summaryrefslogtreecommitdiff
path: root/fb/fbtrap.c
blob: 6e3a4d7c6788117935ce5bafe34141bd80be54b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
/*
 * $XFree86$
 *
 * Copyright © 2000 University of Southern California
 *
 * Permission to use, copy, modify, distribute, and sell this software
 * and its documentation for any purpose is hereby granted without
 * fee, provided that the above copyright notice appear in all copies
 * and that both that copyright notice and this permission notice
 * appear in supporting documentation, and that the name of University
 * of Southern California not be used in advertising or publicity
 * pertaining to distribution of the software without specific,
 * written prior permission.  University of Southern California makes
 * no representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied
 * warranty.
 *
 * University of Southern California DISCLAIMS ALL WARRANTIES WITH
 * REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE BE LIABLE FOR
 * ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 * SOFTWARE.
 *
 * Author: Carl Worth, USC, Information Sciences Institute */

#include "fb.h"

#ifdef RENDER

#include "picturestr.h"
#include "mipict.h"
#include "fbpict.h"

#ifdef DEBUG
#include <stdio.h>
#include <assert.h>

#define ASSERT(e)   assert(e)

#endif

#ifndef ASSERT
#define ASSERT(e)
#endif

#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

#define MAX_AREA 0x80000000

/*
 * A RationalPoint is an exact position along one of the trapezoid
 * edges represented by an approximate position (x,y) and two error
 * terms (ex_dy, ey_dx).  The error in X is multiplied by the Y 
 * dimension of the line while the error in Y is multiplied by the
 * X dimension of the line, allowing an exact measurement of the
 * distance from (x,y) to the line.
 *
 * Generally, while walking an edge, one of ex_dy/ey_dx will be zero
 * indicating that the position error is held in the other.
 */
typedef struct {
    xFixed x;
    xFixed ex_dy;
    xFixed y;
    xFixed ey_dx;
} RationalPoint;

/*
 * Edges are walked both horizontally and vertically
 * They are walked vertically to get to a particular row
 * of pixels, and then walked horizontally within that row
 * to compute pixel coverage.
 *
 * Edges are always walked from top to bottom and from
 * left to right.  This means that for lines moving leftwards
 * from top to bottom, the left to right walking actually moves
 * backwards along the line with respect to the top to bottom
 * walking.
 */

/*
 * A RationalRow represents the two positions where
 * an edge intersects a row of pixels.  This is used
 * to walk an edge vertically
 */

typedef struct {
    RationalPoint   top;	/* intersection at top of row */
    RationalPoint   bottom;	/* intersection at bottom of row */
    RationalPoint   pixel_top;	/* intersection at top of pixel */
} RationalRow;

/*
 * A RationalCol represents the two positions where
 * an edge intersects a column of pixels
 */

typedef struct {
    RationalPoint   left;	/* intersection at left of column */
    RationalPoint   right;	/* intersection at right of column */
} RationalCol;

/*
  Here are some thoughts on line walking:

  Conditions: c2.x - c1.x = 1
  	      r2.y - r1.y = 1

    A       B       C       D       E        F       G        H
                c1\      c1           c2       /c2
r1      r1        |\      \ r1     r1 /     r1/|        r1        r1
\-+---+ \-+---+   +-\-+   +\--+   +--/+    +-/-+   +---+-/  +---+-/ 
 \|   |  `.c1 |   |r1\|   | \ |   | / |    |/  |   |   .'   |   |/
c1\   |   |`-.|c2 |   \c2 | | |   | | |  c1/   | c1|,_/|c2  |   /c2
  |\  |   |   `.  |   |\  | \ |   | / |   /|   |  ./   |    |  /|
  +-\-+   +---+-\ +---+-\ +--\+   +/--+  /-+---+ /-+---+    +-/-+
   r2\|        r2      r2   r2\   /r2    r2      r2         |/r2
      \c2                     c2 c1                       c1/

 Bottom   Right   Right   Bottom   Top      Top    Right    Right

State transitions:

A -> C, D       	E -> E, F
B -> A, B          	F -> G, H
C -> A, B       	G -> G, H
D -> C, D       	H -> E, F

*/

/*
 * Values for PixelWalk.depart. Top and Bottom can have the same value
 * as only one mode is possible given a line of either positive or
 * negative slope.  These mark the departure edge while walking
 * rightwards across columns.
 */

typedef enum _departure {
    DepartTop = 0,	    /* edge exits top of pixel */
    DepartBottom = 0,	    /* edge exits bottom of pixel */
    DepartRight = 1	    /* edge exits right edge of pixel */
} Departure;

/*
 * PixelWalk
 *
 * This structure holds state to walk a single edge down the trapezoid.
 *
 * The edge is walked twice -- once by rows and once by columns.
 * The two intersections of the pixel by the edge are then set
 * from either the row or column position, depending on which edge 
 * is intersected.
 *
 * Note that for lines moving left, walking by rows moves down the
 * line (increasing y) while walking by columns moves up the line 
 * (decreasing y).
 */
typedef struct {
    xFixed dx;
    xFixed ey_thresh;
    xFixed dy;
    xFixed ex_thresh;

    Departure depart;

    /* slope */
    xFixed m;
    xFixed em_dx;
    xFixed y_correct;
    xFixed ey_correct;

    /* Inverse slope. Does this have a standard symbol? */
    xFixed p;
    xFixed ep_dy;
    xFixed x_correct;
    xFixed ex_correct;

