summaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/ScalarReplAggregates.cpp
blob: 33ecb5bf9bdf7d2ad73726edf0d9cf3bbd65ac52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation.  This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible).  Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs.  As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumReplaced,  "Number of allocas broken up");
STATISTIC(NumPromoted,  "Number of allocas promoted");
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals,   "Number of allocas copied from constant global");

namespace {
  struct SROA : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    explicit SROA(signed T = -1) : FunctionPass(ID) {
      if (T == -1)
        SRThreshold = 128;
      else
        SRThreshold = T;
    }

    bool runOnFunction(Function &F);

    bool performScalarRepl(Function &F);
    bool performPromotion(Function &F);

    // getAnalysisUsage - This pass does not require any passes, but we know it
    // will not alter the CFG, so say so.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
      AU.setPreservesCFG();
    }

  private:
    TargetData *TD;
    
    /// DeadInsts - Keep track of instructions we have made dead, so that
    /// we can remove them after we are done working.
    SmallVector<Value*, 32> DeadInsts;

    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
    /// information about the uses.  All these fields are initialized to false
    /// and set to true when something is learned.
    struct AllocaInfo {
      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
      bool isUnsafe : 1;
      
      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
      bool isMemCpySrc : 1;

      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
      bool isMemCpyDst : 1;

      AllocaInfo()
        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
    };
    
    unsigned SRThreshold;

    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }

    bool isSafeAllocaToScalarRepl(AllocaInst *AI);

    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
                             AllocaInfo &Info);
    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
                   AllocaInfo &Info);
    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
                                  const Type *&IdxTy);
    
    void DoScalarReplacement(AllocaInst *AI, 
                             std::vector<AllocaInst*> &WorkList);
    void DeleteDeadInstructions();
   
    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
                              SmallVector<AllocaInst*, 32> &NewElts);
    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
                        SmallVector<AllocaInst*, 32> &NewElts);
    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
                    SmallVector<AllocaInst*, 32> &NewElts);
    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
                                      AllocaInst *AI,
                                      SmallVector<AllocaInst*, 32> &NewElts);
    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
                                       SmallVector<AllocaInst*, 32> &NewElts);
    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
                                      SmallVector<AllocaInst*, 32> &NewElts);
    
    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
  };
}

char SROA::ID = 0;
INITIALIZE_PASS(SROA, "scalarrepl",
                "Scalar Replacement of Aggregates", false, false);

// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { 
  return new SROA(Threshold);
}


//===----------------------------------------------------------------------===//
// Convert To Scalar Optimization.
//===----------------------------------------------------------------------===//

namespace {
/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
/// optimization, which scans the uses of an alloca and determines if it can
/// rewrite it in terms of a single new alloca that can be mem2reg'd.
class ConvertToScalarInfo {
  /// AllocaSize - The size of the alloca being considered.
  unsigned AllocaSize;
  const TargetData &TD;
 
  /// IsNotTrivial - This is set to true if there is some access to the object
  /// which means that mem2reg can't promote it.
  bool IsNotTrivial;
  
  /// VectorTy - This tracks the type that we should promote the vector to if
  /// it is possible to turn it into a vector.  This starts out null, and if it
  /// isn't possible to turn into a vector type, it gets set to VoidTy.
  const Type *VectorTy;
  
  /// HadAVector - True if there is at least one vector access to the alloca.
  /// We don't want to turn random arrays into vectors and use vector element
  /// insert/extract, but if there are element accesses to something that is
  /// also declared as a vector, we do want to promote to a vector.
  bool HadAVector;

public:
  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
    : AllocaSize(Size), TD(td) {
    IsNotTrivial = false;
    VectorTy = 0;
    HadAVector = false;
  }
  
  AllocaInst *TryConvert(AllocaInst *AI);
  
private:
  bool CanConvertToScalar(Value *V, uint64_t Offset);
  void MergeInType(const Type *In, uint64_t Offset);
  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
  
  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
                                    uint64_t Offset, IRBuilder<> &Builder);
  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
                                   uint64_t Offset, IRBuilder<> &Builder);
};
} // end anonymous namespace.


/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
/// but is required until the backend is fixed.
static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
  if (!Triple.startswith("i386") &&
      !Triple.startswith("x86_64"))
    return false;
  
  // Reject all the MMX vector types.
  switch (VTy->getNumElements()) {
  default: return false;
  case 1: return VTy->getElementType()->isIntegerTy(64);
  case 2: return VTy->getElementType()->isIntegerTy(32);
  case 4: return VTy->getElementType()->isIntegerTy(16);
  case 8: return VTy->getElementType()->isIntegerTy(8);
  }
}


/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
/// alloca if possible or null if not.
AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
  // out.
  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
    return 0;
  
  // If we were able to find a vector type that can handle this with
  // insert/extract elements, and if there was at least one use that had
  // a vector type, promote this to a vector.  We don't want to promote
  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
  // we just get a lot of insert/extracts.  If at least one vector is
  // involved, then we probably really do have a union of vector/array.
  const Type *NewTy;
  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
          << *VectorTy << '\n');
    NewTy = VectorTy;  // Use the vector type.
  } else {
    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
    // Create and insert the integer alloca.
    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
  }
  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
  ConvertUsesToScalar(AI, NewAI, 0);
  return NewAI;
}

/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
/// so far at the offset specified by Offset (which is specified in bytes).
///
/// There are two cases we handle here:
///   1) A union of vector types of the same size and potentially its elements.
///      Here we turn element accesses into insert/extract element operations.
///      This promotes a <4 x float> with a store of float to the third element
///      into a <4 x float> that uses insert element.
///   2) A fully general blob of memory, which we turn into some (potentially
///      large) integer type with extract and insert operations where the loads
///      and stores would mutate the memory.  We mark this by setting VectorTy
///      to VoidTy.
void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
  // If we already decided to turn this into a blob of integer memory, there is
  // nothing to be done.
  if (VectorTy && VectorTy->isVoidTy())
    return;
  
  // If this could be contributing to a vector, analyze it.

  // If the In type is a vector that is the same size as the alloca, see if it
  // matches the existing VecTy.
  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
    // Remember if we saw a vector type.
    HadAVector = true;
    
    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
      // If we're storing/loading a vector of the right size, allow it as a
      // vector.  If this the first vector we see, remember the type so that
      // we know the element size.  If this is a subsequent access, ignore it
      // even if it is a differing type but the same size.  Worst case we can
      // bitcast the resultant vectors.
      if (VectorTy == 0)
        VectorTy = VInTy;
      return;
    }
  } else if (In->isFloatTy() || In->isDoubleTy() ||
             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
    // If we're accessing something that could be an element of a vector, see
    // if the implied vector agrees with what we already have and if Offset is
    // compatible with it.
    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
        (VectorTy == 0 || 
         cast<VectorType>(VectorTy)->getElementType()
               ->getPrimitiveSizeInBits()/8 == EltSize)) {
      if (VectorTy == 0)
        VectorTy = VectorType::get(In, AllocaSize/EltSize);
      return;
    }
  }
  
  // Otherwise, we have a case that we can't handle with an optimized vector
  // form.  We can still turn this into a large integer.
  VectorTy = Type::getVoidTy(In->getContext());
}

/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
/// its accesses to a single vector type, return true and set VecTy to
/// the new type.  If we could convert the alloca into a single promotable
/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
/// is the current offset from the base of the alloca being analyzed.
///
/// If we see at least one access to the value that is as a vector type, set the
/// SawVec flag.
bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      // Don't break volatile loads.
      if (LI->isVolatile())
        return false;
      // Don't touch MMX operations.
      if (LI->getType()->isX86_MMXTy())
        return false;
      MergeInType(LI->getType(), Offset);
      continue;
    }
    
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      // Storing the pointer, not into the value?
      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
      // Don't touch MMX operations.
      if (SI->getOperand(0)->getType()->isX86_MMXTy())
        return false;
      MergeInType(SI->getOperand(0)->getType(), Offset);
      continue;
    }
    
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
      IsNotTrivial = true;  // Can't be mem2reg'd.
      if (!CanConvertToScalar(BCI, Offset))
        return false;
      continue;
    }

    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      // If this is a GEP with a variable indices, we can't handle it.
      if (!GEP->hasAllConstantIndices())
        return false;
      
      // Compute the offset that this GEP adds to the pointer.
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
                                               &Indices[0], Indices.size());
      // See if all uses can be converted.
      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
        return false;
      IsNotTrivial = true;  // Can't be mem2reg'd.
      continue;
    }

    // If this is a constant sized memset of a constant value (e.g. 0) we can
    // handle it.
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
      // Store of constant value and constant size.
      if (!isa<ConstantInt>(MSI->getValue()) ||
          !isa<ConstantInt>(MSI->getLength()))
        return false;
      IsNotTrivial = true;  // Can't be mem2reg'd.
      continue;
    }

    // If this is a memcpy or memmove into or out of the whole allocation, we
    // can handle it like a load or store of the scalar type.
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
        return false;
      
      IsNotTrivial = true;  // Can't be mem2reg'd.
      continue;
    }
    
    // Otherwise, we cannot handle this!
    return false;
  }
  
  return true;
}

/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
/// directly.  This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
                                              uint64_t Offset) {
  while (!Ptr->use_empty()) {
    Instruction *User = cast<Instruction>(Ptr->use_back());

    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
      ConvertUsesToScalar(CI, NewAI, Offset);
      CI->eraseFromParent();
      continue;
    }

    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      // Compute the offset that this GEP adds to the pointer.
      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
                                               &Indices[0], Indices.size());
      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
      GEP->eraseFromParent();
      continue;
    }
    
    IRBuilder<> Builder(User->getParent(), User);
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      // The load is a bit extract from NewAI shifted right by Offset bits.
      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
      Value *NewLoadVal
        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
      LI->replaceAllUsesWith(NewLoadVal);
      LI->eraseFromParent();
      continue;
    }
    
    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      assert(SI->getOperand(0) != Ptr && "Consistency error!");
      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
                                             Builder);
      Builder.CreateStore(New, NewAI);
      SI->eraseFromParent();
      
      // If the load we just inserted is now dead, then the inserted store
      // overwrote the entire thing.
      if (Old->use_empty())
        Old->eraseFromParent();
      continue;
    }
    
    // If this is a constant sized memset of a constant value (e.g. 0) we can
    // transform it into a store of the expanded constant value.
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
      assert(MSI->getRawDest() == Ptr && "Consistency error!");
      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
      if (NumBytes != 0) {
        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
        
        // Compute the value replicated the right number of times.
        APInt APVal(NumBytes*8, Val);

        // Splat the value if non-zero.
        if (Val)
          for (unsigned i = 1; i != NumBytes; ++i)
            APVal |= APVal << 8;
        
        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
        Value *New = ConvertScalar_InsertValue(
                                    ConstantInt::get(User->getContext(), APVal),
                                               Old, Offset, Builder);
        Builder.CreateStore(New, NewAI);
        
        // If the load we just inserted is now dead, then the memset overwrote
        // the entire thing.
        if (Old->use_empty())
          Old->eraseFromParent();        
      }
      MSI->eraseFromParent();
      continue;
    }

    // If this is a memcpy or memmove into or out of the whole allocation, we
    // can handle it like a load or store of the scalar type.
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
      assert(Offset == 0 && "must be store to start of alloca");
      
      // If the source and destination are both to the same alloca, then this is
      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
      // as appropriate.
      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
      
      if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
        // Dest must be OrigAI, change this to be a load from the original
        // pointer (bitcasted), then a store to our new alloca.
        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
        Value *SrcPtr = MTI->getSource();
        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
        
        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
        SrcVal->setAlignment(MTI->getAlignment());
        Builder.CreateStore(SrcVal, NewAI);
      } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
        // Src must be OrigAI, change this to be a load from NewAI then a store
        // through the original dest pointer (bitcasted).
        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");

        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
        NewStore->setAlignment(MTI->getAlignment());
      } else {
        // Noop transfer. Src == Dst
      }

      MTI->eraseFromParent();
      continue;
    }
    
    llvm_unreachable("Unsupported operation!");
  }
}

/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
/// or vector value FromVal, extracting the bits from the offset specified by
/// Offset.  This returns the value, which is of type ToType.
///
/// This happens when we are converting an "integer union" to a single
/// integer scalar, or when we are converting a "vector union" to a vector with
/// insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.
Value *ConvertToScalarInfo::
ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
                           uint64_t Offset, IRBuilder<> &Builder) {
  // If the load is of the whole new alloca, no conversion is needed.
  if (FromVal->getType() == ToType && Offset == 0)
    return FromVal;

  // If the result alloca is a vector type, this is either an element
  // access or a bitcast to another vector type of the same size.
  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
    if (ToType->isVectorTy())
      return Builder.CreateBitCast(FromVal, ToType, "tmp");

    // Otherwise it must be an element access.
    unsigned Elt = 0;
    if (Offset) {
      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
      Elt = Offset/EltSize;
      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    }
    // Return the element extracted out of it.
    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
    if (V->getType() != ToType)
      V = Builder.CreateBitCast(V, ToType, "tmp");
    return V;
  }
  
  // If ToType is a first class aggregate, extract out each of the pieces and
  // use insertvalue's to form the FCA.
  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
    const StructLayout &Layout = *TD.getStructLayout(ST);
    Value *Res = UndefValue::get(ST);
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
                                        Offset+Layout.getElementOffsetInBits(i),
                                              Builder);
      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
    }
    return Res;
  }
  
  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    Value *Res = UndefValue::get(AT);
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
                                              Offset+i*EltSize, Builder);
      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
    }
    return Res;
  }

  // Otherwise, this must be a union that was converted to an integer value.
  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());

  // If this is a big-endian system and the load is narrower than the
  // full alloca type, we need to do a shift to get the right bits.
  int ShAmt = 0;
  if (TD.isBigEndian()) {
    // On big-endian machines, the lowest bit is stored at the bit offset
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
    // integers with a bitwidth that is not a multiple of 8.
    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
            TD.getTypeStoreSizeInBits(ToType) - Offset;
  } else {
    ShAmt = Offset;
  }

  // Note: we support negative bitwidths (with shl) which are not defined.
  // We do this to support (f.e.) loads off the end of a structure where
  // only some bits are used.
  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
    FromVal = Builder.CreateLShr(FromVal,
                                 ConstantInt::get(FromVal->getType(),
                                                           ShAmt), "tmp");
  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
    FromVal = Builder.CreateShl(FromVal, 
                                ConstantInt::get(FromVal->getType(),
                                                          -ShAmt), "tmp");

  // Finally, unconditionally truncate the integer to the right width.
  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
  if (LIBitWidth < NTy->getBitWidth())
    FromVal =
      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 
                                                    LIBitWidth), "tmp");
  else if (LIBitWidth > NTy->getBitWidth())
    FromVal =
       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 
                                                    LIBitWidth), "tmp");

  // If the result is an integer, this is a trunc or bitcast.
  if (ToType->isIntegerTy()) {
    // Should be done.
  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
    // Just do a bitcast, we know the sizes match up.
    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
  } else {
    // Otherwise must be a pointer.
    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
  }
  assert(FromVal->getType() == ToType && "Didn't convert right?");
  return FromVal;
}

/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
/// or vector value "Old" at the offset specified by Offset.
///
/// This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.
Value *ConvertToScalarInfo::
ConvertScalar_InsertValue(Value *SV, Value *Old,
                          uint64_t Offset, IRBuilder<> &Builder) {
  // Convert the stored type to the actual type, shift it left to insert
  // then 'or' into place.
  const Type *AllocaType = Old->getType();
  LLVMContext &Context = Old->getContext();

  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
    
    // Changing the whole vector with memset or with an access of a different
    // vector type?
    if (ValSize == VecSize)
      return Builder.CreateBitCast(SV, AllocaType, "tmp");

    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());

    // Must be an element insertion.
    unsigned Elt = Offset/EltSize;
    
    if (SV->getType() != VTy->getElementType())
      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
    
    SV = Builder.CreateInsertElement(Old, SV, 
                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
                                     "tmp");
    return SV;
  }
  
  // If SV is a first-class aggregate value, insert each value recursively.
  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
    const StructLayout &Layout = *TD.getStructLayout(ST);
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
      Old = ConvertScalar_InsertValue(Elt, Old, 
                                      Offset+Layout.getElementOffsetInBits(i),
                                      Builder);
    }
    return Old;
  }
  
  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
    }
    return Old;
  }

  // If SV is a float, convert it to the appropriate integer type.
  // If it is a pointer, do the same.
  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
    SV = Builder.CreateBitCast(SV,
                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
  else if (SV->getType()->isPointerTy())
    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");

  // Zero extend or truncate the value if needed.
  if (SV->getType() != AllocaType) {
    if (SV->getType()->getPrimitiveSizeInBits() <
             AllocaType->getPrimitiveSizeInBits())
      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
    else {
      // Truncation may be needed if storing more than the alloca can hold
      // (undefined behavior).
      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
      SrcWidth = DestWidth;
      SrcStoreWidth = DestStoreWidth;
    }
  }

  // If this is a big-endian system and the store is narrower than the
  // full alloca type, we need to do a shift to get the right bits.
  int ShAmt = 0;
  if (TD.isBigEndian()) {
    // On big-endian machines, the lowest bit is stored at the bit offset
    // from the pointer given by getTypeStoreSizeInBits.  This matters for
    // integers with a bitwidth that is not a multiple of 8.
    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
  } else {
    ShAmt = Offset;
  }

  // Note: we support negative bitwidths (with shr) which are not defined.
  // We do this to support (f.e.) stores off the end of a structure where
  // only some bits in the structure are set.
  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
                           ShAmt), "tmp");
    Mask <<= ShAmt;
  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
                            -ShAmt), "tmp");
    Mask = Mask.lshr(-ShAmt);
  }

  // Mask out the bits we are about to insert from the old value, and or
  // in the new bits.
  if (SrcWidth != DestWidth) {
    assert(DestWidth > SrcWidth);
    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
    SV = Builder.CreateOr(Old, SV, "ins");
  }
  return SV;
}


//===----------------------------------------------------------------------===//
// SRoA Driver
//===----------------------------------------------------------------------===//


bool SROA::runOnFunction(Function &F) {
  TD = getAnalysisIfAvailable<TargetData>();

  bool Changed = performPromotion(F);

  // FIXME: ScalarRepl currently depends on TargetData more than it
  // theoretically needs to. It should be refactored in order to support
  // target-independent IR. Until this is done, just skip the actual
  // scalar-replacement portion of this pass.
  if (!TD) return Changed;

  while (1) {
    bool LocalChange = performScalarRepl(F);
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
    Changed = true;
    LocalChange = performPromotion(F);
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
  }

  return Changed;
}


bool SROA::performPromotion(Function &F) {
  std::vector<AllocaInst*> Allocas;
  DominatorTree         &DT = getAnalysis<DominatorTree>();
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();

  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function

  bool Changed = false;

  while (1) {
    Allocas.clear();

    // Find allocas that are safe to promote, by looking at all instructions in
    // the entry node
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
        if (isAllocaPromotable(AI))
          Allocas.push_back(AI);

    if (Allocas.empty()) break;

    PromoteMemToReg(Allocas, DT, DF);
    NumPromoted += Allocas.size();
    Changed = true;
  }

  return Changed;
}


/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
/// SROA.  It must be a struct or array type with a small number of elements.
static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
  const Type *T = AI->getAllocatedType();
  // Do not promote any struct into more than 32 separate vars.
  if (const StructType *ST = dyn_cast<StructType>(T))
    return ST->getNumElements() <= 32;
  // Arrays are much less likely to be safe for SROA; only consider
  // them if they are very small.
  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    return AT->getNumElements() <= 8;
  return false;
}


// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
  std::vector<AllocaInst*> WorkList;

  // Scan the entry basic block, adding allocas to the worklist.
  BasicBlock &BB = F.getEntryBlock();
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
      WorkList.push_back(A);

  // Process the worklist
  bool Changed = false;
  while (!WorkList.empty()) {
    AllocaInst *AI = WorkList.back();
    WorkList.pop_back();
    
    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
    // with unused elements.
    if (AI->use_empty()) {
      AI->eraseFromParent();
      Changed = true;
      continue;
    }

    // If this alloca is impossible for us to promote, reject it early.
    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
      continue;
    
    // Check to see if this allocation is only modified by a memcpy/memmove from
    // a constant global.  If this is the case, we can change all users to use
    // the constant global instead.  This is commonly produced by the CFE by
    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
    // is only subsequently read.
    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
      TheCopy->eraseFromParent();  // Don't mutate the global.
      AI->eraseFromParent();
      ++NumGlobals;
      Changed = true;
      continue;
    }
    
    // Check to see if we can perform the core SROA transformation.  We cannot
    // transform the allocation instruction if it is an array allocation
    // (allocations OF arrays are ok though), and an allocation of a scalar
    // value cannot be decomposed at all.
    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());

    // Do not promote [0 x %struct].
    if (AllocaSize == 0) continue;
    
    // