summaryrefslogtreecommitdiff
path: root/utils/TableGen/FixedLenDecoderEmitter.cpp
blob: 292a2b17c5b5d9a8be8b78c9735ed3bacc6d3462 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// It contains the tablegen backend that emits the decoder functions for
// targets with fixed length instruction set.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <map>
#include <string>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "decoder-emitter"

namespace {
struct EncodingField {
  unsigned Base, Width, Offset;
  EncodingField(unsigned B, unsigned W, unsigned O)
    : Base(B), Width(W), Offset(O) { }
};

struct OperandInfo {
  std::vector<EncodingField> Fields;
  std::string Decoder;

  OperandInfo(std::string D)
    : Decoder(D) { }

  void addField(unsigned Base, unsigned Width, unsigned Offset) {
    Fields.push_back(EncodingField(Base, Width, Offset));
  }

  unsigned numFields() const { return Fields.size(); }

  typedef std::vector<EncodingField>::const_iterator const_iterator;

  const_iterator begin() const { return Fields.begin(); }
  const_iterator end() const   { return Fields.end();   }
};

typedef std::vector<uint8_t> DecoderTable;
typedef uint32_t DecoderFixup;
typedef std::vector<DecoderFixup> FixupList;
typedef std::vector<FixupList> FixupScopeList;
typedef SetVector<std::string> PredicateSet;
typedef SetVector<std::string> DecoderSet;
struct DecoderTableInfo {
  DecoderTable Table;
  FixupScopeList FixupStack;
  PredicateSet Predicates;
  DecoderSet Decoders;
};

} // End anonymous namespace

namespace {
class FixedLenDecoderEmitter {
  const std::vector<const CodeGenInstruction*> *NumberedInstructions;
public:

  // Defaults preserved here for documentation, even though they aren't
  // strictly necessary given the way that this is currently being called.
  FixedLenDecoderEmitter(RecordKeeper &R,
                         std::string PredicateNamespace,
                         std::string GPrefix  = "if (",
                         std::string GPostfix = " == MCDisassembler::Fail)"
                         " return MCDisassembler::Fail;",
                         std::string ROK      = "MCDisassembler::Success",
                         std::string RFail    = "MCDisassembler::Fail",
                         std::string L        = "") :
    Target(R),
    PredicateNamespace(PredicateNamespace),
    GuardPrefix(GPrefix), GuardPostfix(GPostfix),
    ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}

  // Emit the decoder state machine table.
  void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
                 unsigned Indentation, unsigned BitWidth,
                 StringRef Namespace) const;
  void emitPredicateFunction(formatted_raw_ostream &OS,
                             PredicateSet &Predicates,
                             unsigned Indentation) const;
  void emitDecoderFunction(formatted_raw_ostream &OS,
                           DecoderSet &Decoders,
                           unsigned Indentation) const;

  // run - Output the code emitter
  void run(raw_ostream &o);

private:
  CodeGenTarget Target;
public:
  std::string PredicateNamespace;
  std::string GuardPrefix, GuardPostfix;
  std::string ReturnOK, ReturnFail;
  std::string Locals;
};
} // End anonymous namespace

// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
// for a bit value.
//
// BIT_UNFILTERED is used as the init value for a filter position.  It is used
// only for filter processings.
typedef enum {
  BIT_TRUE,      // '1'
  BIT_FALSE,     // '0'
  BIT_UNSET,     // '?'
  BIT_UNFILTERED // unfiltered
} bit_value_t;

static bool ValueSet(bit_value_t V) {
  return (V == BIT_TRUE || V == BIT_FALSE);
}
static bool ValueNotSet(bit_value_t V) {
  return (V == BIT_UNSET);
}
static int Value(bit_value_t V) {
  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
}
static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
  if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
    return bit->getValue() ? BIT_TRUE : BIT_FALSE;

  // The bit is uninitialized.
  return BIT_UNSET;
}
// Prints the bit value for each position.
static void dumpBits(raw_ostream &o, const BitsInit &bits) {
  for (unsigned index = bits.getNumBits(); index > 0; --index) {
    switch (bitFromBits(bits, index - 1)) {
    case BIT_TRUE:
      o << "1";
      break;
    case BIT_FALSE:
      o << "0";
      break;
    case BIT_UNSET:
      o << "_";
      break;
    default:
      llvm_unreachable("unexpected return value from bitFromBits");
    }
  }
}

static BitsInit &getBitsField(const Record &def, const char *str) {
  BitsInit *bits = def.getValueAsBitsInit(str);
  return *bits;
}

// Forward declaration.
namespace {
class FilterChooser;
} // End anonymous namespace

// Representation of the instruction to work on.
typedef std::vector<bit_value_t> insn_t;

/// Filter - Filter works with FilterChooser to produce the decoding tree for
/// the ISA.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree in a certain level.  Each case stmt delegates to an inferior
/// FilterChooser to decide what further decoding logic to employ, or in another
/// words, what other remaining bits to look at.  The FilterChooser eventually
/// chooses a best Filter to do its job.
///
/// This recursive scheme ends when the number of Opcodes assigned to the
/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
/// the Filter/FilterChooser combo does not know how to distinguish among the
/// Opcodes assigned.
///
/// An example of a conflict is
///
/// Conflict:
///                     111101000.00........00010000....
///                     111101000.00........0001........
///                     1111010...00........0001........
///                     1111010...00....................
///                     1111010.........................
///                     1111............................
///                     ................................
///     VST4q8a         111101000_00________00010000____
///     VST4q8b         111101000_00________00010000____
///
/// The Debug output shows the path that the decoding tree follows to reach the
/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
///
/// The encoding info in the .td files does not specify this meta information,
/// which could have been used by the decoder to resolve the conflict.  The
/// decoder could try to decode the even/odd register numbering and assign to
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
/// version and return the Opcode since the two have the same Asm format string.
namespace {
class Filter {
protected:
  const FilterChooser *Owner;// points to the FilterChooser who owns this filter
  unsigned StartBit; // the starting bit position
  unsigned NumBits; // number of bits to filter
  bool Mixed; // a mixed region contains both set and unset bits

  // Map of well-known segment value to the set of uid's with that value.
  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;

  // Set of uid's with non-constant segment values.
  std::vector<unsigned> VariableInstructions;

  // Map of well-known segment value to its delegate.
  std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;

  // Number of instructions which fall under FilteredInstructions category.
  unsigned NumFiltered;

  // Keeps track of the last opcode in the filtered bucket.
  unsigned LastOpcFiltered;

public:
  unsigned getNumFiltered() const { return NumFiltered; }
  unsigned getSingletonOpc() const {
    assert(NumFiltered == 1);
    return LastOpcFiltered;
  }
  // Return the filter chooser for the group of instructions without constant
  // segment values.
  const FilterChooser &getVariableFC() const {
    assert(NumFiltered == 1);
    assert(FilterChooserMap.size() == 1);
    return *(FilterChooserMap.find((unsigned)-1)->second);
  }

  Filter(Filter &&f);
  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);

  ~Filter();

  // Divides the decoding task into sub tasks and delegates them to the
  // inferior FilterChooser's.
  //
  // A special case arises when there's only one entry in the filtered
  // instructions.  In order to unambiguously decode the singleton, we need to
  // match the remaining undecoded encoding bits against the singleton.
  void recurse();

  // Emit table entries to decode instructions given a segment or segments of
  // bits.
  void emitTableEntry(DecoderTableInfo &TableInfo) const;

  // Returns the number of fanout produced by the filter.  More fanout implies
  // the filter distinguishes more categories of instructions.
  unsigned usefulness() const;
}; // End of class Filter
} // End anonymous namespace

// These are states of our finite state machines used in FilterChooser's
// filterProcessor() which produces the filter candidates to use.
typedef enum {
  ATTR_NONE,
  ATTR_FILTERED,
  ATTR_ALL_SET,
  ATTR_ALL_UNSET,
  ATTR_MIXED
} bitAttr_t;