    /* Trapezoid bottom, used to limit walking to the last row */
    xFixed bottom;

    /*
     * Current edge positions along pixel rows and columns
     */
    RationalRow row;
    RationalCol col;

    /*
     * The three pixel intersection points, copied from the appropriate
     * row or column position above
     */
    RationalPoint p_pixel_top;
    RationalPoint p_trap_top;
    RationalPoint p_trap_bottom;
} PixelWalk;

#if 0
#ifdef GCC
#define INLINE inline
#endif
#endif

#ifndef INLINE
#define INLINE
#endif

/* 
 * Step 'pt' vertically to 'newy'.
 */
static INLINE void
pixelWalkMovePointToRow (PixelWalk *pw, RationalPoint *pt, xFixed newy)
{
    xFixed_32_32    oex;
    xFixed	    xoff;

    /* X error of old X position and new Y position */
    oex = (xFixed_32_32) pw->dx * (newy - pt->y) - pt->ey_dx + pt->ex_dy;
    
    /* amount to step X by */
    xoff = oex / pw->dy;

    /* step X */
    pt->x = pt->x + xoff;
    
    /* set new X error value for new X position and new Y positition */
    pt->ex_dy = oex - (xFixed_32_32) pw->dy * xoff;

    /* set new Y position, set Y error to zero */
    pt->y = newy;
    pt->ey_dx = 0;
}

/*
 * Step 'pt' horizontally to 'newx' 
 */
static INLINE void
pixelWalkMovePointToCol (PixelWalk *pw, RationalPoint *pt, xFixed newx)
{
    xFixed_32_32    oey;
    xFixed	    yoff;

    /* Special case vertical lines to arbitrary y */
    if (pw->dx == 0) 
    {
	pt->x = newx;
	pt->ex_dy = 0;
	pt->y = 0;
	pt->ey_dx = 0;
    }
    else 
    {
	/* Y error of old Y position and new X position */
	oey = (xFixed_32_32) pw->dy * (newx - pt->x) - pt->ex_dy + pt->ey_dx;

	/* amount to step Y by */
	yoff = oey / pw->dx;

	/* step Y */
	pt->y = pt->y + yoff;

	/* set new Y error value for new Y position and new X position */
	pt->ey_dx = oey - (xFixed_32_32) pw->dx * yoff;

	/* set new X position, set X error to zero */
	pt->x = newx;
	pt->ex_dy = 0;
    }
}

/*
 * Step the 'row' element of 'pw' vertically 
 * (increasing y) by one whole pixel
 */
static INLINE void
pixelWalkStepRow (PixelWalk *pw)
{
    xFixed  y_next = xFixedFloor (pw->row.bottom.y) + xFixed1;
    
    if (y_next > pw->bottom)
	y_next = pw->bottom;

    /* pw.row.top.y < pw.row.bottom.y */
    pw->row.top = pw->row.bottom;

    if (y_next - pw->row.bottom.y == xFixed1)
    {
	pw->row.pixel_top = pw->row.bottom;
	pw->row.bottom.y += xFixed1;
	pw->row.bottom.x += pw->p;
	pw->row.bottom.ex_dy += pw->ep_dy;
	if (abs (pw->row.bottom.ex_dy) > pw->ex_thresh) 
	{
	    pw->row.bottom.x += pw->x_correct;
	    pw->row.bottom.ex_dy += pw->ex_correct;
	}
    }
    else
    {
	pixelWalkMovePointToRow (pw, &pw->row.pixel_top, 
				 xFixedCeil (y_next) - xFixed1);
	pixelWalkMovePointToRow (pw, &pw->row.bottom, y_next);
    }
}

/*
 * Step the 'col' element of 'pw' horizontally
 * (increasing x) by one whole pixel
 */
static INLINE void
pixelWalkStepCol (PixelWalk *pw)
{
    /* pw.col.p1.x < pw.col.p2.x */
    /*
     * Copy the current right point into the left point
     */
    pw->col.left = pw->col.right;

    /*
     * Now incrementally walk across the pixel
     */
    pw->col.right.x += xFixed1;
    pw->col.right.y += pw->m;
    pw->col.right.ey_dx += pw->em_dx;
    if (pw->col.right.ey_dx > pw->ey_thresh) 
    {
	pw->col.right.y += pw->y_correct;
	pw->col.right.ey_dx += pw->ey_correct;
    }
}
/*
 * Walk to the nearest edge of the next pixel, filling in both p1 and
 * p2 as necessary from either the row or col intersections.
 *
 * The "next" pixel is defined to be the next pixel intersected by the
 * line with pixels visited in raster scan order, (for the benefit of
 * cache performance). For lines with positive slope it is easy to
 * achieve raster scan order by simply calling StepCol for each pixel
 * in a given scanline, then calling StepRow once at the end of each
 * scanline.
 *
 * However, for lines of negative slope where the magnitude of dx is
 * greater than dy, a little more work needs to be done. The pixels of
 * a particular scanline will be visited by succesive calls to StepCol
 * as before. This will effectively step "up" the line as we scan from
 * left to right. But, the call to StepRow at the end of the scan line
 * will step "down" the line and the column information will be
 * invalid at that point.
 *
 * For now, I fix up the column of all negative slope lines by calling
 * MovePointToCol at the end of each scanline. However, this is an
 * extremely expensive operation since it involves a 64-bit multiply
 * and a 64-bit divide. It would be much better, (at least as long as
 * abs(dx) is not much greater than dy), to instead step the col
 * backwards as many times as necessary. Or even better, we could
 * simply restore col to the position it began at when we started the
 * scanline, then simply step it backwards once. That would give a
 * performance benefit for lines with slope of any magnitude. 
 */

