summaryrefslogtreecommitdiff
path: root/hw/i386/kvmvapic.c
blob: 2cca7a44f45b80b73e1f4e009021437ecbbbf7e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
/*
 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
 *
 * Copyright (C) 2007-2008 Qumranet Technologies
 * Copyright (C) 2012      Jan Kiszka, Siemens AG
 *
 * This work is licensed under the terms of the GNU GPL version 2, or
 * (at your option) any later version. See the COPYING file in the
 * top-level directory.
 */
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "hw/i386/apic_internal.h"
#include "hw/sysbus.h"

#define VAPIC_IO_PORT           0x7e

#define VAPIC_CPU_SHIFT         7

#define ROM_BLOCK_SIZE          512
#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))

typedef enum VAPICMode {
    VAPIC_INACTIVE = 0,
    VAPIC_ACTIVE   = 1,
    VAPIC_STANDBY  = 2,
} VAPICMode;

typedef struct VAPICHandlers {
    uint32_t set_tpr;
    uint32_t set_tpr_eax;
    uint32_t get_tpr[8];
    uint32_t get_tpr_stack;
} QEMU_PACKED VAPICHandlers;

typedef struct GuestROMState {
    char signature[8];
    uint32_t vaddr;
    uint32_t fixup_start;
    uint32_t fixup_end;
    uint32_t vapic_vaddr;
    uint32_t vapic_size;
    uint32_t vcpu_shift;
    uint32_t real_tpr_addr;
    VAPICHandlers up;
    VAPICHandlers mp;
} QEMU_PACKED GuestROMState;

typedef struct VAPICROMState {
    SysBusDevice busdev;
    MemoryRegion io;
    MemoryRegion rom;
    uint32_t state;
    uint32_t rom_state_paddr;
    uint32_t rom_state_vaddr;
    uint32_t vapic_paddr;
    uint32_t real_tpr_addr;
    GuestROMState rom_state;
    size_t rom_size;
    bool rom_mapped_writable;
    VMChangeStateEntry *vmsentry;
} VAPICROMState;

#define TYPE_VAPIC "kvmvapic"
#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)

#define TPR_INSTR_ABS_MODRM             0x1
#define TPR_INSTR_MATCH_MODRM_REG       0x2

typedef struct TPRInstruction {
    uint8_t opcode;
    uint8_t modrm_reg;
    unsigned int flags;
    TPRAccess access;
    size_t length;
    off_t addr_offset;
} TPRInstruction;

/* must be sorted by length, shortest first */
static const TPRInstruction tpr_instr[] = {
    { /* mov abs to eax */
        .opcode = 0xa1,
        .access = TPR_ACCESS_READ,
        .length = 5,
        .addr_offset = 1,
    },
    { /* mov eax to abs */
        .opcode = 0xa3,
        .access = TPR_ACCESS_WRITE,
        .length = 5,
        .addr_offset = 1,
    },
    { /* mov r32 to r/m32 */
        .opcode = 0x89,
        .flags = TPR_INSTR_ABS_MODRM,
        .access = TPR_ACCESS_WRITE,
        .length = 6,
        .addr_offset = 2,
    },
    { /* mov r/m32 to r32 */
        .opcode = 0x8b,
        .flags = TPR_INSTR_ABS_MODRM,
        .access = TPR_ACCESS_READ,
        .length = 6,
        .addr_offset = 2,
    },
    { /* push r/m32 */
        .opcode = 0xff,
        .modrm_reg = 6,
        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
        .access = TPR_ACCESS_READ,
        .length = 6,
        .addr_offset = 2,
    },
    { /* mov imm32, r/m32 (c7/0) */
        .opcode = 0xc7,
        .modrm_reg = 0,
        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
        .access = TPR_ACCESS_WRITE,
        .length = 10,
        .addr_offset = 2,
    },
};

static void read_guest_rom_state(VAPICROMState *s)
{
    cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
                             sizeof(GuestROMState));
}

static void write_guest_rom_state(VAPICROMState *s)
{
    cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
                              sizeof(GuestROMState));
}

static void update_guest_rom_state(VAPICROMState *s)
{
    read_guest_rom_state(s);

