFFSET);
iowrite32(__swab32(j0[2]), aes_dev->base_reg + AES_IV_1_OFFSET);
iowrite32(__swab32(j0[1]), aes_dev->base_reg + AES_IV_2_OFFSET);
iowrite32(__swab32(j0[0]), aes_dev->base_reg + AES_IV_3_OFFSET);
}
/* Read GCM tag from engine registers. */
static inline void ocs_aes_gcm_read_tag(struct ocs_aes_dev *aes_dev,
u8 *tag, u32 tag_size)
{
u32 tag_u32[AES_MAX_TAG_SIZE_U32];
/*
* The Authentication Tag T is stored in Little Endian order in the
* registers with the most significant bytes stored from AES_T_MAC[3]
* downward.
*/
tag_u32[0] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_3_OFFSET));
tag_u32[1] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_2_OFFSET));
tag_u32[2] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_1_OFFSET));
tag_u32[3] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET));
memcpy(tag, tag_u32, tag_size);
}
/**
* ocs_aes_gcm_op() - Perform GCM operation.
* @aes_dev: The OCS AES device to use.
* @cipher: The Cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The input IV vector.
* @aad_dma_list: The OCS DMA list mapping input AAD data.
* @aad_size: The amount of data mapped by @aad_dma_list.
* @out_tag: Where to store computed tag.
* @tag_size: The size (in bytes) of @out_tag.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
const u8 *iv,
dma_addr_t aad_dma_list,
u32 aad_size,
u8 *out_tag,
u32 tag_size)
{
u64 bit_len;
u32 val;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
GCM_AES_IV_SIZE, aad_dma_list,
aad_size, out_tag, tag_size, cipher,
OCS_MODE_GCM, instruction,
dst_dma_list);
if (rc)
return rc;
ocs_aes_init(aes_dev, OCS_MODE_GCM, cipher, instruction);
/* Compute and write J0 to OCS HW. */
ocs_aes_gcm_write_j0(aes_dev, iv);
/* Write out_tag byte length */
iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
/* Write the byte length of the last plaintext / ciphertext block. */
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
/* Write ciphertext bit length */
bit_len = src_size * 8;
val = bit_len & 0xFFFFFFFF;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET);
val = bit_len >> 32;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_1_OFFSET);
/* Write aad bit length */
bit_len = aad_size * 8;
val = bit_len & 0xFFFFFFFF;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_2_OFFSET);
val = bit_len >> 32;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_3_OFFSET);
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
/* Process AAD. */
if (aad_size) {
/* If aad present, configure DMA to feed it to the engine. */
dma_to_ocs_aes_ll(aes_dev, aad_dma_list);
aes_a_dma_active_src_ll_en(aes_dev);
/* Instructs engine to pad last block of aad, if needed. */
aes_a_set_last_gcx_and_adata(aes_dev);
/* Wait for DMA transfer to complete. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
if (rc)
return rc;
} else {
aes_a_set_last_gcx_and_adata(aes_dev);
}
/* Wait until adata (if present) has been processed. */
aes_a_wait_last_gcx(aes_dev);
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
/* Now process payload. */
if (src_size) {
/* Configure and activate DMA for both input and output data. */
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
} else {
aes_a_dma_set_xfer_size_zero(aes_dev);
aes_a_dma_active(aes_dev);
}
/* Instruct AES/SMA4 engine payload processing is over. */
aes_a_set_last_gcx(aes_dev);
/* Wait for OCS AES engine to complete processing. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
ocs_aes_gcm_read_tag(aes_dev, out_tag, tag_size);
return 0;
}
/* Write encrypted tag to AES/SM4 engine. */
static void ocs_aes_ccm_write_encrypted_tag(struct ocs_aes_dev *aes_dev,
const u8 *in_tag, u32 tag_size)
{
int i;
/* Ensure DMA input buffer is empty */
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
/*
* During CCM decrypt, the OCS block needs to finish processing the
* ciphertext before the tag is written. So delay needed after DMA has
* completed writing the ciphertext
*/
aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
CCM_DECRYPT_DELAY_TAG_CLK_COUNT);
/* Write encrypted tag to AES/SM4 engine. */
for (i = 0; i < tag_size; i++) {
iowrite8(in_tag[i], aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
}
}
/*
* Write B0 CCM block to OCS AES HW.