static INLINE void
pixelWalkNextPixel (PixelWalk *pw)
{
    if (pw->dx < 0) 
    {
	/* 
	 * left moving lines
	 *
	 * Check which pixel edge we're departing from 
	 *
	 * Remember that in this case (dx < 0), the 'row' element of 'pw'
	 * walks down the line while 'col' walks up
	 */
	if (pw->depart == DepartTop) 
	{
	    /*
	     * The edge departs the row at this pixel, the
	     * next time it gets used will be for the next row
	     *
	     * Step down one row and then recompute the
	     * column values to start the next row of
	     * pixels
	     */
	    pixelWalkStepRow(pw);
	    /*
	     * Set column exit pixel
	     */
	    pixelWalkMovePointToCol(pw, &pw->col.right, xFixedFloor(pw->row.bottom.x));
	    /*
	     * This moves the exit pixel to the entry pixel
	     * and computes the next exit pixel
	     */
	    pixelWalkStepCol(pw);
	    /*
	     * The first pixel on the next row will always
	     * be entered from below, set the lower
	     * intersection of this edge with that pixel
	     */
	    pw->p_trap_bottom = pw->row.bottom;
	} 
	else	/* pw->depart == DepartRight */
	{ 
	    /*
	     * easy case -- just move right one pixel 
	     */
	    pixelWalkStepCol(pw);
	    /* 
	     * Set the lower intersection of the edge with the
	     * pixel -- that's just where the edge entered
	     * the pixel from the left
	     */
	    pw->p_trap_bottom = pw->col.left;
	}
	/*
	 * Now compute which edge the pixel
	 * is departing from
	 */
	if (pw->row.top.x <= pw->col.right.x) 
	{
	    /* 
	     * row intersection is left of column intersection,
	     * that means the edge hits the top of the pixel
	     * before it hits the right edge
	     */
	    pw->p_trap_top = pw->row.top;
	    pw->depart = DepartTop;
	    /*
	     * Further check to see whether the edge
	     * leaves the right or top edge of the
	     * whole pixel
	     */
	    if (pw->row.pixel_top.x <= pw->col.right.x)
		pw->p_pixel_top = pw->row.pixel_top;
	    else
		pw->p_pixel_top = pw->col.right;
	}
	else 
	{
	    /*
	     * Row intersection is right of colum intersection,
	     * that means the edge hits the right edge of the
	     * pixel first
	     */
	    pw->p_trap_top = pw->col.right;
	    pw->p_pixel_top = pw->col.right;
	    pw->depart = DepartRight;
	}
    } 
    else 
    {
	/*
	 * right moving lines
	 *
	 * Check which edge we're departing from
	 *
	 * In the dx >= 0 case, the row and col elements both
	 * walk downwards
	 */
	if (pw->depart == DepartBottom) 
	{
	    /*
	     * The edge departs the row at this pixel,
	     * the next time it gets used will be for the
	     * next row
	     *
	     * Step down one row and (maybe) over one
	     * column to prepare for the next row
	     */
	    if (pw->row.bottom.x == pw->col.right.x)
	    {
		/* 
		 * right through the corner of the pixel,
		 * adjust the column
		 */
		pixelWalkStepCol(pw);
	    }
	    pixelWalkStepRow(pw);
	    /*
	     * Set the upper intersection of the edge with
	     * the pixel, the first pixel on the next
	     * row is always entered from the top
	     */
	    pw->p_trap_top = pw->row.top;
	    pw->p_pixel_top = pw->row.pixel_top;
	}
	else	/* pw->depart == DepartRight */
	{ 
	    /*
	     * Easy case -- move right one
	     * pixel
	     */
	    pixelWalkStepCol(pw);
	    /*
	     * Set the upper intersection of the edge
	     * with the pixel, that's along the left
	     * edge of the pixel
	     */
	    pw->p_trap_top = pw->col.left;
	    pw->p_pixel_top = pw->col.left;
	}
	/*
	 * Now compute the exit edge and the
	 * lower intersection of the edge with the pixel
	 */
	if (pw->row.bottom.x <= pw->col.right.x) 
	{
	    /*
	     * Hit the place where the edge leaves
	     * the pixel, the lower intersection is
	     * where the edge hits the bottom
	     */
	    pw->p_trap_bottom = pw->row.bottom;
	    pw->depart = DepartBottom;
	}
	else 
	{
	    /*
	     * The edge goes through the
	     * next pixel on the row,
	     * the lower intersection is where the
	     * edge hits the right side of the pixel
	     */
	    pw->p_trap_bottom = pw->col.right;
	    pw->depart = DepartRight;
	}
    }
}

