1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
/*
* arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
*
* Created by: Nicolas Pitre, March 2012
* Copyright: (C) 2012-2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/irqflags.h>
#include <asm/mcpm.h>
#include <asm/cacheflush.h>
#include <asm/idmap.h>
#include <asm/cputype.h>
extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
{
unsigned long val = ptr ? virt_to_phys(ptr) : 0;
mcpm_entry_vectors[cluster][cpu] = val;
sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
}
extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
unsigned long poke_phys_addr, unsigned long poke_val)
{
unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
poke[0] = poke_phys_addr;
poke[1] = poke_val;
__sync_cache_range_w(poke, 2 * sizeof(*poke));
}
static const struct mcpm_platform_ops *platform_ops;
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
{
if (platform_ops)
return -EBUSY;
platform_ops = ops;
return 0;
}
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
{
if (!platform_ops)
return -EUNATCH; /* try not to shadow power_up errors */
might_sleep();
return platform_ops->power_up(cpu, cluster);
}
typedef void (*phys_reset_t)(unsigned long);
void mcpm_cpu_power_down(void)
{
phys_reset_t phys_reset;
if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
return;
BUG_ON(!irqs_disabled());
/*
* Do this before calling into the power_down method,
* as it might not always be safe to do afterwards.
*/
setup_mm_for_reboot();
platform_ops->power_down();
/*
* It is possible for a power_up request to happen concurrently
* with a power_down request for the same CPU. In this case the
* power_down method might not be able to actually enter a
* powered down state with the WFI instruction if the power_up
* method has removed the required reset condition. The
* power_down method is then allowed to return. We must perform
* a re-entry in the kernel as if the power_up method just had
* deasserted reset on the CPU.
*
* To simplify race issues, the platform specific implementation
* must accommodate for the possibility of unordered calls to
* power_down and power_up with a usage count. Therefore, if a
* call to power_up is issued for a CPU that is not down, then
* the next call to power_down must not attempt a full shutdown
* but only do the minimum (normally disabling L1 cache and CPU
* coherency) and return just as if a concurrent power_up request
* had happened as described above.
*/
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
phys_reset(virt_to_phys(mcpm_entry_point));
/* should never get here */
BUG();
}
int mcpm_cpu_power_down_finish(unsigned int cpu, unsigned int cluster)
{
int ret;
if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down_finish))
return -EUNATCH;
ret = platform_ops->power_down_finish(cpu, cluster);
if (ret)
pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
__func__, cpu, cluster, ret);
return ret;
}
void mcpm_cpu_suspend(u64 expected_residency)
{
phys_reset_t phys_reset;
if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
return;
BUG_ON(!irqs_disabled());
/* Very similar to mcpm_cpu_power_down() */
setup_mm_for_reboot();
platform_ops->suspend(expected_residency);
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
phys_reset(virt_to_phys(mcpm_entry_point));
BUG();
}
int mcpm_cpu_powered_up(void)
{
if (!platform_ops)
return -EUNATCH;
if (platform_ops->powered_up)
platform_ops->powered_up();
return 0;
}
struct sync_struct mcpm_sync;
/*
* __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
* This must be called at the point of committing to teardown of a CPU.
* The CPU cache (SCTRL.C bit) is expected to still be active.
*/
void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
{
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
}
/*
* __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
* cluster can be torn down without disrupting this CPU.
* To avoid deadlocks, this must be called before a CPU is powered down.
* The CPU cache (SCTRL.C bit) is expected to be off.
* However L2 cache might or might not be active.
*/
void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
{
dmb();
mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
dsb_sev();
}
/*
* __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
* @state: the final state of the cluster:
* CLUSTER_UP: no destructive teardown was done and the cluster has been
* restored to the previous state (CPU cache still active); or
* CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
* (CPU cache disabled, L2 cache either enabled or disabled).
*/
void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
{
dmb();
mcpm_sync.clusters[cluster].cluster = state;
sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
dsb_sev();
}
/*
* __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
* This function should be called by the last man, after local CPU teardown
* is complete. CPU cache expected to be active.
*
* Returns:
* false: the critical section was not entered because an inbound CPU was
* observed, or the cluster is already being set up;
* true: the critical section was entered: it is now safe to tear down the
* cluster.
*/
bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
{
unsigned int i;
struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
/* Warn inbound CPUs that the cluster is being torn down: */
c->cluster = CLUSTER_GOING_DOWN;
sync_cache_w(&c->cluster);
/* Back out if the inbound cluster is already in the critical region: */
sync_cache_r(&c->inbound);
if (c->inbound == INBOUND_COMING_UP)
goto abort;
/*
* Wait for all CPUs to get out of the GOING_DOWN state, so that local
* teardown is complete on each CPU before tearing down the cluster.
*
* If any CPU has been woken up again from the DOWN state, then we
* shouldn't be taking the cluster down at all: abort in that case.
*/
sync_cache_r(&c->cpus);
for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
int cpustate;
if (i == cpu)
continue;
while (1) {
cpustate = c->cpus[i].cpu;
if (cpustate != CPU_GOING_DOWN)
break;
wfe();
sync_cache_r(&c->cpus[i].cpu);
}
switch (cpustate) {
case CPU_DOWN:
continue;
default:
goto abort;
}
}
return true;
abort:
__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
return false;
}
int __mcpm_cluster_state(unsigned int cluster)
{
sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
return mcpm_sync.clusters[cluster].cluster;
}
extern unsigned long mcpm_power_up_setup_phys;
int __init mcpm_sync_init(
void (*power_up_setup)(unsigned int affinity_level))
{
unsigned int i, j, mpidr, this_cluster;
BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
/*
* Set initial CPU and cluster states.
* Only one cluster is assumed to be active at this point.
*/
for (i = 0; i < MAX_NR_CLUSTERS; i++) {
mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
}
mpidr = read_cpuid_mpidr();
this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
for_each_online_cpu(i)
mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
sync_cache_w(&mcpm_sync);
if (power_up_setup) {
mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
sync_cache_w(&mcpm_power_up_setup_phys);
}
return 0;
}
|