*
* Note: B0 format is documented in NIST Special Publication 800-38C
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
* (see Section A.2.1)
*/
static int ocs_aes_ccm_write_b0(const struct ocs_aes_dev *aes_dev,
const u8 *iv, u32 adata_size, u32 tag_size,
u32 cryptlen)
{
u8 b0[16]; /* CCM B0 block is 16 bytes long. */
int i, q;
/* Initialize B0 to 0. */
memset(b0, 0, sizeof(b0));
/*
* B0[0] is the 'Flags Octet' and has the following structure:
* bit 7: Reserved
* bit 6: Adata flag
* bit 5-3: t value encoded as (t-2)/2
* bit 2-0: q value encoded as q - 1
*/
/* If there is AAD data, set the Adata flag. */
if (adata_size)
b0[0] |= BIT(6);
/*
* t denotes the octet length of T.
* t can only be an element of { 4, 6, 8, 10, 12, 14, 16} and is
* encoded as (t - 2) / 2
*/
b0[0] |= (((tag_size - 2) / 2) & 0x7) << 3;
/*
* q is the octet length of Q.
* q can only be an element of {2, 3, 4, 5, 6, 7, 8} and is encoded as
* q - 1 == iv[0]
*/
b0[0] |= iv[0] & 0x7;
/*
* Copy the Nonce N from IV to B0; N is located in iv[1]..iv[15 - q]
* and must be copied to b0[1]..b0[15-q].
* q == iv[0] + 1
*/
q = iv[0] + 1;
for (i = 1; i <= 15 - q; i++)
b0[i] = iv[i];
/*
* The rest of B0 must contain Q, i.e., the message length.
* Q is encoded in q octets, in big-endian order, so to write it, we
* start from the end of B0 and we move backward.
*/
i = sizeof(b0) - 1;
while (q) {
b0[i] = cryptlen & 0xff;
cryptlen >>= 8;
i--;
q--;
}
/*
* If cryptlen is not zero at this point, it means that its original
* value was too big.
*/
if (cryptlen)
return -EOVERFLOW;
/* Now write B0 to OCS AES input buffer. */
for (i = 0; i < sizeof(b0); i++)
iowrite8(b0[i], aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
return 0;
}
/*
* Write adata length to OCS AES HW.
*
* Note: adata len encoding is documented in NIST Special Publication 800-38C
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
* (see Section A.2.2)
*/
static void ocs_aes_ccm_write_adata_len(const struct ocs_aes_dev *aes_dev,
u64 adata_len)
{
u8 enc_a[10]; /* Maximum encoded size: 10 octets. */
int i, len;
/*
* adata_len ('a') is encoded as follows:
* If 0 < a < 2^16 - 2^8 ==> 'a' encoded as [a]16, i.e., two octets
* (big endian).
* If 2^16 - 2^8 ≤ a < 2^32 ==> 'a' encoded as 0xff || 0xfe || [a]32,
* i.e., six octets (big endian).
* If 2^32 ≤ a < 2^64 ==> 'a' encoded as 0xff || 0xff || [a]64,
* i.e., ten octets (big endian).
*/
if (adata_len < 65280) {
len = 2;
*(__be16 *)enc_a = cpu_to_be16(adata_len);
} else if (adata_len <= 0xFFFFFFFF) {
len = 6;
*(__be16 *)enc_a = cpu_to_be16(0xfffe);
*(__be32 *)&enc_a[2] = cpu_to_be32(adata_len);
} else { /* adata_len >= 2^32 */
len = 10;
*(__be16 *)enc_a = cpu_to_be16(0xffff);
*(__be64 *)&enc_a[2] = cpu_to_be64(adata_len);
}
for (i = 0; i < len; i++)
iowrite8(enc_a[i],
aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
}
static int ocs_aes_ccm_do_adata(struct ocs_aes_dev *aes_dev,
dma_addr_t adata_dma_list, u32 adata_size)
{
int rc;
if (!adata_size) {
/* Since no aad the LAST_GCX bit can be set now */
aes_a_set_last_gcx_and_adata(aes_dev);
goto exit;
}
/* Adata case. */
/*
* Form the encoding of the Associated data length and write it
* to the AES/SM4 input buffer.
*/
ocs_aes_ccm_write_adata_len(aes_dev, adata_size);
/* Configure the AES/SM4 DMA to fetch the Associated Data */
dma_to_ocs_aes_ll(aes_dev, adata_dma_list);
/* Activate DMA to fetch Associated data. */
aes_a_dma_active_src_ll_en(aes_dev);
/* Set LAST_GCX and LAST_ADATA in AES ACTIVE register. */
aes_a_set_last_gcx_and_adata(aes_dev);
/* Wait for DMA transfer to complete. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
if (rc)
return rc;
exit:
/* Wait until adata (if present) has been processed. */
aes_a_wait_last_gcx(aes_dev);
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
return 0;
}
static int ocs_aes_ccm_encrypt_do_payload(struct ocs_aes_dev *aes_dev,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size)
{
if (src_size) {
/*
* Configure and activate DMA for both input and output
* data.
*/
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
} else {
/* Configure and activate DMA for output data only. */
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_dst_ll_en(aes_dev);
}
/*
* Set the LAST GCX bit in AES_ACTIVE Register to instruct
* AES/SM4 engine to pad the last block of data.
*/
aes_a_set_last_gcx(aes_dev);
/* We are done, wait for IRQ and return. */
return ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
}
static int ocs_aes_ccm_decrypt_do_payload(struct ocs_aes_dev *aes_dev,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size)
{
if (!src_size) {
/* Let engine process 0-length input. */
aes_a_dma_set_xfer_size_zero(aes_dev);
aes_a_dma_active(aes_dev);
aes_a_set_last_gcx(aes_dev);
return 0;
}
/*
* Configure and activate DMA for both input and output
* data.
*/
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
/*
* Set the LAST GCX bit in AES_ACTIVE Register; this allows the
* AES/SM4 engine to differentiate between encrypted data and
* encrypted MAC.
*/
aes_a_set_last_gcx(aes_dev);
/*
* Enable DMA DONE interrupt; once DMA transfer is over,
* interrupt handler will process the MAC/tag.
*/
return ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
}
/*
* Compare Tag to Yr.
*
* Only used at the end of CCM decrypt. If tag == yr, message authentication
* has succeeded.
*/
static inline int ccm_compare_tag_to_yr(struct ocs_aes_dev *aes_dev,
u8 tag_size_bytes)
{
u32 tag[AES_MAX_TAG_SIZE_U32];
u32 yr[AES_MAX_TAG_SIZE_U32];
u8 i;
/* Read Tag and Yr from AES registers. */
for (i = 0; i < AES_MAX_TAG_SIZE_U32; i++) {
tag[i] = ioread32(aes_dev->base_reg +
AES_T_MAC_0_OFFSET + (i * sizeof(u32)));
yr[i] = ioread32(aes_dev->base_reg +
AES_MULTIPURPOSE2_0_OFFSET +
(i * sizeof(u32)));
}
return memcmp(tag, yr, tag_size_bytes) ? -EBADMSG : 0;
}
/**
* ocs_aes_ccm_op() - Perform CCM operation.
* @aes_dev: The OCS AES device to use.
* @cipher: The Cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The input IV vector.
* @adata_dma_list: The OCS DMA list mapping input A-data.
* @adata_size: The amount of data mapped by @adata_dma_list.
* @in_tag: Input tag.
* @tag_size: The size (in bytes) of @in_tag.
*
* Note: for encrypt the tag is appended to the ciphertext (in the memory
* mapped by @dst_dma_list).
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
dma_addr_t adata_dma_list,
u32 adata_size,
u8 *in_tag,
u32 tag_size)
{
u32 *iv_32;
u8 lprime;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
AES_BLOCK_SIZE, adata_dma_list, adata_size,
in_tag, tag_size, cipher, OCS_MODE_CCM,
instruction, dst_dma_list);
if (rc)
return rc;
ocs_aes_init(aes_dev, OCS_MODE_CCM, cipher, instruction);
/*
* Note: rfc 3610 and NIST 800-38C require counter of zero to encrypt
* auth tag so ensure this is the case
*/
lprime = iv[L_PRIME_IDX];
memset(&iv[COUNTER_START(lprime)], 0, COUNTER_LEN(lprime));
/*
* Nonce is already converted to ctr0 before being passed into this
* function as iv.
*/
iv_32 = (u32 *)iv;
iowrite32(__swab32(iv_32[0]),
aes_dev->base_reg + AES_MULTIPURPOSE1_3_OFFSET);
iowrite32(__swab32(iv_32[1]),
aes_dev->base_reg + AES_MULTIPURPOSE1_2_OFFSET);
iowrite32(__swab32(iv_32[2]),
aes_dev->base_reg + AES_MULTIPURPOSE1_1_OFFSET);
iowrite32(__swab32(iv_32[3]),
aes_dev->base_reg + AES_MULTIPURPOSE1_0_OFFSET);
/* Write MAC/tag length in register AES_TLEN */
iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
/*
* Write the byte length of the last AES/SM4 block of Payload data
* (without zero padding and without the length of the MAC) in register
* AES_PLEN.
*/
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
/* Form block B0 and write it to the AES/SM4 input buffer. */
rc = ocs_aes_ccm_write_b0(aes_dev, iv, adata_size, tag_size, src_size);
if (rc)
return rc;
/*
* Ensure there has been at least CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT
* clock cycles since TRIGGER bit was set
*/
aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT);
/* Process Adata. */
ocs_aes_ccm_do_adata(aes_dev, adata_dma_list, adata_size);
/* For Encrypt case we just process the payload and return. */
if (instruction == OCS_ENCRYPT) {
return ocs_aes_ccm_encrypt_do_payload(aes_dev, dst_dma_list,
src_dma_list, src_size);
}
/* For Decypt we need to process the payload and then the tag. */
rc = ocs_aes_ccm_decrypt_do_payload(aes_dev, dst_dma_list,
src_dma_list, src_size);
if (rc)
return rc;
/* Process MAC/tag directly: feed tag to engine and wait for IRQ. */
ocs_aes_ccm_write_encrypted_tag(aes_dev, in_tag, tag_size);
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
return ccm_compare_tag_to_yr(aes_dev, tag_size);
}
/**
* ocs_create_linked_list_from_sg() - Create OCS DMA linked list from SG list.
* @aes_dev: The OCS AES device the list will be created for.
* @sg: The SG list OCS DMA linked list will be created from. When
* passed to this function, @sg must have been already mapped
* with dma_map_sg().
* @sg_dma_count: The number of DMA-mapped entries in @sg. This must be the
* value returned by dma_map_sg() when @sg was mapped.
* @dll_desc: The OCS DMA dma_list to use to store information about the
* created linked list.
* @data_size: The size of the data (from the SG list) to be mapped into the
* OCS DMA linked list.
* @data_offset: The offset (within the SG list) of the data to be mapped.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev,
struct scatterlist *sg,
int sg_dma_count,
struct ocs_dll_desc *dll_desc,
size_t data_size, size_t data_offset)
{
struct ocs_dma_linked_list *ll = NULL;
struct scatterlist *sg_tmp;
unsigned int tmp;
int dma_nents;
int i;
if (!dll_desc || !sg || !aes_dev)
return -EINVAL;
/* Default values for when no ddl_desc is created. */
dll_desc->vaddr = NULL;
dll_desc->dma_addr = DMA_MAPPING_ERROR;
dll_desc->size = 0;
if (data_size == 0)
return 0;
/* Loop over sg_list until we reach entry at specified offset. */
while (data_offset >= sg_dma_len(sg)) {
data_offset -= sg_dma_len(sg);
sg_dma_count--;
sg = sg_next(sg);
/* If we reach the end of the list, offset was invalid. */
if (!sg || sg_dma_count == 0)
return -EINVAL;
}
/* Compute number of DMA-mapped SG entries to add into OCS DMA list. */
dma_nents = 0;
tmp = 0;
sg_tmp = sg;
while (tmp < data_offset + data_size) {
/* If we reach the end of the list, data_size was invalid. */
if (!sg_tmp)
return -EINVAL;
tmp += sg_dma_len(sg_tmp);
dma_nents++;
sg_tmp = sg_next(sg_tmp);
}
if (dma_nents > sg_dma_count)
return -EINVAL;
/* Allocate the DMA list, one entry for each SG entry. */
dll_desc->size = sizeof(struct ocs_dma_linked_list) * dma_nents;
dll_desc->vaddr = dma_alloc_coherent(aes_dev->dev, dll_desc->size,
&dll_desc->dma_addr, GFP_KERNEL);
if (!dll_desc->vaddr)
return -ENOMEM;
/* Populate DMA linked list entries. */
ll = dll_desc->vaddr;
for (i = 0; i < dma_nents; i++, sg = sg_next(sg)) {
ll[i].src_addr = sg_dma_address(sg) + data_offset;
ll[i].src_len = (sg_dma_len(sg) - data_offset) < data_size ?
(sg_dma_len(sg) - data_offset) : data_size;
data_offset = 0;
data_size -= ll[i].src_len;
/* Current element points to the DMA address of the next one. */
ll[i].next = dll_desc->dma_addr + (sizeof(*ll) * (i + 1));
ll[i].ll_flags = 0;
}
/* Terminate last element. */
ll[i - 1].next = 0;
ll[i - 1].ll_flags = OCS_LL_DMA_FLAG_TERMINATE;
return 0;
}
|