/*
 * Compute the first pixel intersection points
 * and the departure type from that pixel
 */
static void 
pixelWalkFirstPixel (PixelWalk *pw)
{
    if (pw->dx < 0) 
    {
	if (pw->row.top.x <= pw->col.right.x) 
	{
	    /*
	     * leaving through the top.
	     * upper position is the upper point of
	     * the 'row' element
	     */
	    pw->depart = DepartTop;
	    pw->p_trap_top = pw->row.top;
	    /*
	     * further check for pixel top
	     */
	    if (pw->row.pixel_top.x <= pw->col.right.x)
		pw->p_pixel_top = pw->row.pixel_top;
	    else
		pw->p_pixel_top = pw->col.right;
	}
	else 
	{
	    /*
	     * leaving through the right side
	     * upper position is the right point of
	     * the 'col' element
	     */
	    pw->depart = DepartRight;
	    pw->p_trap_top = pw->col.right;
	    pw->p_pixel_top = pw->col.right;
	}
	/*
	 * Now find the lower pixel intersection point
	 */
	if (pw->row.bottom.x >= pw->col.left.x)
	    /*
	     * entering through bottom,
	     * lower position is the bottom point of
	     * the 'row' element
	     */
	    pw->p_trap_bottom = pw->row.bottom;
	else
	    /*
	     * entering through left side,
	     * lower position is the left point of
	     * the 'col' element
	     */
	    pw->p_trap_bottom = pw->col.left;
    }
    else 
    {
	if (pw->row.bottom.x <= pw->col.right.x)
	{
	    /*
	     * leaving through the bottom (or corner).
	     * lower position is the lower point of
	     * the 'row' element
	     */
	    pw->depart = DepartBottom;
	    pw->p_trap_bottom = pw->row.bottom;
	} 
	else 
	{
	    /*
	     * leaving through the right side
	     * lower position is the right point of
	     * the 'col' element
	     */
	    pw->depart = DepartRight;
	    pw->p_trap_bottom = pw->col.right;
	}
	/*
	 * Now find the upper pixel intersection point
	 */
	if (pw->row.top.x >= pw->col.left.x)
	{
	    /*
	     * entering through the top (or corner),
	     * upper position is the top point
	     * of the 'row' element
	     */
	    pw->p_trap_top = pw->row.top;
	    /*
	     * further check for pixel entry
	     */
	    if (pw->row.pixel_top.x >= pw->col.left.x)
		pw->p_pixel_top = pw->row.pixel_top;
	    else
		pw->p_pixel_top = pw->col.left;
	}
	else
	{
	    /*
	     * entering through the left side,
	     * upper position is the left point of
	     * the 'col' element
	     */
	    pw->p_trap_top = pw->col.left;
	    pw->p_pixel_top = pw->col.left;
	}
    }
}

static void 
pixelWalkInit (PixelWalk *pw, xLineFixed *line, xFixed top_y, xFixed bottom_y)
{
    xFixed_32_32    dy_inc, dx_inc;
    xFixed	    next_y;
    xFixed	    left_x;
    xPointFixed	    *top, *bot;

    next_y = xFixedFloor (top_y) + xFixed1;
    if (next_y > bottom_y)
	next_y = bottom_y;

    /*
     * Orient lines top down
     */
    if (line->p1.y < line->p2.y) 
    {
	top = &line->p1;
	bot = &line->p2;
    }
    else
    {
	top = &line->p2;
	bot = &line->p1;
    }

    pw->dx = bot->x - top->x;
    pw->ey_thresh = abs(pw->dx >> 1);
    pw->dy = bot->y - top->y;
    pw->ex_thresh = pw->dy >> 1;

    /*
     * Set step values for walking lines
     */
    if (pw->dx < 0) 
    {
	pw->x_correct = -1;
	pw->ex_correct = pw->dy;
	pw->y_correct = -1;
	pw->ey_correct = pw->dx;
    }
    else 
    {
	pw->x_correct = 1;
	pw->ex_correct = -pw->dy;
	pw->y_correct = 1;
	pw->ey_correct = -pw->dx;
    }

    pw->bottom = bottom_y;

    /*
     * Compute Bresenham values for walking edges incrementally
     */
    dy_inc = (xFixed_32_32) xFixed1 * pw->dy;			/* > 0 */
    if (pw->dx != 0) 
    {
	pw->m = dy_inc / pw->dx;				/* sign(dx) */
	pw->em_dx = dy_inc - (xFixed_32_32) pw->m * pw->dx;	/* > 0 */
    }
    else 
    {
	/* Vertical line. Setting these to zero prevents us from
           having to put any conditions in pixelWalkStepCol. */
	pw->m = 0;
	pw->em_dx = 0;
    }

    dx_inc = (xFixed_32_32) xFixed1 * (xFixed_32_32) pw->dx;	/* sign(dx) */
    pw->p = dx_inc / pw->dy;					/* sign(dx) */
    pw->ep_dy = dx_inc - (xFixed_32_32) pw->p * pw->dy;		/* sign(dx) */

    /*
     * Initialize 'row' for walking down rows
     */
    pw->row.bottom.x = top->x;
    pw->row.bottom.ex_dy = 0;
    pw->row.bottom.y = top->y;
    pw->row.bottom.ey_dx = 0;

    /*
     * Initialize 'pixel_top' to be on the line for
     * the first step
     */
    pw->row.pixel_top = pw->row.bottom;
    /*
     * Move to the pixel above the 'top_y' coordinate,
     * first setting 'bottom' and then using StepRow
     * which moves that to 'top' and computes the next 'bottom'
     */
    pixelWalkMovePointToRow(pw, &pw->row.bottom, top_y);
    pixelWalkStepRow(pw);