    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);

    write_guest_rom_state(s);
}

static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
{
    CPUState *cs = CPU(x86_env_get_cpu(env));
    hwaddr paddr;
    target_ulong addr;

    if (s->state == VAPIC_ACTIVE) {
        return 0;
    }
    /*
     * If there is no prior TPR access instruction we could analyze (which is
     * the case after resume from hibernation), we need to scan the possible
     * virtual address space for the APIC mapping.
     */
    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
        paddr = cpu_get_phys_page_debug(cs, addr);
        if (paddr != APIC_DEFAULT_ADDRESS) {
            continue;
        }
        s->real_tpr_addr = addr + 0x80;
        update_guest_rom_state(s);
        return 0;
    }
    return -1;
}

static uint8_t modrm_reg(uint8_t modrm)
{
    return (modrm >> 3) & 7;
}

static bool is_abs_modrm(uint8_t modrm)
{
    return (modrm & 0xc7) == 0x05;
}

static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
{
    return opcode[0] == instr->opcode &&
        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
         modrm_reg(opcode[1]) == instr->modrm_reg);
}

static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
                                    target_ulong *pip, TPRAccess access)
{
    CPUState *cs = CPU(cpu);
    const TPRInstruction *instr;
    target_ulong ip = *pip;
    uint8_t opcode[2];
    uint32_t real_tpr_addr;
    int i;

    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
        return -1;
    }

    /*
     * Early Windows 2003 SMP initialization contains a
     *
     *   mov imm32, r/m32
     *
     * instruction that is patched by TPR optimization. The problem is that
     * RSP, used by the patched instruction, is zero, so the guest gets a
     * double fault and dies.
     */
    if (cpu->env.regs[R_ESP] == 0) {
        return -1;
    }

    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
        /*
         * KVM without kernel-based TPR access reporting will pass an IP that
         * points after the accessing instruction. So we need to look backward
         * to find the reason.
         */
        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
            instr = &tpr_instr[i];
            if (instr->access != access) {
                continue;
            }
            if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
                                    sizeof(opcode), 0) < 0) {
                return -1;
            }
            if (opcode_matches(opcode, instr)) {
                ip -= instr->length;
                goto instruction_ok;
            }
        }
        return -1;
    } else {
        if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
            return -1;
        }
        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
            instr = &tpr_instr[i];
            if (opcode_matches(opcode, instr)) {
                goto instruction_ok;
            }
        }
        return -1;
    }

instruction_ok:
    /*
     * Grab the virtual TPR address from the instruction
     * and update the cached values.
     */
    if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
                            (void *)&real_tpr_addr,
                            sizeof(real_tpr_addr), 0) < 0) {
        return -1;
    }
    real_tpr_addr = le32_to_cpu(real_tpr_addr);
    if ((real_tpr_addr & 0xfff) != 0x80) {
        return -1;
    }
    s->real_tpr_addr = real_tpr_addr;
    update_guest_rom_state(s);

    *pip = ip;
    return 0;
}

static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
{
    CPUState *cs = CPU(x86_env_get_cpu(env));
    hwaddr paddr;
    uint32_t rom_state_vaddr;
    uint32_t pos, patch, offset;

    /* nothing to do if already activated */
    if (s->state == VAPIC_ACTIVE) {
        return 0;
    }

    /* bail out if ROM init code was not executed (missing ROM?) */
    if (s->state == VAPIC_INACTIVE) {
        return -1;
    }

    /* find out virtual address of the ROM */
    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
    paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
    if (paddr == -1) {
        return -1;
    }
    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
    if (paddr != s->rom_state_paddr) {
        return -1;
    }
    read_guest_rom_state(s);
    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
        return -1;
    }
    s->rom_state_vaddr = rom_state_vaddr;