/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
/// in order to perform the decoding of instructions at the current level.
///
/// Decoding proceeds from the top down.  Based on the well-known encoding bits
/// of instructions available, FilterChooser builds up the possible Filters that
/// can further the task of decoding by distinguishing among the remaining
/// candidate instructions.
///
/// Once a filter has been chosen, it is called upon to divide the decoding task
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
/// processings.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree.  And each case is delegated to an inferior FilterChooser to
/// decide what further remaining bits to look at.
namespace {
class FilterChooser {
protected:
  friend class Filter;

  // Vector of codegen instructions to choose our filter.
  const std::vector<const CodeGenInstruction*> &AllInstructions;

  // Vector of uid's for this filter chooser to work on.
  const std::vector<unsigned> &Opcodes;

  // Lookup table for the operand decoding of instructions.
  const std::map<unsigned, std::vector<OperandInfo> > &Operands;

  // Vector of candidate filters.
  std::vector<Filter> Filters;

  // Array of bit values passed down from our parent.
  // Set to all BIT_UNFILTERED's for Parent == NULL.
  std::vector<bit_value_t> FilterBitValues;

  // Links to the FilterChooser above us in the decoding tree.
  const FilterChooser *Parent;

  // Index of the best filter from Filters.
  int BestIndex;

  // Width of instructions
  unsigned BitWidth;

  // Parent emitter
  const FixedLenDecoderEmitter *Emitter;

  FilterChooser(const FilterChooser &) = delete;
  void operator=(const FilterChooser &) = delete;
public:

  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
                const std::vector<unsigned> &IDs,
                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
                unsigned BW,
                const FixedLenDecoderEmitter *E)
    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
      FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
      BitWidth(BW), Emitter(E) {
    doFilter();
  }

  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
                const std::vector<unsigned> &IDs,
                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
                const std::vector<bit_value_t> &ParentFilterBitValues,
                const FilterChooser &parent)
    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
      Filters(), FilterBitValues(ParentFilterBitValues),
      Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
      Emitter(parent.Emitter) {
    doFilter();
  }

  unsigned getBitWidth() const { return BitWidth; }

protected:
  // Populates the insn given the uid.
  void insnWithID(insn_t &Insn, unsigned Opcode) const {
    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");

    // We may have a SoftFail bitmask, which specifies a mask where an encoding
    // may differ from the value in "Inst" and yet still be valid, but the
    // disassembler should return SoftFail instead of Success.
    //
    // This is used for marking UNPREDICTABLE instructions in the ARM world.
    BitsInit *SFBits =
      AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");

    for (unsigned i = 0; i < BitWidth; ++i) {
      if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
        Insn.push_back(BIT_UNSET);
      else
        Insn.push_back(bitFromBits(Bits, i));
    }
  }

  // Returns the record name.
  const std::string &nameWithID(unsigned Opcode) const {
    return AllInstructions[Opcode]->TheDef->getName();
  }

  // Populates the field of the insn given the start position and the number of
  // consecutive bits to scan for.
  //
  // Returns false if there exists any uninitialized bit value in the range.
  // Returns true, otherwise.
  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
                     unsigned NumBits) const;

  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
  /// filter array as a series of chars.
  void dumpFilterArray(raw_ostream &o,
                       const std::vector<bit_value_t> & filter) const;

  /// dumpStack - dumpStack traverses the filter chooser chain and calls
  /// dumpFilterArray on each filter chooser up to the top level one.
  void dumpStack(raw_ostream &o, const char *prefix) const;

  Filter &bestFilter() {
    assert(BestIndex != -1 && "BestIndex not set");
    return Filters[BestIndex];
  }

  // Called from Filter::recurse() when singleton exists.  For debug purpose.
  void SingletonExists(unsigned Opc) const;

  bool PositionFiltered(unsigned i) const {
    return ValueSet(FilterBitValues[i]);
  }

  // Calculates the island(s) needed to decode the instruction.
  // This returns a lit of undecoded bits of an instructions, for example,
  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
  // decoded bits in order to verify that the instruction matches the Opcode.
  unsigned getIslands(std::vector<unsigned> &StartBits,
                      std::vector<unsigned> &EndBits,
                      std::vector<uint64_t> &FieldVals,
                      const insn_t &Insn) const;

  // Emits code to check the Predicates member of an instruction are true.
  // Returns true if predicate matches were emitted, false otherwise.
  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
                          unsigned Opc) const;

  bool doesOpcodeNeedPredicate(unsigned Opc) const;
  unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
  void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
                               unsigned Opc) const;

  void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
                              unsigned Opc) const;

  // Emits table entries to decode the singleton.
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                               unsigned Opc) const;

  // Emits code to decode the singleton, and then to decode the rest.
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                               const Filter &Best) const;

  void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
                        const OperandInfo &OpInfo) const;

  void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
  unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;

  // Assign a single filter and run with it.
  void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);

  // reportRegion is a helper function for filterProcessor to mark a region as
  // eligible for use as a filter region.
  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
                    bool AllowMixed);

  // FilterProcessor scans the well-known encoding bits of the instructions and
  // builds up a list of candidate filters.  It chooses the best filter and
  // recursively descends down the decoding tree.
  bool filterProcessor(bool AllowMixed, bool Greedy = true);

  // Decides on the best configuration of filter(s) to use in order to decode
  // the instructions.  A conflict of instructions may occur, in which case we
  // dump the conflict set to the standard error.
  void doFilter();

public:
  // emitTableEntries - Emit state machine entries to decode our share of
  // instructions.
  void emitTableEntries(DecoderTableInfo &TableInfo) const;
};
} // End anonymous namespace

///////////////////////////
//                       //
// Filter Implementation //
//                       //
///////////////////////////

Filter::Filter(Filter &&f)
  : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
    FilteredInstructions(std::move(f.FilteredInstructions)),
    VariableInstructions(std::move(f.VariableInstructions)),
    FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
    LastOpcFiltered(f.LastOpcFiltered) {
}

Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
               bool mixed)
  : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
  assert(StartBit + NumBits - 1 < Owner->BitWidth);

  NumFiltered = 0;
  LastOpcFiltered = 0;

  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
    insn_t Insn;

    // Populates the insn given the uid.
    Owner->insnWithID(Insn, Owner->Opcodes[i]);

    uint64_t Field;
    // Scans the segment for possibly well-specified encoding bits.
    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);

    if (ok) {
      // The encoding bits are well-known.  Lets add the uid of the
      // instruction into the bucket keyed off the constant field value.
      LastOpcFiltered = Owner->Opcodes[i];
      FilteredInstructions[Field].push_back(LastOpcFiltered);
      ++NumFiltered;
    } else {
      // Some of the encoding bit(s) are unspecified.  This contributes to
      // one additional member of "Variable" instructions.
      VariableInstructions.push_back(Owner->Opcodes[i]);
    }
  }

  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
         && "Filter returns no instruction categories");
}

Filter::~Filter() {
}

// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions.  In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void Filter::recurse() {
  // Starts by inheriting our parent filter chooser's filter bit values.
  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);

  if (!VariableInstructions.empty()) {
    // Conservatively marks each segment position as BIT_UNSET.
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
      BitValueArray[StartBit + bitIndex] = BIT_UNSET;

    // Delegates to an inferior filter chooser for further processing on this
    // group of instructions whose segment values are variable.
    FilterChooserMap.insert(
        std::make_pair(-1U, llvm::make_unique<FilterChooser>(
                                Owner->AllInstructions, VariableInstructions,
                                Owner->Operands, BitValueArray, *Owner)));
  }

  // No need to recurse for a singleton filtered instruction.
  // See also Filter::emit*().
  if (getNumFiltered() == 1) {
    //Owner->SingletonExists(LastOpcFiltered);
    assert(FilterChooserMap.size() == 1);
    return;
  }