    /*
     * Initialize 'col' for walking across columns
     */
    pw->col.right.x = top->x;
    pw->col.right.ex_dy = 0;
    pw->col.right.y = top->y;
    pw->col.right.ey_dx = 0;

    /*
     * First set the column to the left most
     * pixel hit by the row
     */
    if (pw->dx < 0)
	left_x = pw->row.bottom.x;
    else
	left_x = pw->row.top.x;
    
    pixelWalkMovePointToCol(pw, &pw->col.right, xFixedFloor (left_x));
    pixelWalkStepCol(pw);
    
    /*
     * Compute first pixel intersections and the
     * first departure state
     */
    pixelWalkFirstPixel (pw);
}

#define RoundShift(a,b) (((a) + (1 << ((b) - 1))) >> (b))
#define MaxAlpha(depth) ((1 << (depth)) - 1)

#define AreaAlpha(area, depth) (RoundShift (RoundShift (area, depth) *  \
					    MaxAlpha (depth), \
					    (31 - depth)))

/*
  Pixel coverage from the upper-left corner bounded by one horizontal
  bottom line (bottom) and one line defined by two points, (x1,y1) and
  (x2,y2), which intersect the pixel. y1 must be less than y2. There
  are 8 cases yielding the following area calculations:

  A     B     C     D     E     F     G     H
+---+ +---+ +-1-+ +1--+ +--1+ +-1-+ +---+ +---+ 
|   | 1   | |  \| | \ | | / | |/  | |   1 |   |
1   | |`-.| |   2 | | | | | | 2   | |,_/| |   1
|\  | |   2 |   | | \ | | / | |   | 2   | |  /|
+-2-+ +---+ +---+ +--2+ +2--+ +---+ +---+ +-2-+

A:  (1/2 *       x2  * (y2 - y1))
B:  (1/2 *       x2  * (y2 - y1)) + (bottom - y2) * x2
C:  (1/2 * (x1 + x2) *  y2      ) + (bottom - y2) * x2
D:  (1/2 * (x1 + x2) *  y2      )
E:  (1/2 * (x1 + x2) *  y2      )
F:  (1/2 *  x1       *  y2      )
G:  (1/2 *  x1       * (y2 - y1))                      + x1 * y1
H:  (1/2 * (x1 + x2) * (y2 - y1))                      + x1 * y1

The union of these calculations is valid for all cases. Namely:

    (1/2 * (x1 + x2) * (y2 - y1)) + (bottom - y2) * x2 + x1 * y1

An exercise for later would perhaps be to optimize the calculations
for some of the cases above. Specifically, it's possible to eliminate
multiplications by zero in several cases, leaving a maximum of two
multiplies per pixel calculation. (This is even more promising now
that the higher level code actually computes the exact same 8 cases
as part of its pixel walking).

But, for now, I just want to get something working correctly even if
slower. So, we'll use the non-optimized general equation.

*/

/* 1.16 * 1.16 -> 1.31 */
#define AREA_MULT(w, h) ( (xFixed_1_31) (((((xFixed_1_16)w)*((xFixed_1_16)h) + 1) >> 1) | (((xFixed_1_16)w)&((xFixed_1_16)h)&0x10000) << 15))

/* (1.16 + 1.16) / 2 -> 1.16 */
#define WIDTH_AVG(x1,x2) (((x1) + (x2) + 1) >> 1)

#define SubPixelArea(x1, y1, x2, y2, bottom)	\
(xFixed_1_31) ( 						\
   AREA_MULT((x1), (y1))			\
 + AREA_MULT(WIDTH_AVG((x1), (x2)), (y2) - (y1))\
 + AREA_MULT((x2), (bottom) - (y2))		\
)

/*
static xFixed_1_31
SubPixelArea (xFixed_1_16	x1,
              xFixed_1_16       y1,
              xFixed_1_16       x2,
              xFixed_1_16       y2,
              xFixed_1_16       bottom)
{
    xFixed_1_16	    x_trap;
    xFixed_1_16     h_top, h_trap, h_bot;
    xFixed_1_31     area;
    
    x_trap = WIDTH_AVG(x1,x2);
    h_top = y1;
    h_trap = (y2 - y1);
    h_bot = (bottom - y2);
    
    area = AREA_MULT(x1, h_top) +
	AREA_MULT(x_trap, h_trap) +
	AREA_MULT(x2, h_bot);
    
    return area;
}
*/

#define SubPixelAlpha(x1, y1, x2, y2, bottom, depth)		\
(								\
    AreaAlpha(							\
	SubPixelArea((x1), (y1), (x2), (y2), (bottom)),		\
	(depth)							\
    )								\
)

/*
static int
SubPixelAlpha (xFixed_1_16	x1,
	       xFixed_1_16	y1,
	       xFixed_1_16	x2,
	       xFixed_1_16	y2,
	       xFixed_1_16	bottom,
	       int		depth)
{
    xFixed_1_31	area;

    area = SubPixelArea(x1, y1, x2, y2, bottom);
    
    return AreaAlpha(area, depth);
}
*/

/* Alpha of a pixel above a given horizontal line */
#define AlphaAbove(pixel_y, line_y, depth)			\
(								\
    AreaAlpha(AREA_MULT((line_y) - (pixel_y), xFixed1), depth)	\
)

static int
RectAlpha(xFixed pixel_y, xFixed top, xFixed bottom, int depth)
{
    if (depth == 1)
	return top == pixel_y ? 1 : 0;
    else
	return (AlphaAbove (pixel_y, bottom, depth) -
		AlphaAbove (pixel_y, top, depth));
}