    /* fixup addresses in ROM if needed */
    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
        return 0;
    }
    for (pos = le32_to_cpu(s->rom_state.fixup_start);
         pos < le32_to_cpu(s->rom_state.fixup_end);
         pos += 4) {
        cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
                                 &offset, sizeof(offset));
        offset = le32_to_cpu(offset);
        cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
        patch = le32_to_cpu(patch);
        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
        patch = cpu_to_le32(patch);
        cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
    }
    read_guest_rom_state(s);
    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
        le32_to_cpu(s->rom_state.vaddr);

    return 0;
}

/*
 * Tries to read the unique processor number from the Kernel Processor Control
 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
 * cannot be accessed or is considered invalid. This also ensures that we are
 * not patching the wrong guest.
 */
static int get_kpcr_number(X86CPU *cpu)
{
    CPUX86State *env = &cpu->env;
    struct kpcr {
        uint8_t  fill1[0x1c];
        uint32_t self;
        uint8_t  fill2[0x31];
        uint8_t  number;
    } QEMU_PACKED kpcr;

    if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
        kpcr.self != env->segs[R_FS].base) {
        return -1;
    }
    return kpcr.number;
}

static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
{
    int cpu_number = get_kpcr_number(cpu);
    hwaddr vapic_paddr;
    static const uint8_t enabled = 1;

    if (cpu_number < 0) {
        return -1;
    }
    vapic_paddr = s->vapic_paddr +
        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
    cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
                              &enabled, sizeof(enabled));
    apic_enable_vapic(cpu->apic_state, vapic_paddr);

    s->state = VAPIC_ACTIVE;

    return 0;
}

static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
{
    cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
}

static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
                       uint32_t target)
{
    uint32_t offset;

    offset = cpu_to_le32(target - ip - 5);
    patch_byte(cpu, ip, 0xe8); /* call near */
    cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
}

static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
{
    CPUState *cs = CPU(cpu);
    CPUX86State *env = &cpu->env;
    VAPICHandlers *handlers;
    uint8_t opcode[2];
    uint32_t imm32;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;

    if (smp_cpus == 1) {
        handlers = &s->rom_state.up;
    } else {
        handlers = &s->rom_state.mp;
    }

    if (!kvm_enabled()) {
        cpu_restore_state(cs, cs->mem_io_pc);
        cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                             &current_flags);
    }

    pause_all_vcpus();

    cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);

    switch (opcode[0]) {
    case 0x89: /* mov r32 to r/m32 */
        patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
        patch_call(s, cpu, ip + 1, handlers->set_tpr);
        break;
    case 0x8b: /* mov r/m32 to r32 */
        patch_byte(cpu, ip, 0x90);
        patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
        break;
    case 0xa1: /* mov abs to eax */
        patch_call(s, cpu, ip, handlers->get_tpr[0]);
        break;
    case 0xa3: /* mov eax to abs */
        patch_call(s, cpu, ip, handlers->set_tpr_eax);
        break;
    case 0xc7: /* mov imm32, r/m32 (c7/0) */
        patch_byte(cpu, ip, 0x68);  /* push imm32 */
        cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
        cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
        patch_call(s, cpu, ip + 5, handlers->set_tpr);
        break;
    case 0xff: /* push r/m32 */
        patch_byte(cpu, ip, 0x50); /* push eax */
        patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
        break;
    default:
        abort();
    }

    resume_all_vcpus();

    if (!kvm_enabled()) {
        cs->current_tb = NULL;
        tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
        cpu_resume_from_signal(cs, NULL);
    }
}

void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
                             TPRAccess access)
{
    VAPICROMState *s = VAPIC(dev);
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;

    cpu_synchronize_state(cs);

    if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
        if (s->state == VAPIC_ACTIVE) {
            vapic_enable(s, cpu);
        }
        return;
    }
    if (update_rom_mapping(s, env, ip) < 0) {
        return;
    }
    if (vapic_enable(s, cpu) < 0) {
        return;
    }
    patch_instruction(s, cpu, ip);
}

typedef struct VAPICEnableTPRReporting {
    DeviceState *apic;
    bool enable;
} VAPICEnableTPRReporting;

static void vapic_do_enable_tpr_reporting(void *data)
{
    VAPICEnableTPRReporting *info = data;

    apic_enable_tpr_access_reporting(info->apic, info->enable);
}

static void vapic_enable_tpr_reporting(bool enable)
{
    VAPICEnableTPRReporting info = {
        .enable = enable,
    };
    CPUState *cs;
    X86CPU *cpu;

