diff options
author | YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> | 2007-02-09 23:24:38 +0900 |
---|---|---|
committer | David S. Miller <davem@sunset.davemloft.net> | 2007-02-10 23:19:27 -0800 |
commit | c9eaf17341834de00351bf79f16b2d879c8aea96 (patch) | |
tree | d8b2005197444fa6b6bdf8e8c8fd6eaf2db9ecd7 /net/dccp/ccids/lib/tfrc_equation.c | |
parent | 4ec93edb14fe5fdee9fae6335f2cbba204627eac (diff) |
[NET] DCCP: Fix whitespace errors.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/dccp/ccids/lib/tfrc_equation.c')
-rw-r--r-- | net/dccp/ccids/lib/tfrc_equation.c | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/net/dccp/ccids/lib/tfrc_equation.c b/net/dccp/ccids/lib/tfrc_equation.c index 90009fd77e15..e4e64b76c10c 100644 --- a/net/dccp/ccids/lib/tfrc_equation.c +++ b/net/dccp/ccids/lib/tfrc_equation.c @@ -26,7 +26,7 @@ The following two-column lookup table implements a part of the TCP throughput equation from [RFC 3448, sec. 3.1]: - s + s X_calc = -------------------------------------------------------------- R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3)) @@ -35,7 +35,7 @@ s is the packet size in bytes R is the round trip time in seconds p is the loss event rate, between 0 and 1.0, of the number of loss - events as a fraction of the number of packets transmitted + events as a fraction of the number of packets transmitted t_RTO is the TCP retransmission timeout value in seconds b is the number of packets acknowledged by a single TCP ACK @@ -47,9 +47,9 @@ which we can break down into: - s + s X_calc = --------- - R * f(p) + R * f(p) where f(p) is given for 0 < p <= 1 by: @@ -62,7 +62,7 @@ * the return result f(p) The lookup table therefore actually tabulates the following function g(q): - g(q) = 1000000 * f(q/1000000) + g(q) = 1000000 * f(q/1000000) Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer granularity for the practically more relevant case of small values of p (up to @@ -628,7 +628,7 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) if (R == 0) { /* possible divide by zero */ DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc."); return ~0U; - } + } if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */ if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */ @@ -638,7 +638,7 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) } else /* 0.0001 <= p <= 0.05 */ index = p/TFRC_SMALLEST_P - 1; - f = tfrc_calc_x_lookup[index][1]; + f = tfrc_calc_x_lookup[index][1]; } else { /* 0.05 < p <= 1.00 */ index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1; @@ -687,8 +687,8 @@ u32 tfrc_calc_x_reverse_lookup(u32 fvalue) if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) { index = tfrc_binsearch(fvalue, 1); return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE; - } - + } + /* else ... it must be in the coarse-grained column */ index = tfrc_binsearch(fvalue, 0); return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE; |