summaryrefslogtreecommitdiff
path: root/Documentation/fmc/fmc-write-eeprom.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/fmc/fmc-write-eeprom.txt')
-rw-r--r--Documentation/fmc/fmc-write-eeprom.txt98
1 files changed, 0 insertions, 98 deletions
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt
deleted file mode 100644
index e0a9712156aa..000000000000
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-fmc-write-eeprom
-================
-
-This module is designed to load a binary file from /lib/firmware and to
-write it to the internal EEPROM of the mezzanine card. This driver uses
-the `busid' generic parameter.
-
-Overwriting the EEPROM is not something you should do daily, and it is
-expected to only happen during manufacturing. For this reason, the
-module makes it unlikely for the random user to change a working EEPROM.
-
-However, since the EEPROM may include application-specific information
-other than the identification, later versions of this packages added
-write-support through sysfs. See *note Accessing the EEPROM::.
-
-To avoid damaging the EEPROM content, the module takes the following
-measures:
-
- * It accepts a `file=' argument (within /lib/firmware) and if no
- such argument is received, it doesn't write anything to EEPROM
- (i.e. there is no default file name).
-
- * If the file name ends with `.bin' it is written verbatim starting
- at offset 0.
-
- * If the file name ends with `.tlv' it is interpreted as
- type-length-value (i.e., it allows writev(2)-like operation).
-
- * If the file name doesn't match any of the patterns above, it is
- ignored and no write is performed.
-
- * Only cards listed with `busid=' are written to. If no busid is
- specified, no programming is done (and the probe function of the
- driver will fail).
-
-
-Each TLV tuple is formatted in this way: the header is 5 bytes,
-followed by data. The first byte is `w' for write, the next two bytes
-represent the address, in little-endian byte order, and the next two
-represent the data length, in little-endian order. The length does not
-include the header (it is the actual number of bytes to be written).
-
-This is a real example: that writes 5 bytes at position 0x110:
-
- spusa.root# od -t x1 -Ax /lib/firmware/try.tlv
- 000000 77 10 01 05 00 30 31 32 33 34
- 00000a
- spusa.root# insmod /tmp/fmc-write-eeprom.ko busid=0x0200 file=try.tlv
- [19983.391498] spec 0000:03:00.0: write 5 bytes at 0x0110
- [19983.414615] spec 0000:03:00.0: write_eeprom: success
-
-Please note that you'll most likely want to use SDBFS to build your
-EEPROM image, at least if your mezzanines are being used in the White
-Rabbit environment. For this reason the TLV format is not expected to
-be used much and is not expected to be developed further.
-
-If you want to try reflashing fake EEPROM devices, you can use the
-fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change
-the image starting at offset 0, it will deregister and register again
-after two seconds. Please note, however, that if fmc-write-eeprom is
-still loaded, the system will associate it to the new device, which
-will be reprogrammed and thus will be unloaded after two seconds. The
-following example removes the module after it reflashed fakedev the
-first time.
-
- spusa.root# insmod fmc-fakedev.ko
- [ 72.984733] fake-fmc: Manufacturer: fake-vendor
- [ 72.989434] fake-fmc: Product name: fake-design-for-testing
- spusa.root# insmod fmc-write-eeprom.ko busid=0 file=fdelay-eeprom.bin; \
- rmmod fmc-write-eeprom
- [ 130.874098] fake-fmc: Matching a generic driver (no ID)
- [ 130.887845] fake-fmc: programming 6155 bytes
- [ 130.894567] fake-fmc: write_eeprom: success
- [ 132.895794] fake-fmc: Manufacturer: CERN
- [ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
-
-
-Accessing the EEPROM
-=====================
-
-The bus creates a sysfs binary file called eeprom for each mezzanine it
-knows about:
-
- spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom
-
-Everybody can read the files and the superuser can also modify it, but
-the operation may on the carrier driver, if the carrier is unable to
-access the I2C bus. For example, the spec driver can access the bus
-only with its golden gateware: after a mezzanine driver reprogrammed
-the FPGA with a custom circuit, the carrier is unable to access the
-EEPROM and returns ENOTSUPP.
-
-An alternative way to write the EEPROM is the mezzanine driver
-fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
-more complex.