/*
 * Pixel coverage from the left edge bounded by one horizontal lines,
 * (top and bottom), as well as one PixelWalk line.
 */
static int
AlphaAboveLeft(RationalPoint	*upper,
	       RationalPoint	*lower,
	       xFixed		bottom,
	       xFixed		pixel_x,
	       xFixed		pixel_y,
	       int		depth)
{
    return SubPixelAlpha(upper->x - pixel_x,
			 upper->y - pixel_y,
			 lower->x - pixel_x,
			 lower->y - pixel_y,
			 bottom - pixel_y,
			 depth);
}

/*
  Pixel coverage from the left edge bounded by two horizontal lines,
  (top and bottom), as well as one line two points, p1 and p2, which
  intersect the pixel. The following condition must be true:

  p2.y > p1.y
*/

/*
          lr
           |\
        +--|-\-------+
        | a| b\      |
    =======|===\========== top
        | c| d  \    |
    =======|=====\======== bot
        |  |      \  |
        +--|-------\-+

   alpha(d) = alpha(cd) - alpha(c) = alpha(abcd) - alpha(ab) - (alpha(ac) - alpha(c))

   alpha(d) = pixelalpha(top, bot, right) - pixelalpha(top, bot, left)

   pixelalpha(top, bot, line) = subpixelalpha(bot, line) - subpixelalpha(top, line)
*/

static int
PixelAlpha(xFixed	pixel_x,
	   xFixed	pixel_y,
	   xFixed	top,
	   xFixed	bottom,
	   PixelWalk	*pw,
	   int		depth)
{
    int alpha;

#ifdef DEBUG
    fprintf(stderr, "alpha (%f, %f) - (%f, %f) = ",
	    (double) pw->p1.x / (1 << 16),
	    (double) pw->p1.y / (1 << 16),
	    (double) pw->p2.x / (1 << 16),
	    (double) pw->p2.y / (1 << 16));
    fflush(stderr);
#endif

    /*
     * Sharp polygons are different, alpha is 1 if the
     * area includes the pixel origin, else zero, in
     * the above figure, only 'a' has alpha 1
     */
    if (depth == 1)
    {
	alpha = 0;
	if (top == pixel_y && pw->p_pixel_top.x != pixel_x)
	    alpha = 1;
    }
    else
    {
	alpha = (AlphaAboveLeft(&pw->p_pixel_top, &pw->p_trap_bottom,
				bottom, pixel_x, pixel_y, depth) 
		 - AlphaAboveLeft(&pw->p_pixel_top, &pw->p_trap_top,
				  top, pixel_x, pixel_y, depth));
    }
    
#ifdef DEBUG
    fprintf(stderr, "0x%x => %f\n",
	    alpha,
	    (double) alpha / ((1 << depth) -1 ));
    fflush(stderr);
#endif

    return alpha;
}

#define INCREMENT_X_AND_PIXEL		\
{					\
    pixel_x += xFixed1;			\
    (*mask.over) (&mask);		\
}

/* XXX: What do we really want this prototype to look like? Do we want
   separate versions for 1, 4, 8, and 16-bit alpha? */

#define saturateAdd(t, a, b) (((t) = (a) + (b)), \
			       ((CARD8) ((t) | (0 - ((t) >> 8)))))

#define addAlpha(mask, depth, alpha, temp) (\
    (*(mask)->store) ((mask), (alpha == (1 << depth) - 1) ? \
		      0xff000000 : \
		      (saturateAdd (temp,  \
				    alpha << (8 - depth),  \
				    (*(mask)->fetch) (mask) >> 24) << 24)) \
)

void
fbRasterizeTrapezoid (PicturePtr    pMask,
		      xTrapezoid    *pTrap,
		      int	    x_off,
		      int	    y_off)
{
    xTrapezoid	trap = *pTrap;
    int alpha, temp;
    
    FbCompositeOperand	mask;

    int depth = pMask->pDrawable->depth;
    int max_alpha = (1 << depth) - 1;
    int buf_width = pMask->pDrawable->width;

    xFixed x_off_fixed = IntToxFixed(x_off);
    xFixed y_off_fixed = IntToxFixed(y_off);
    xFixed buf_width_fixed = IntToxFixed(buf_width);

    PixelWalk left, right;
    xFixed pixel_x, pixel_y;
    xFixed first_right_x;
    xFixed y, y_next;

    /* trap.left and trap.right must be non-horizontal */
    if (trap.left.p1.y == trap.left.p2.y
	|| trap.right.p1.y == trap.right.p2.y) {
	return;
    }

    trap.top += y_off_fixed;
    trap.bottom += y_off_fixed;
    trap.left.p1.x += x_off_fixed;
    trap.left.p1.y += y_off_fixed;
    trap.left.p2.x += x_off_fixed;
    trap.left.p2.y += y_off_fixed;
    trap.right.p1.x += x_off_fixed;
    trap.right.p1.y += y_off_fixed;
    trap.right.p2.x += x_off_fixed;
    trap.right.p2.y += y_off_fixed;

#ifdef DEBUG
    fprintf(stderr, "(top, bottom) = (%f, %f)\n",
	    (double) trap.top / (1 << 16),
	    (double) trap.bottom / (1 << 16));
#endif

    pixelWalkInit(&left, &trap.left, trap.top, trap.bottom);
    pixelWalkInit(&right, &trap.right, trap.top, trap.bottom);

    /* XXX: I'd still like to optimize this loop for top and
       bottom. Only the first row intersects top and only the last
       row, (which could also be the first row), intersects bottom. So
       we could eliminate some unnecessary calculations from all other
       rows. Unfortunately, I haven't found an easy way to do it
       without bloating the text, (eg. unrolling a couple iterations
       of the loop). So, for sake of maintenance, I'm putting off this
       optimization at least until this code is more stable.. */

    if (!fbBuildCompositeOperand (pMask, &mask, 0, xFixedToInt (trap.top), FALSE, FALSE))
	return;
    
    for (y = trap.top; y < trap.bottom; y = y_next)
    {
	pixel_y = xFixedFloor (y);
	y_next = pixel_y + xFixed1;
	if (y_next > trap.bottom)
	    y_next = trap.bottom;
	
	ASSERT (left.row.top.y == y);
	ASSERT (left.row.bottom.y == y_next);
	ASSERT (right.row.top.y == y);
	ASSERT (right.row.bottom.y == y_next);
	
	pixel_x = xFixedFloor(left.col.left.x);
	
	/*
	 * Walk pixels on this row that are left of the
	 * first possibly lit pixel
	 *
	 * pixelWalkNextPixel will change .row.top.y
	 * when the last pixel covered by the edge
	 * is passed
	 */

	first_right_x = xFixedFloor(right.col.left.x);
	while (right.row.top.y == y && first_right_x < pixel_x)
	{
	    /* these are empty */
	    pixelWalkNextPixel (&right);
	    /* step over */
	    first_right_x += xFixed1;
	}

	(*mask.set) (&mask, xFixedToInt (pixel_x), xFixedToInt (y));
	
	/* 
	 * Walk pixels on this row intersected by only trap.left
	 *
	 */
	while (left.row.top.y == y && pixel_x < first_right_x) 
	{
	    alpha = (RectAlpha (pixel_y, y, y_next, depth)
		     - PixelAlpha(pixel_x, pixel_y, y, y_next, &left, depth));
	    
	    if (alpha > 0)
	    {
		if (0 <= pixel_x && pixel_x < buf_width_fixed)
		    addAlpha (&mask, depth, alpha, temp);
	    }
	    
	    /*
	     * Step right
	     */
	    pixelWalkNextPixel(&left);
	    INCREMENT_X_AND_PIXEL;
	}

	/*
	 * Either pixels are covered by both edges or
	 * there are fully covered pixels on this row
	 */
	if (pixel_x == first_right_x)
	{
	    /*
	     * Now walk the pixels on this row intersected
	     * by both edges
	     */
	    while (left.row.top.y == y && right.row.top.y == y)
	    {
		alpha = (PixelAlpha(pixel_x, pixel_y, y, y_next, &right, depth)
			 - PixelAlpha(pixel_x, pixel_y, y, y_next, &left, depth));
		if (alpha > 0)
		{
		    ASSERT (0 <= alpha && alpha <= max_alpha);
		    if (0 <= pixel_x && pixel_x < buf_width_fixed)
			addAlpha (&mask, depth, alpha, temp);
		}
		pixelWalkNextPixel(&left);
		pixelWalkNextPixel(&right);
		INCREMENT_X_AND_PIXEL;
	    }
	    /*
	     * If the right edge is now left of the left edge,
	     * the left edge will end up only partially walked,
	     * walk it the rest of the way
	     */
	    while (left.row.top.y == y)
		pixelWalkNextPixel(&left);
	}
	else
	{
	    /*
	     * Fully covered pixels simply saturate 
	     */
	    alpha = RectAlpha (pixel_y, y, y_next, depth);
	    if (alpha == max_alpha)
	    {
		while (pixel_x < first_right_x) 
		{
		    if (0 <= pixel_x && pixel_x < buf_width_fixed)
			(*mask.store) (&mask, 0xff000000);
		    INCREMENT_X_AND_PIXEL;
		}
	    }
	    else 
	    {
		while (pixel_x < first_right_x) 
		{
		    ASSERT (0 <= alpha && alpha <= max_alpha);
		    if (0 <= pixel_x && pixel_x < buf_width_fixed)
			addAlpha (&mask, depth, alpha, temp);
		    INCREMENT_X_AND_PIXEL;
		}
	    }
	}

	/*
	 * Finally, pixels intersected only by trap.right 
	 */
	while (right.row.top.y == y)
	{
	    alpha = PixelAlpha(pixel_x, pixel_y, y, y_next, &right, depth);
	    if (alpha > 0)
	    {
		if (0 <= pixel_x && pixel_x < buf_width_fixed)
		    addAlpha (&mask, depth, alpha, temp);
	    }
	    pixelWalkNextPixel(&right);
	    INCREMENT_X_AND_PIXEL;
	}
    }
}

/* Some notes on walking while keeping track of errors in both dimensions:

That's really pretty easy.  Your bresenham should be walking sub-pixel
coordinates rather than pixel coordinates.  Now you can calculate the
sub-pixel Y coordinate for any arbitrary sub-pixel X coordinate (or vice
versa).

        ey:     y error term (distance from current Y sub-pixel to line) * dx
        ex:     x error term (distance from current X sub-pixel to line) * dy
        dx:     difference of X coordinates for line endpoints
        dy:     difference of Y coordinates for line endpoints
        x:      current fixed-point X coordinate
        y:      current fixed-point Y coordinate

One of ey or ex will always be zero, depending on whether the distance to
the line was measured horizontally or vertically.

In moving from x, y to x1, y1:

        (x1 + e1x/dy) - (x + ex/dy)   dx
        --------------------------- = --
        (y1 + e1y/dx) - (y + ey/dx)   dy

        (x1dy + e1x) - (xdy + ex) = (y1dx + e1y) - (ydx + ey)

        dy(x1 - x) + (e1x - ex) = dx(y1-y) + (e1y - ey)

So, if you know y1 and want to know x1:

    Set e1y to zero and compute the error from x:

        oex = dx(y1 - y) - ey + ex

    Compute the number of whole pixels to get close to the line:

        wx = oex / dy

    Set x1:

    Now compute the e1x:

        e1x = oex - wx * dy

A similar operation moves to a known y1.  Note that this computation (in
general) requires 64 bit arithmetic.  I suggest just using the available
64 bit datatype for now, we can optimize the common cases with a few
conditionals.  There's some cpp code in fb/fb.h that selects a 64 bit type
for machines that XFree86 builds on; there aren't any machines missing a
64 bit datatype that I know of.
*/

/* Here's a large-step Bresenham for jogging my memory.

void large_bresenham_x_major(x1, y1, x2, y2, x_inc)
{
    int x, y, dx, dy, m;
    int em_dx, ey_dx;

    dx = x2 - x1;
    dy = y2 - y1;

    m = (x_inc * dy) / dx;
    em_dx = (x_inc * dy) - m * dx;

    x = x1;
    y = y1;
    ey = 0;

    set(x,y);
    
    while (x < x2) {
	x += x_inc;
	y += m;
	ey_dx += em_dx;
	if (ey_dx > dx_2) {
	    y++;
	    ey_dx -= dx;
	}
	set(x,y);
    }
}

*/

/* Here are the latest, simplified equations for computing trapezoid
   coverage of a pixel:

        alpha_from_area(A) = round(2**depth-1 * A)

        alpha(o) = 2**depth-1

        alpha(a) = alpha_from_area(area(a))

        alpha(ab) = alpha_from_area(area(ab))

        alpha(b) = alpha(ab) - alpha (a)

        alpha(abc) = alpha_from_area(area(abc))

        alpha(c) = alpha(abc) - alpha(ab)

        alpha(ad) = alpha_from_area(area(ad))

        alpha (d) = alpha(ad) - alpha (a)

        alpha (abde) = alpha_from_area(area(abde))

        alpha (de) = alpha (abde) - alpha (ab)

        alpha (e) = alpha (de) - alpha (d)

        alpha (abcdef) = alpha_from_area(area(abcdef))

        alpha (def) = alpha (abcdef) - alpha (abc)

        alpha (f) = alpha (def) - alpha (de)

        alpha (adg) = alpha_from_area(area(adg))

        alpha (g) = alpha (adg) - alpha (ad)

        alpha (abdegh) = alpha_from_area(area(abdegh))

        alpha (gh) = alpha (abdegh) - alpha (abde)

        alpha (h) = alpha (gh) - alpha (g)

        alpha (abcdefghi) = alpha_from_area(area(abcdefghi)) =
        alpha_from_area(area(o)) = alpha_from_area(1) = alpha(o)

        alpha (ghi) = alpha (abcdefghi) - alpha (abcdef)

        alpha (i) = alpha (ghi) - alpha (gh)
*/

/* Latest thoughts from Keith on implementing area/alpha computations:

*** 1.16 * 1.16 -> 1.31 ***
#define AREA_MULT(w,h)  ((w)&(h) == 0x10000 ? 0x80000000 : (((w)*(h) + 1) >> 1)

*** (1.16 + 1.16) / 2 -> 1.16 ***
#define WIDTH_AVG(x1,x2) (((x1) + (x2) + 1) >> 1)

xFixed_1_31
SubpixelArea (xFixed_1_16        x1,
              xFixed_1_16        x2,
              xFixed_1_16        y1,
              xFixed_1_16        y2,
              xFixed_1_16        bottom)
    {
        xFixed_1_16      x_trap;
        xFixed_1_16      h_top, h_trap, h_bot;
        xFixed_1_31      area;

        x_trap = WIDTH_AVG(x1,x2);
        h_top = y1;
        h_trap = (y2 - y1);
        h_bot = (bottom - y2);

        area = AREA_MULT(x1, h_top) +
	AREA_MULT(x_trap, h_trap) +
	AREA_MULT(x2, h_bot);

        return area;
    }

To convert this xFixed_1_31 value to alpha using 32 bit arithmetic:

int
AreaAlpha (xFixed_1_31 area, int depth)
    {
        return ((area >> bits) * ((1 << depth) - 1)) >> (31 - depth);
    }

Avoiding the branch bubble in the AREA_MULT could be done with either:

area = (w * h + 1) >> 1;
area |= ((area - 1) & 0x80000000);

or
        #define AREA_MULT(w,h) ((((w)*(h) + 1) >> 1) | ((w)&(h)&0x10000) << 15)

depending on your preference, the first takes one less operation but
can't be expressed as a macro; the second takes a large constant which may
require an additional instruction on some processors.  The differences
will be swamped by the cost of the multiply.

*/

#endif /* RENDER */