    CPU_FOREACH(cs) {
        cpu = X86_CPU(cs);
        info.apic = cpu->apic_state;
        run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
    }
}

static void vapic_reset(DeviceState *dev)
{
    VAPICROMState *s = VAPIC(dev);

    s->state = VAPIC_INACTIVE;
    s->rom_state_paddr = 0;
    vapic_enable_tpr_reporting(false);
}

/*
 * Set the IRQ polling hypercalls to the supported variant:
 *  - vmcall if using KVM in-kernel irqchip
 *  - 32-bit VAPIC port write otherwise
 */
static int patch_hypercalls(VAPICROMState *s)
{
    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
    static const uint8_t vmcall_pattern[] = { /* vmcall */
        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
    };
    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
    };
    uint8_t alternates[2];
    const uint8_t *pattern;
    const uint8_t *patch;
    int patches = 0;
    off_t pos;
    uint8_t *rom;

    rom = g_malloc(s->rom_size);
    cpu_physical_memory_read(rom_paddr, rom, s->rom_size);

    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
        if (kvm_irqchip_in_kernel()) {
            pattern = outl_pattern;
            alternates[0] = outl_pattern[7];
            alternates[1] = outl_pattern[7];
            patch = &vmcall_pattern[5];
        } else {
            pattern = vmcall_pattern;
            alternates[0] = vmcall_pattern[7];
            alternates[1] = 0xd9; /* AMD's VMMCALL */
            patch = &outl_pattern[5];
        }
        if (memcmp(rom + pos, pattern, 7) == 0 &&
            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
            cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
            /*
             * Don't flush the tb here. Under ordinary conditions, the patched
             * calls are miles away from the current IP. Under malicious
             * conditions, the guest could trick us to crash.
             */
        }
    }

    g_free(rom);

    if (patches != 0 && patches != 2) {
        return -1;
    }

    return 0;
}

/*
 * For TCG mode or the time KVM honors read-only memory regions, we need to
 * enable write access to the option ROM so that variables can be updated by
 * the guest.
 */
static int vapic_map_rom_writable(VAPICROMState *s)
{
    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
    MemoryRegionSection section;
    MemoryRegion *as;
    size_t rom_size;
    uint8_t *ram;

    as = sysbus_address_space(&s->busdev);

    if (s->rom_mapped_writable) {
        memory_region_del_subregion(as, &s->rom);
        object_unparent(OBJECT(&s->rom));
    }

    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
    section = memory_region_find(as, 0, 1);

    /* read ROM size from RAM region */
    if (rom_paddr + 2 >= memory_region_size(section.mr)) {
        return -1;
    }
    ram = memory_region_get_ram_ptr(section.mr);
    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
    if (rom_size == 0) {
        return -1;
    }
    s->rom_size = rom_size;

    /* We need to round to avoid creating subpages
     * from which we cannot run code. */
    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
    rom_paddr &= TARGET_PAGE_MASK;
    rom_size = TARGET_PAGE_ALIGN(rom_size);

    memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
                             rom_paddr, rom_size);
    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
    s->rom_mapped_writable = true;
    memory_region_unref(section.mr);

    return 0;
}

static int vapic_prepare(VAPICROMState *s)
{
    if (vapic_map_rom_writable(s) < 0) {
        return -1;
    }

    if (patch_hypercalls(s) < 0) {
        return -1;
    }

    vapic_enable_tpr_reporting(true);

    return 0;
}

static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
                        unsigned int size)
{
    CPUState *cs = current_cpu;
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    hwaddr rom_paddr;
    VAPICROMState *s = opaque;

    cpu_synchronize_state(cs);

    /*
     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
     *  o 16-bit write access:
     *    Reports the option ROM initialization to the hypervisor. Written
     *    value is the offset of the state structure in the ROM.
     *  o 8-bit write access:
     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
     *    option ROM content has been re-initialized by a guest power cycle.
     *  o 32-bit write access:
     *    Poll for pending IRQs, considering the current VAPIC state.
     */
    switch (size) {
    case 2:
        if (s->state == VAPIC_INACTIVE) {
            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
            s->rom_state_paddr = rom_paddr + data;

            s->state = VAPIC_STANDBY;
        }
        if (vapic_prepare(s) < 0) {
            s->state = VAPIC_INACTIVE;
            s->rom_state_paddr = 0;
            break;
        }
        break;
    case 1:
        if (kvm_enabled()) {
            /*
             * Disable triggering instruction in ROM by writing a NOP.
             *
             * We cannot do this in TCG mode as the reported IP is not
             * accurate.
             */
            pause_all_vcpus();
            patch_byte(cpu, env->eip - 2, 0x66);
            patch_byte(cpu, env->eip - 1, 0x90);
            resume_all_vcpus();
        }

        if (s->state == VAPIC_ACTIVE) {
            break;
        }
        if (update_rom_mapping(s, env, env->eip) < 0) {
            break;
        }
        if (find_real_tpr_addr(s, env) < 0) {
            break;
        }
        vapic_enable(s, cpu);
        break;
    default:
    case 4:
        if (!kvm_irqchip_in_kernel()) {
            apic_poll_irq(cpu->apic_state);
        }
        break;
    }
}

static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
{
    return 0xffffffff;
}

static const MemoryRegionOps vapic_ops = {
    .write = vapic_write,
    .read = vapic_read,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void vapic_realize(DeviceState *dev, Error **errp)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    VAPICROMState *s = VAPIC(dev);

    memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
    sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
    sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);

    option_rom[nb_option_roms].name = "kvmvapic.bin";
    option_rom[nb_option_roms].bootindex = -1;
    nb_option_roms++;
}

static void do_vapic_enable(void *data)
{
    VAPICROMState *s = data;
    X86CPU *cpu = X86_CPU(first_cpu);

    vapic_enable(s, cpu);
}

static void kvmvapic_vm_state_change(void *opaque, int running,
                                     RunState state)
{
    VAPICROMState *s = opaque;
    uint8_t *zero;

    if (!running) {
        return;
    }

    if (s->state == VAPIC_ACTIVE) {
        if (smp_cpus == 1) {
            run_on_cpu(first_cpu, do_vapic_enable, s);
        } else {
            zero = g_malloc0(s->rom_state.vapic_size);
            cpu_physical_memory_write(s->vapic_paddr, zero,
                                      s->rom_state.vapic_size);
            g_free(zero);
        }
    }

    qemu_del_vm_change_state_handler(s->vmsentry);
}

static int vapic_post_load(void *opaque, int version_id)
{
    VAPICROMState *s = opaque;

    /*
     * The old implementation of qemu-kvm did not provide the state
     * VAPIC_STANDBY. Reconstruct it.
     */
    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
        s->state = VAPIC_STANDBY;
    }

    if (s->state != VAPIC_INACTIVE) {
        if (vapic_prepare(s) < 0) {
            return -1;
        }
    }

    s->vmsentry = qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
    return 0;
}

static const VMStateDescription vmstate_handlers = {
    .name = "kvmvapic-handlers",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(set_tpr, VAPICHandlers),
        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_guest_rom = {
    .name = "kvmvapic-guest-rom",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UNUSED(8),     /* signature */
        VMSTATE_UINT32(vaddr, GuestROMState),
        VMSTATE_UINT32(fixup_start, GuestROMState),
        VMSTATE_UINT32(fixup_end, GuestROMState),
        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
        VMSTATE_UINT32(vapic_size, GuestROMState),
        VMSTATE_UINT32(vcpu_shift, GuestROMState),
        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_vapic = {
    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
    .version_id = 1,
    .minimum_version_id = 1,
    .post_load = vapic_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
                       GuestROMState),
        VMSTATE_UINT32(state, VAPICROMState),
        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
        VMSTATE_END_OF_LIST()
    }
};

static void vapic_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->reset   = vapic_reset;
    dc->vmsd    = &vmstate_vapic;
    dc->realize = vapic_realize;
}

static const TypeInfo vapic_type = {
    .name          = TYPE_VAPIC,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(VAPICROMState),
    .class_init    = vapic_class_init,
};

static void vapic_register(void)
{
    type_register_static(&vapic_type);
}

type_init(vapic_register);