  // Otherwise, create sub choosers.
  for (const auto &Inst : FilteredInstructions) {

    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
      if (Inst.first & (1ULL << bitIndex))
        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
      else
        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
    }

    // Delegates to an inferior filter chooser for further processing on this
    // category of instructions.
    FilterChooserMap.insert(std::make_pair(
        Inst.first, llvm::make_unique<FilterChooser>(
                                Owner->AllInstructions, Inst.second,
                                Owner->Operands, BitValueArray, *Owner)));
  }
}

static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
                               uint32_t DestIdx) {
  // Any NumToSkip fixups in the current scope can resolve to the
  // current location.
  for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
                                         E = Fixups.rend();
       I != E; ++I) {
    // Calculate the distance from the byte following the fixup entry byte
    // to the destination. The Target is calculated from after the 16-bit
    // NumToSkip entry itself, so subtract two  from the displacement here
    // to account for that.
    uint32_t FixupIdx = *I;
    uint32_t Delta = DestIdx - FixupIdx - 2;
    // Our NumToSkip entries are 16-bits. Make sure our table isn't too
    // big.
    assert(Delta < 65536U && "disassembler decoding table too large!");
    Table[FixupIdx] = (uint8_t)Delta;
    Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
  }
}

// Emit table entries to decode instructions given a segment or segments
// of bits.
void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
  TableInfo.Table.push_back(MCD::OPC_ExtractField);
  TableInfo.Table.push_back(StartBit);
  TableInfo.Table.push_back(NumBits);

  // A new filter entry begins a new scope for fixup resolution.
  TableInfo.FixupStack.push_back(FixupList());

  DecoderTable &Table = TableInfo.Table;

  size_t PrevFilter = 0;
  bool HasFallthrough = false;
  for (auto &Filter : FilterChooserMap) {
    // Field value -1 implies a non-empty set of variable instructions.
    // See also recurse().
    if (Filter.first == (unsigned)-1) {
      HasFallthrough = true;

      // Each scope should always have at least one filter value to check
      // for.
      assert(PrevFilter != 0 && "empty filter set!");
      FixupList &CurScope = TableInfo.FixupStack.back();
      // Resolve any NumToSkip fixups in the current scope.
      resolveTableFixups(Table, CurScope, Table.size());
      CurScope.clear();
      PrevFilter = 0;  // Don't re-process the filter's fallthrough.
    } else {
      Table.push_back(MCD::OPC_FilterValue);
      // Encode and emit the value to filter against.
      uint8_t Buffer[8];
      unsigned Len = encodeULEB128(Filter.first, Buffer);
      Table.insert(Table.end(), Buffer, Buffer + Len);
      // Reserve space for the NumToSkip entry. We'll backpatch the value
      // later.
      PrevFilter = Table.size();
      Table.push_back(0);
      Table.push_back(0);
    }

    // We arrive at a category of instructions with the same segment value.
    // Now delegate to the sub filter chooser for further decodings.
    // The case may fallthrough, which happens if the remaining well-known
    // encoding bits do not match exactly.
    Filter.second->emitTableEntries(TableInfo);

    // Now that we've emitted the body of the handler, update the NumToSkip
    // of the filter itself to be able to skip forward when false. Subtract
    // two as to account for the width of the NumToSkip field itself.
    if (PrevFilter) {
      uint32_t NumToSkip = Table.size() - PrevFilter - 2;
      assert(NumToSkip < 65536U && "disassembler decoding table too large!");
      Table[PrevFilter] = (uint8_t)NumToSkip;
      Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
    }
  }

  // Any remaining unresolved fixups bubble up to the parent fixup scope.
  assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
  FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
  FixupScopeList::iterator Dest = Source - 1;
  Dest->insert(Dest->end(), Source->begin(), Source->end());
  TableInfo.FixupStack.pop_back();

  // If there is no fallthrough, then the final filter should get fixed
  // up according to the enclosing scope rather than the current position.
  if (!HasFallthrough)
    TableInfo.FixupStack.back().push_back(PrevFilter);
}

// Returns the number of fanout produced by the filter.  More fanout implies
// the filter distinguishes more categories of instructions.
unsigned Filter::usefulness() const {
  if (!VariableInstructions.empty())
    return FilteredInstructions.size();
  else
    return FilteredInstructions.size() + 1;
}

//////////////////////////////////
//                              //
// Filterchooser Implementation //
//                              //
//////////////////////////////////

// Emit the decoder state machine table.
void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
                                       DecoderTable &Table,
                                       unsigned Indentation,
                                       unsigned BitWidth,
                                       StringRef Namespace) const {
  OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
    << BitWidth << "[] = {\n";

  Indentation += 2;

  // FIXME: We may be able to use the NumToSkip values to recover
  // appropriate indentation levels.
  DecoderTable::const_iterator I = Table.begin();
  DecoderTable::const_iterator E = Table.end();
  while (I != E) {
    assert (I < E && "incomplete decode table entry!");

    uint64_t Pos = I - Table.begin();
    OS << "/* " << Pos << " */";
    OS.PadToColumn(12);

    switch (*I) {
    default:
      PrintFatalError("invalid decode table opcode");
    case MCD::OPC_ExtractField: {
      ++I;
      unsigned Start = *I++;
      unsigned Len = *I++;
      OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
        << Len << ",  // Inst{";
      if (Len > 1)
        OS << (Start + Len - 1) << "-";
      OS << Start << "} ...\n";
      break;
    }
    case MCD::OPC_FilterValue: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
      // The filter value is ULEB128 encoded.
      while (*I >= 128)
        OS << utostr(*I++) << ", ";
      OS << utostr(*I++) << ", ";

      // 16-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << utostr(Byte) << ", ";
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 8;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_CheckField: {
      ++I;
      unsigned Start = *I++;
      unsigned Len = *I++;
      OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
        << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
      // ULEB128 encoded field value.
      for (; *I >= 128; ++I)
        OS << utostr(*I) << ", ";
      OS << utostr(*I++) << ", ";
      // 16-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << utostr(Byte) << ", ";
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 8;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_CheckPredicate: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
      for (; *I >= 128; ++I)
        OS << utostr(*I) << ", ";
      OS << utostr(*I++) << ", ";

      // 16-bit numtoskip value.
      uint8_t Byte = *I++;
      uint32_t NumToSkip = Byte;
      OS << utostr(Byte) << ", ";
      Byte = *I++;
      OS << utostr(Byte) << ", ";
      NumToSkip |= Byte << 8;
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
      break;
    }
    case MCD::OPC_Decode: {
      ++I;
      // Extract the ULEB128 encoded Opcode to a buffer.
      uint8_t Buffer[8], *p = Buffer;
      while ((*p++ = *I++) >= 128)
        assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
               && "ULEB128 value too large!");
      // Decode the Opcode value.
      unsigned Opc = decodeULEB128(Buffer);
      OS.indent(Indentation) << "MCD::OPC_Decode, ";
      for (p = Buffer; *p >= 128; ++p)
        OS << utostr(*p) << ", ";
      OS << utostr(*p) << ", ";

      // Decoder index.
      for (; *I >= 128; ++I)
        OS << utostr(*I) << ", ";
      OS << utostr(*I++) << ", ";

      OS << "// Opcode: "
         << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
      break;
    }
    case MCD::OPC_SoftFail: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_SoftFail";
      // Positive mask
      uint64_t Value = 0;
      unsigned Shift = 0;
      do {
        OS << ", " << utostr(*I);
        Value += (*I & 0x7f) << Shift;
        Shift += 7;
      } while (*I++ >= 128);
      if (Value > 127)
        OS << " /* 0x" << utohexstr(Value) << " */";
      // Negative mask
      Value = 0;
      Shift = 0;
      do {
        OS << ", " << utostr(*I);
        Value += (*I & 0x7f) << Shift;
        Shift += 7;
      } while (*I++ >= 128);
      if (Value > 127)
        OS << " /* 0x" << utohexstr(Value) << " */";
      OS << ",\n";
      break;
    }
    case MCD::OPC_Fail: {
      ++I;
      OS.indent(Indentation) << "MCD::OPC_Fail,\n";
      break;
    }
    }
  }
  OS.indent(Indentation) << "0\n";

  Indentation -= 2;

  OS.indent(Indentation) << "};\n\n";
}

void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
                      unsigned Indentation) const {
  // The predicate function is just a big switch statement based on the
  // input predicate index.
  OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
    << "uint64_t Bits) {\n";
  Indentation += 2;
  if (!Predicates.empty()) {
    OS.indent(Indentation) << "switch (Idx) {\n";
    OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    unsigned Index = 0;
    for (const auto &Predicate : Predicates) {
      OS.indent(Indentation) << "case " << Index++ << ":\n";
      OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
    }
    OS.indent(Indentation) << "}\n";
  } else {
    // No case statement to emit
    OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
  }
  Indentation -= 2;
  OS.indent(Indentation) << "}\n\n";
}

void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
                    unsigned Indentation) const {
  // The decoder function is just a big switch statement based on the
  // input decoder index.
  OS.indent(Indentation) << "template<typename InsnType>\n";
  OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
    << " unsigned Idx, InsnType insn, MCInst &MI,\n";
  OS.indent(Indentation) << "                                   uint64_t "
    << "Address, const void *Decoder) {\n";
  Indentation += 2;
  OS.indent(Indentation) << "InsnType tmp;\n";
  OS.indent(Indentation) << "switch (Idx) {\n";
  OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
  unsigned Index = 0;
  for (const auto &Decoder : Decoders) {
    OS.indent(Indentation) << "case " << Index++ << ":\n";
    OS << Decoder;
    OS.indent(Indentation+2) << "return S;\n";
  }
  OS.indent(Indentation) << "}\n";
  Indentation -= 2;
  OS.indent(Indentation) << "}\n\n";
}

// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
                                  unsigned StartBit, unsigned NumBits) const {
  Field = 0;

  for (unsigned i = 0; i < NumBits; ++i) {
    if (Insn[StartBit + i] == BIT_UNSET)
      return false;

    if (Insn[StartBit + i] == BIT_TRUE)
      Field = Field | (1ULL << i);
  }

  return true;
}

/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void FilterChooser::dumpFilterArray(raw_ostream &o,
                                 const std::vector<bit_value_t> &filter) const {
  for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
    switch (filter[bitIndex - 1]) {
    case BIT_UNFILTERED:
      o << ".";
      break;
    case BIT_UNSET:
      o << "_";
      break;
    case BIT_TRUE:
      o << "1";
      break;
    case BIT_FALSE:
      o << "0";
      break;
    }
  }
}

/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
  const FilterChooser *current = this;

  while (current) {
    o << prefix;
    dumpFilterArray(o, current->FilterBitValues);
    o << '\n';
    current = current->Parent;
  }
}

// Called from Filter::recurse() when singleton exists.  For debug purpose.
void FilterChooser::SingletonExists(unsigned Opc) const {
  insn_t Insn0;
  insnWithID(Insn0, Opc);

  errs() << "Singleton exists: " << nameWithID(Opc)
         << " with its decoding dominating ";
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
    if (Opcodes[i] == Opc) continue;
    errs() << nameWithID(Opcodes[i]) << ' ';
  }
  errs() << '\n';

  dumpStack(errs(), "\t\t");
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
    const std::string &Name = nameWithID(Opcodes[i]);

    errs() << '\t' << Name << " ";
    dumpBits(errs(),
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
    errs() << '\n';
  }
}

// Calculates the island(s) needed to decode the instruction.
// This returns a list of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
                                   std::vector<unsigned> &EndBits,
                                   std::vector<uint64_t> &FieldVals,
                                   const insn_t &Insn) const {
  unsigned Num, BitNo;
  Num = BitNo = 0;

  uint64_t FieldVal = 0;

  // 0: Init
  // 1: Water (the bit value does not affect decoding)
  // 2: Island (well-known bit value needed for decoding)
  int State = 0;
  int Val = -1;

  for (unsigned i = 0; i < BitWidth; ++i) {
    Val = Value(Insn[i]);
    bool Filtered = PositionFiltered(i);
    switch (State) {
    default: llvm_unreachable("Unreachable code!");
    case 0:
    case 1:
      if (Filtered || Val == -1)
        State = 1; // Still in Water
      else {
        State = 2; // Into the Island
        BitNo = 0;
        StartBits.push_back(i);
        FieldVal = Val;
      }
      break;
    case 2:
      if (Filtered || Val == -1) {
        State = 1; // Into the Water
        EndBits.push_back(i - 1);
        FieldVals.push_back(FieldVal);
        ++Num;
      } else {
        State = 2; // Still in Island
        ++BitNo;
        FieldVal = FieldVal | Val << BitNo;
      }
      break;
    }
  }
  // If we are still in Island after the loop, do some housekeeping.
  if (State == 2) {
    EndBits.push_back(BitWidth - 1);
    FieldVals.push_back(FieldVal);
    ++Num;
  }

  assert(StartBits.size() == Num && EndBits.size() == Num &&
         FieldVals.size() == Num);
  return Num;
}

void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
                                     const OperandInfo &OpInfo) const {
  const std::string &Decoder = OpInfo.Decoder;

  if (OpInfo.numFields() != 1)
    o.indent(Indentation) << "tmp = 0;\n";

  for (const EncodingField &EF : OpInfo) {
    o.indent(Indentation) << "tmp ";
    if (OpInfo.numFields() != 1) o << '|';
    o << "= fieldFromInstruction"
      << "(insn, " << EF.Base << ", " << EF.Width << ')';
    if (OpInfo.numFields() != 1 || EF.Offset != 0)
      o << " << " << EF.Offset;
    o << ";\n";
  }

  if (Decoder != "")
    o.indent(Indentation) << Emitter->GuardPrefix << Decoder
                          << "(MI, tmp, Address, Decoder)"
                          << Emitter->GuardPostfix << "\n";
  else
    o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";

}

void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
                                unsigned Opc) const {
  for (const auto &Op : Operands.find(Opc)->second) {
    // If a custom instruction decoder was specified, use that.
    if (Op.numFields() == 0 && Op.Decoder.size()) {
      OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
        << "(MI, insn, Address, Decoder)"
        << Emitter->GuardPostfix << "\n";
      break;
    }

    emitBinaryParser(OS, Indentation, Op);
  }
}

unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
                                        unsigned Opc) const {
  // Build up the predicate string.
  SmallString<256> Decoder;
  // FIXME: emitDecoder() function can take a buffer directly rather than
  // a stream.
  raw_svector_ostream S(Decoder);
  unsigned I = 4;
  emitDecoder(S, I, Opc);
  S.flush();

  // Using the full decoder string as the key value here is a bit
  // heavyweight, but is effective. If the string comparisons become a
  // performance concern, we can implement a mangling of the predicate
  // data easilly enough with a map back to the actual string. That's
  // overkill for now, though.

  // Make sure the predicate is in the table.
  Decoders.insert(Decoder.str());
  // Now figure out the index for when we write out the table.
  DecoderSet::const_iterator P = std::find(Decoders.begin(),
                                           Decoders.end(),
                                           Decoder.str());
  return (unsigned)(P - Decoders.begin());
}

static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
                                     const std::string &PredicateNamespace) {
  if (str[0] == '!')
    o << "!(Bits & " << PredicateNamespace << "::"
      << str.slice(1,str.size()) << ")";
  else
    o << "(Bits & " << PredicateNamespace << "::" << str << ")";
}

bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
                                       unsigned Opc) const {
  ListInit *Predicates =
    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
    Record *Pred = Predicates->getElementAsRecord(i);
    if (!Pred->getValue("AssemblerMatcherPredicate"))
      continue;

    std::string P = Pred->getValueAsString("AssemblerCondString");

    if (!P.length())
      continue;

    if (i != 0)
      o << " && ";

    StringRef SR(P);
    std::pair<StringRef, StringRef> pairs = SR.split(',');
    while (pairs.second.size()) {
      emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
      o << " && ";
      pairs = pairs.second.split(',');
    }
    emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
  }
  return Predicates->getSize() > 0;
}

bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
  ListInit *Predicates =
    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
    Record *Pred = Predicates->getElementAsRecord(i);
    if (!Pred->getValue("AssemblerMatcherPredicate"))
      continue;

    std::string P = Pred->getValueAsString("AssemblerCondString");

    if (!P.length())
      continue;

    return true;
  }
  return false;
}

unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
                                          StringRef Predicate) const {
  // Using the full predicate string as the key value here is a bit
  // heavyweight, but is effective. If the string comparisons become a
  // performance concern, we can implement a mangling of the predicate
  // data easilly enough with a map back to the actual string. That's
  // overkill for now, though.

  // Make sure the predicate is in the table.
  TableInfo.Predicates.insert(Predicate.str());
  // Now figure out the index for when we write out the table.
  PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
                                             TableInfo.Predicates.end(),
                                             Predicate.str());
  return (unsigned)(P - TableInfo.Predicates.begin());
}

void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
                                            unsigned Opc) const {
  if (!doesOpcodeNeedPredicate(Opc))
    return;

  // Build up the predicate string.
  SmallString<256> Predicate;
  // FIXME: emitPredicateMatch() functions can take a buffer directly rather
  // than a stream.
  raw_svector_ostream PS(Predicate);
  unsigned I = 0;
  emitPredicateMatch(PS, I, Opc);

  // Figure out the index into the predicate table for the predicate just
  // computed.
  unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
  SmallString<16> PBytes;
  raw_svector_ostream S(PBytes);
  encodeULEB128(PIdx, S);
  S.flush();

  TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
  // Predicate index
  for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
    TableInfo.Table.push_back(PBytes[i]);
  // Push location for NumToSkip backpatching.
  TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
  TableInfo.Table.push_back(0);
  TableInfo.Table.push_back(0);
}

void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
                                           unsigned Opc) const {
  BitsInit *SFBits =
    AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
  if (!SFBits) return;
  BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");

  APInt PositiveMask(BitWidth, 0ULL);
  APInt NegativeMask(BitWidth, 0ULL);
  for (unsigned i = 0; i < BitWidth; ++i) {
    bit_value_t B = bitFromBits(*SFBits, i);
    bit_value_t IB = bitFromBits(*InstBits, i);

    if (B != BIT_TRUE) continue;

    switch (IB) {
    case BIT_FALSE:
      // The bit is meant to be false, so emit a check to see if it is true.
      PositiveMask.setBit(i);
      break;
    case BIT_TRUE:
      // The bit is meant to be true, so emit a check to see if it is false.
      NegativeMask.setBit(i);
      break;
    default:
      // The bit is not set; this must be an error!
      StringRef Name = AllInstructions[Opc]->TheDef->getName();
      errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
             << " is set but Inst{" << i << "} is unset!\n"
             << "  - You can only mark a bit as SoftFail if it is fully defined"
             << " (1/0 - not '?') in Inst\n";
      return;
    }
  }

  bool NeedPositiveMask = PositiveMask.getBoolValue();
  bool NeedNegativeMask = NegativeMask.getBoolValue();

  if (!NeedPositiveMask && !NeedNegativeMask)
    return;

  TableInfo.Table.push_back(MCD::OPC_SoftFail);

  SmallString<16> MaskBytes;
  raw_svector_ostream S(MaskBytes);
  if (NeedPositiveMask) {
    encodeULEB128(PositiveMask.getZExtValue(), S);
    S.flush();
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
      TableInfo.Table.push_back(MaskBytes[i]);
  } else
    TableInfo.Table.push_back(0);
  if (NeedNegativeMask) {
    MaskBytes.clear();
    S.resync();
    encodeULEB128(NegativeMask.getZExtValue(), S);
    S.flush();
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
      TableInfo.Table.push_back(MaskBytes[i]);
  } else
    TableInfo.Table.push_back(0);
}

// Emits table entries to decode the singleton.
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                                            unsigned Opc) const {
  std::vector<unsigned> StartBits;
  std::vector<unsigned> EndBits;
  std::vector<uint64_t> FieldVals;
  insn_t Insn;
  insnWithID(Insn, Opc);

  // Look for islands of undecoded bits of the singleton.
  getIslands(StartBits, EndBits, FieldVals, Insn);

  unsigned Size = StartBits.size();

  // Emit the predicate table entry if one is needed.
  emitPredicateTableEntry(TableInfo, Opc);

  // Check any additional encoding fields needed.
  for (unsigned I = Size; I != 0; --I) {
    unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
    TableInfo.Table.push_back(MCD::OPC_CheckField);
    TableInfo.Table.push_back(StartBits[I-1]);
    TableInfo.Table.push_back(NumBits);
    uint8_t Buffer[8], *p;
    encodeULEB128(FieldVals[I-1], Buffer);
    for (p = Buffer; *p >= 128 ; ++p)
      TableInfo.Table.push_back(*p);
    TableInfo.Table.push_back(*p);
    // Push location for NumToSkip backpatching.
    TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
    // The fixup is always 16-bits, so go ahead and allocate the space
    // in the table so all our relative position calculations work OK even
    // before we fully resolve the real value here.
    TableInfo.Table.push_back(0);
    TableInfo.Table.push_back(0);
  }

  // Check for soft failure of the match.
  emitSoftFailTableEntry(TableInfo, Opc);

  TableInfo.Table.push_back(MCD::OPC_Decode);
  uint8_t Buffer[8], *p;
  encodeULEB128(Opc, Buffer);
  for (p = Buffer; *p >= 128 ; ++p)
    TableInfo.Table.push_back(*p);
  TableInfo.Table.push_back(*p);

  unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
  SmallString<16> Bytes;
  raw_svector_ostream S(Bytes);
  encodeULEB128(DIdx, S);
  S.flush();

  // Decoder index
  for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
    TableInfo.Table.push_back(Bytes[i]);
}

// Emits table entries to decode the singleton, and then to decode the rest.
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
                                            const Filter &Best) const {
  unsigned Opc = Best.getSingletonOpc();

  // complex singletons need predicate checks from the first singleton
  // to refer forward to the variable filterchooser that follows.
  TableInfo.FixupStack.push_back(FixupList());

  emitSingletonTableEntry(TableInfo, Opc);

  resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
                     TableInfo.Table.size());
  TableInfo.FixupStack.pop_back();

  Best.getVariableFC().emitTableEntries(TableInfo);
}


// Assign a single filter and run with it.  Top level API client can initialize
// with a single filter to start the filtering process.
void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
                                    bool mixed) {
  Filters.clear();
  Filters.push_back(Filter(*this, startBit, numBit, true));
  BestIndex = 0; // Sole Filter instance to choose from.
  bestFilter().recurse();
}

// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
                                 unsigned BitIndex, bool AllowMixed) {
  if (RA == ATTR_MIXED && AllowMixed)
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
  else if (RA == ATTR_ALL_SET && !AllowMixed)
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
}

// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters.  It chooses the best filter and
// recursively descends down the decoding tree.
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
  Filters.clear();
  BestIndex = -1;
  unsigned numInstructions = Opcodes.size();

  assert(numInstructions && "Filter created with no instructions");

  // No further filtering is necessary.
  if (numInstructions == 1)
    return true;

  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
  // instructions is 3.
  if (AllowMixed && !Greedy) {
    assert(numInstructions == 3);

    for (unsigned i = 0; i < Opcodes.size(); ++i) {
      std::vector<unsigned> StartBits;
      std::vector<unsigned> EndBits;
      std::vector<uint64_t> FieldVals;
      insn_t Insn;

      insnWithID(Insn, Opcodes[i]);

      // Look for islands of undecoded bits of any instruction.
      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
        // Found an instruction with island(s).  Now just assign a filter.
        runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
        return true;
      }
    }
  }

  unsigned BitIndex;

  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
  // The automaton consumes the corresponding bit from each
  // instruction.
  //
  //   Input symbols: 0, 1, and _ (unset).
  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
  //   Initial state: NONE.
  //
  // (NONE) ------- [01] -> (ALL_SET)
  // (NONE) ------- _ ----> (ALL_UNSET)
  // (ALL_SET) ---- [01] -> (ALL_SET)
  // (ALL_SET) ---- _ ----> (MIXED)
  // (ALL_UNSET) -- [01] -> (MIXED)
  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
  // (MIXED) ------ . ----> (MIXED)
  // (FILTERED)---- . ----> (FILTERED)

  std::vector<bitAttr_t> bitAttrs;

  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
    if (FilterBitValues[BitIndex] == BIT_TRUE ||
        FilterBitValues[BitIndex] == BIT_FALSE)
      bitAttrs.push_back(ATTR_FILTERED);
    else
      bitAttrs.push_back(ATTR_NONE);

  for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
    insn_t insn;

    insnWithID(insn, Opcodes[InsnIndex]);

    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
      switch (bitAttrs[BitIndex]) {
      case ATTR_NONE:
        if (insn[BitIndex] == BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
        else
          bitAttrs[BitIndex] = ATTR_ALL_SET;
        break;
      case ATTR_ALL_SET:
        if (insn[BitIndex] == BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_MIXED;
        break;
      case ATTR_ALL_UNSET:
        if (insn[BitIndex] != BIT_UNSET)
          bitAttrs[BitIndex] = ATTR_MIXED;
        break;
      case ATTR_MIXED:
      case ATTR_FILTERED:
        break;
      }
    }
  }

  // The regionAttr automaton consumes the bitAttrs automatons' state,
  // lowest-to-highest.
  //
  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
  //   States:        NONE, ALL_SET, MIXED
  //   Initial state: NONE
  //
  // (NONE) ----- F --> (NONE)
  // (NONE) ----- S --> (ALL_SET)     ; and set region start
  // (NONE) ----- U --> (NONE)
  // (NONE) ----- M --> (MIXED)       ; and set region start
  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
  // (ALL_SET) -- S --> (ALL_SET)
  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
  // (MIXED) ---- M --> (MIXED)

  bitAttr_t RA = ATTR_NONE;
  unsigned StartBit = 0;

  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
    bitAttr_t bitAttr = bitAttrs[BitIndex];

    assert(bitAttr != ATTR_NONE && "Bit without attributes");

    switch (RA) {
    case ATTR_NONE:
      switch (bitAttr) {
      case ATTR_FILTERED:
        break;
      case ATTR_ALL_SET:
        StartBit = BitIndex;
        RA = ATTR_ALL_SET;
        break;
      case ATTR_ALL_UNSET:
        break;
      case ATTR_MIXED:
        StartBit = BitIndex;
        RA = ATTR_MIXED;
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_ALL_SET:
      switch (bitAttr) {
      case ATTR_FILTERED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_ALL_SET:
        break;
      case ATTR_ALL_UNSET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_MIXED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_MIXED;
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_MIXED:
      switch (bitAttr) {
      case ATTR_FILTERED:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_NONE;
        break;
      case ATTR_ALL_SET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        StartBit = BitIndex;
        RA = ATTR_ALL_SET;
        break;
      case ATTR_ALL_UNSET:
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
        RA = ATTR_NONE;
        break;
      case ATTR_MIXED:
        break;
      default:
        llvm_unreachable("Unexpected bitAttr!");
      }
      break;
    case ATTR_ALL_UNSET:
      llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
    case ATTR_FILTERED:
      llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
    }
  }

  // At the end, if we're still in ALL_SET or MIXED states, report a region
  switch (RA) {
  case ATTR_NONE:
    break;
  case ATTR_FILTERED:
    break;
  case ATTR_ALL_SET:
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
    break;
  case ATTR_ALL_UNSET:
    break;
  case ATTR_MIXED:
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
    break;
  }

  // We have finished with the filter processings.  Now it's time to choose
  // the best performing filter.
  BestIndex = 0;
  bool AllUseless = true;
  unsigned BestScore = 0;

  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
    unsigned Usefulness = Filters[i].usefulness();

    if (Usefulness)
      AllUseless = false;

    if (Usefulness > BestScore) {
      BestIndex = i;
      BestScore = Usefulness;
    }
  }

  if (!AllUseless)
    bestFilter().recurse();

  return !AllUseless;
} // end of FilterChooser::filterProcessor(bool)

// Decides on the best configuration of filter(s) to use in order to decode
// the instructions.  A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void FilterChooser::doFilter() {
  unsigned Num = Opcodes.size();
  assert(Num && "FilterChooser created with no instructions");

  // Try regions of consecutive known bit values first.
  if (filterProcessor(false))
    return;

  // Then regions of mixed bits (both known and unitialized bit values allowed).
  if (filterProcessor(true))
    return;

  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
  // well-known encoding pattern.  In such case, we backtrack and scan for the
  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
  if (Num == 3 && filterProcessor(true, false))
    return;

  // If we come to here, the instruction decoding has failed.
  // Set the BestIndex to -1 to indicate so.
  BestIndex = -1;
}

// emitTableEntries - Emit state machine entries to decode our share of
// instructions.
void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
  if (Opcodes.size() == 1) {
    // There is only one instruction in the set, which is great!
    // Call emitSingletonDecoder() to see whether there are any remaining
    // encodings bits.
    emitSingletonTableEntry(TableInfo, Opcodes[0]);
    return;
  }

  // Choose the best filter to do the decodings!
  if (BestIndex != -1) {
    const Filter &Best = Filters[BestIndex];
    if (Best.getNumFiltered() == 1)
      emitSingletonTableEntry(TableInfo, Best);
    else
      Best.emitTableEntry(TableInfo);
    return;
  }

  // We don't know how to decode these instructions!  Dump the
  // conflict set and bail.

  // Print out useful conflict information for postmortem analysis.
  errs() << "Decoding Conflict:\n";

  dumpStack(errs(), "\t\t");

  for (unsigned i = 0; i < Opcodes.size(); ++i) {
    const std::string &Name = nameWithID(Opcodes[i]);

    errs() << '\t' << Name << " ";
    dumpBits(errs(),
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
    errs() << '\n';
  }
}

static bool populateInstruction(CodeGenTarget &Target,
                       const CodeGenInstruction &CGI, unsigned Opc,
                       std::map<unsigned, std::vector<OperandInfo> > &Operands){
  const Record &Def = *CGI.TheDef;
  // If all the bit positions are not specified; do not decode this instruction.
  // We are bound to fail!  For proper disassembly, the well-known encoding bits
  // of the instruction must be fully specified.

  BitsInit &Bits = getBitsField(Def, "Inst");
  if (Bits.allInComplete()) return false;

  std::vector<OperandInfo> InsnOperands;

  // If the instruction has specified a custom decoding hook, use that instead
  // of trying to auto-generate the decoder.
  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
  if (InstDecoder != "") {
    InsnOperands.push_back(OperandInfo(InstDecoder));
    Operands[Opc] = InsnOperands;
    return true;
  }

  // Generate a description of the operand of the instruction that we know
  // how to decode automatically.
  // FIXME: We'll need to have a way to manually override this as needed.

  // Gather the outputs/inputs of the instruction, so we can find their
  // positions in the encoding.  This assumes for now that they appear in the
  // MCInst in the order that they're listed.
  std::vector<std::pair<Init*, std::string> > InOutOperands;
  DagInit *Out  = Def.getValueAsDag("OutOperandList");
  DagInit *In  = Def.getValueAsDag("InOperandList");
  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
  for (unsigned i = 0; i < In->getNumArgs(); ++i)
    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));

  // Search for tied operands, so that we can correctly instantiate
  // operands that are not explicitly represented in the encoding.
  std::map<std::string, std::string> TiedNames;
  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
    int tiedTo = CGI.Operands[i].getTiedRegister();
    if (tiedTo != -1) {
      std::pair<unsigned, unsigned> SO =
        CGI.Operands.getSubOperandNumber(tiedTo);
      TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
      TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
    }
  }

  std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
  std::set<std::string> NumberedInsnOperandsNoTie;
  if (Target.getInstructionSet()->
        getValueAsBit("decodePositionallyEncodedOperands")) {
    const std::vector<RecordVal> &Vals = Def.getValues();
    unsigned NumberedOp = 0;

    std::set<unsigned> NamedOpIndices;
    if (Target.getInstructionSet()->
         getValueAsBit("noNamedPositionallyEncodedOperands"))
      // Collect the set of operand indices that might correspond to named
      // operand, and skip these when assigning operands based on position.
      for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
        unsigned OpIdx;
        if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
          continue;

        NamedOpIndices.insert(OpIdx);
      }

    for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
      // Ignore fixed fields in the record, we're looking for values like:
      //    bits<5> RST = { ?, ?, ?, ?, ? };
      if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
        continue;

      // Determine if Vals[i] actually contributes to the Inst encoding.
      unsigned bi = 0;
      for (; bi < Bits.getNumBits(); ++bi) {
        VarInit *Var = nullptr;
        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
        if (BI)
          Var = dyn_cast<VarInit>(BI->getBitVar());
        else
          Var = dyn_cast<VarInit>(Bits.getBit(bi));

        if (Var && Var->getName() == Vals[i].getName())
          break;
      }

      if (bi == Bits.getNumBits())
        continue;

      // Skip variables that correspond to explicitly-named operands.
      unsigned OpIdx;
      if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
        continue;

      // Get the bit range for this operand:
      unsigned bitStart = bi++, bitWidth = 1;
      for (; bi < Bits.getNumBits(); ++bi) {
        VarInit *Var = nullptr;
        VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
        if (BI)
          Var = dyn_cast<VarInit>(BI->getBitVar());
        else
          Var = dyn_cast<VarInit>(Bits.getBit(bi));

        if (!Var)
          break;

        if (Var->getName() != Vals[i].getName())
          break;

        ++bitWidth;
      }

      unsigned NumberOps = CGI.Operands.size();
      while (NumberedOp < NumberOps &&
             (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
              (!NamedOpIndices.empty() && NamedOpIndices.count(
                CGI.Operands.getSubOperandNumber(NumberedOp).first))))
        ++NumberedOp;

      OpIdx = NumberedOp++;

      // OpIdx now holds the ordered operand number of Vals[i].
      std::pair<unsigned, unsigned> SO =
        CGI.Operands.getSubOperandNumber(OpIdx);
      const std::string &Name = CGI.Operands[SO.first].Name;

      DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
                      Name << "(" << SO.first << ", " << SO.second << ") => " <<
                      Vals[i].getName() << "\n");

      std::string Decoder = "";
      Record *TypeRecord = CGI.Operands[SO.first].Rec;

      RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
      StringInit *String = DecoderString ?
        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
      if (String && String->getValue() != "")
        Decoder = String->getValue();

      if (Decoder == "" &&
          CGI.Operands[SO.first].MIOperandInfo &&
          CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
        Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
                      getArg(SO.second);
        if (TypedInit *TI = cast<TypedInit>(Arg)) {
          RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
          TypeRecord = Type->getRecord();
        }
      }

      bool isReg = false;
      if (TypeRecord->isSubClassOf("RegisterOperand"))
        TypeRecord = TypeRecord->getValueAsDef("RegClass");
      if (TypeRecord->isSubClassOf("RegisterClass")) {
        Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
        isReg = true;
      } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
        Decoder = "DecodePointerLikeRegClass" +
                  utostr(TypeRecord->getValueAsInt("RegClassKind"));
        isReg = true;
      }

      DecoderString = TypeRecord->getValue("DecoderMethod");
      String = DecoderString ?
        dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
      if (!isReg && String && String->getValue() != "")
        Decoder = String->getValue();

      OperandInfo OpInfo(Decoder);
      OpInfo.addField(bitStart, bitWidth, 0);

      NumberedInsnOperands[Name].push_back(OpInfo);

      // FIXME: For complex operands with custom decoders we can't handle tied
      // sub-operands automatically. Skip those here and assume that this is
      // fixed up elsewhere.
      if (CGI.Operands[SO.first].MIOperandInfo &&
          CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
          String && String->getValue() != "")
        NumberedInsnOperandsNoTie.insert(Name);
    }
  }

  // For each operand, see if we can figure out where it is encoded.
  for (const auto &Op : InOutOperands) {
    if (!NumberedInsnOperands[Op.second].empty()) {
      InsnOperands.insert(InsnOperands.end(),
                          NumberedInsnOperands[Op.second].begin(),
                          NumberedInsnOperands[Op.second].end());
      continue;
    }
    if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
      if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
        // Figure out to which (sub)operand we're tied.
        unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
        int tiedTo = CGI.Operands[i].getTiedRegister();
        if (tiedTo == -1) {
          i = CGI.Operands.getOperandNamed(Op.second);
          tiedTo = CGI.Operands[i].getTiedRegister();
        }

        if (tiedTo != -1) {
          std::pair<unsigned, unsigned> SO =
            CGI.Operands.getSubOperandNumber(tiedTo);

          InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
                                   [SO.second]);
        }
      }
      continue;
    }

    std::string Decoder = "";

    // At this point, we can locate the field, but we need to know how to
    // interpret it.  As a first step, require the target to provide callbacks
    // for decoding register classes.
    // FIXME: This need to be extended to handle instructions with custom
    // decoder methods, and operands with (simple) MIOperandInfo's.
    TypedInit *TI = cast<TypedInit>(Op.first);
    RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
    Record *TypeRecord = Type->getRecord();
    bool isReg = false;
    if (TypeRecord->isSubClassOf("RegisterOperand"))
      TypeRecord = TypeRecord->getValueAsDef("RegClass");
    if (TypeRecord->isSubClassOf("RegisterClass")) {
      Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
      isReg = true;
    } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
      Decoder = "DecodePointerLikeRegClass" +
                utostr(TypeRecord->getValueAsInt("RegClassKind"));
      isReg = true;
    }

    RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
    StringInit *String = DecoderString ?
      dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
    if (!isReg && String && String->getValue() != "")
      Decoder = String->getValue();

    OperandInfo OpInfo(Decoder);
    unsigned Base = ~0U;
    unsigned Width = 0;
    unsigned Offset = 0;

    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
      VarInit *Var = nullptr;
      VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
      if (BI)
        Var = dyn_cast<VarInit>(BI->getBitVar());
      else
        Var = dyn_cast<VarInit>(Bits.getBit(bi));

      if (!Var) {
        if (Base != ~0U) {
          OpInfo.addField(Base, Width, Offset);
          Base = ~0U;
          Width = 0;
          Offset = 0;
        }
        continue;
      }

      if (Var->getName() != Op.second &&
          Var->getName() != TiedNames[Op.second]) {
        if (Base != ~0U) {
          OpInfo.addField(Base, Width, Offset);
          Base = ~0U;
          Width = 0;
          Offset = 0;
        }
        continue;
      }

      if (Base == ~0U) {
        Base = bi;
        Width = 1;
        Offset = BI ? BI->getBitNum() : 0;
      } else if (BI && BI->getBitNum() != Offset + Width) {
        OpInfo.addField(Base, Width, Offset);
        Base = bi;
        Width = 1;
        Offset = BI->getBitNum();
      } else {
        ++Width;
      }
    }

    if (Base != ~0U)
      OpInfo.addField(Base, Width, Offset);

    if (OpInfo.numFields() > 0)
      InsnOperands.push_back(OpInfo);
  }

  Operands[Opc] = InsnOperands;


#if 0
  DEBUG({
      // Dumps the instruction encoding bits.
      dumpBits(errs(), Bits);

      errs() << '\n';

      // Dumps the list of operand info.
      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
        const std::string &OperandName = Info.Name;
        const Record &OperandDef = *Info.Rec;

        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
      }
    });
#endif

  return true;
}

// emitFieldFromInstruction - Emit the templated helper function
// fieldFromInstruction().
static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
  OS << "// Helper function for extracting fields from encoded instructions.\n"
     << "template<typename InsnType>\n"
   << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
     << "                                     unsigned numBits) {\n"
     << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
     << "           \"Instruction field out of bounds!\");\n"
     << "    InsnType fieldMask;\n"
     << "    if (numBits == sizeof(InsnType)*8)\n"
     << "      fieldMask = (InsnType)(-1LL);\n"
     << "    else\n"
     << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
     << "    return (insn & fieldMask) >> startBit;\n"
     << "}\n\n";
}

// emitDecodeInstruction - Emit the templated helper function
// decodeInstruction().
static void emitDecodeInstruction(formatted_raw_ostream &OS) {
  OS << "template<typename InsnType>\n"
     << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
     << "                                      InsnType insn, uint64_t Address,\n"
     << "                                      const void *DisAsm,\n"
     << "                                      const MCSubtargetInfo &STI) {\n"
     << "  uint64_t Bits = STI.getFeatureBits();\n"
     << "\n"
     << "  const uint8_t *Ptr = DecodeTable;\n"
     << "  uint32_t CurFieldValue = 0;\n"
     << "  DecodeStatus S = MCDisassembler::Success;\n"
     << "  for (;;) {\n"
     << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
     << "    switch (*Ptr) {\n"
     << "    default:\n"
     << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
     << "      return MCDisassembler::Fail;\n"
     << "    case MCD::OPC_ExtractField: {\n"
     << "      unsigned Start = *++Ptr;\n"
     << "      unsigned Len = *++Ptr;\n"
     << "      ++Ptr;\n"
     << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
     << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_FilterValue: {\n"
     << "      // Decode the field value.\n"
     << "      unsigned Len;\n"
     << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 16-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "\n"
     << "      // Perform the filter operation.\n"
     << "      if (Val != CurFieldValue)\n"
     << "        Ptr += NumToSkip;\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
     << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
     << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
     << "\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_CheckField: {\n"
     << "      unsigned Start = *++Ptr;\n"
     << "      unsigned Len = *++Ptr;\n"
     << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
     << "      // Decode the field value.\n"
     << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 16-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "\n"
     << "      // If the actual and expected values don't match, skip.\n"
     << "      if (ExpectedValue != FieldValue)\n"
     << "        Ptr += NumToSkip;\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
     << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
     << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
     << "                   << ExpectedValue << \": \"\n"
     << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_CheckPredicate: {\n"
     << "      unsigned Len;\n"
     << "      // Decode the Predicate Index value.\n"
     << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      // NumToSkip is a plain 16-bit integer.\n"
     << "      unsigned NumToSkip = *Ptr++;\n"
     << "      NumToSkip |= (*Ptr++) << 8;\n"
     << "      // Check the predicate.\n"
     << "      bool Pred;\n"
     << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
     << "        Ptr += NumToSkip;\n"
     << "      (void)Pred;\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
     << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
     << "\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_Decode: {\n"
     << "      unsigned Len;\n"
     << "      // Decode the Opcode value.\n"
     << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
     << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
     << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
     << "\n"
     << "      MI.setOpcode(Opc);\n"
     << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
     << "    }\n"
     << "    case MCD::OPC_SoftFail: {\n"
     << "      // Decode the mask values.\n"
     << "      unsigned Len;\n"
     << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
     << "      Ptr += Len;\n"
     << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
     << "      if (Fail)\n"
     << "        S = MCDisassembler::SoftFail;\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
     << "      break;\n"
     << "    }\n"
     << "    case MCD::OPC_Fail: {\n"
     << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
     << "      return MCDisassembler::Fail;\n"
     << "    }\n"
     << "    }\n"
     << "  }\n"
     << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
     << "}\n\n";
}

// Emits disassembler code for instruction decoding.
void FixedLenDecoderEmitter::run(raw_ostream &o) {
  formatted_raw_ostream OS(o);
  OS << "#include \"llvm/MC/MCInst.h\"\n";
  OS << "#include \"llvm/Support/Debug.h\"\n";
  OS << "#include \"llvm/Support/DataTypes.h\"\n";
  OS << "#include \"llvm/Support/LEB128.h\"\n";
  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
  OS << "#include <assert.h>\n";
  OS << '\n';
  OS << "namespace llvm {\n\n";

  emitFieldFromInstruction(OS);

  Target.reverseBitsForLittleEndianEncoding();

  // Parameterize the decoders based on namespace and instruction width.
  NumberedInstructions = &Target.getInstructionsByEnumValue();
  std::map<std::pair<std::string, unsigned>,
           std::vector<unsigned> > OpcMap;
  std::map<unsigned, std::vector<OperandInfo> > Operands;

  for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
    const CodeGenInstruction *Inst = NumberedInstructions->at(i);
    const Record *Def = Inst->TheDef;
    unsigned Size = Def->getValueAsInt("Size");
    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
        Def->getValueAsBit("isPseudo") ||
        Def->getValueAsBit("isAsmParserOnly") ||
        Def->getValueAsBit("isCodeGenOnly"))
      continue;

    std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");

    if (Size) {
      if (populateInstruction(Target, *Inst, i, Operands)) {
        OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
      }
    }
  }

  DecoderTableInfo TableInfo;
  for (const auto &Opc : OpcMap) {
    // Emit the decoder for this namespace+width combination.
    FilterChooser FC(*NumberedInstructions, Opc.second, Operands,
                     8*Opc.first.second, this);

    // The decode table is cleared for each top level decoder function. The
    // predicates and decoders themselves, however, are shared across all
    // decoders to give more opportunities for uniqueing.
    TableInfo.Table.clear();
    TableInfo.FixupStack.clear();
    TableInfo.Table.reserve(16384);
    TableInfo.FixupStack.push_back(FixupList());
    FC.emitTableEntries(TableInfo);
    // Any NumToSkip fixups in the top level scope can resolve to the
    // OPC_Fail at the end of the table.
    assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
    // Resolve any NumToSkip fixups in the current scope.
    resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
                       TableInfo.Table.size());
    TableInfo.FixupStack.clear();

    TableInfo.Table.push_back(MCD::OPC_Fail);

    // Print the table to the output stream.
    emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
    OS.flush();
  }

  // Emit the predicate function.
  emitPredicateFunction(OS, TableInfo.Predicates, 0);

  // Emit the decoder function.
  emitDecoderFunction(OS, TableInfo.Decoders, 0);

  // Emit the main entry point for the decoder, decodeInstruction().
  emitDecodeInstruction(OS);

  OS << "\n} // End llvm namespace\n";
}

namespace llvm {

void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
                         std::string PredicateNamespace,
                         std::string GPrefix,
                         std::string GPostfix,
                         std::string ROK,
                         std::string RFail,
                         std::string L) {
  FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
                         ROK, RFail, L).run(OS);
}

} // End llvm namespace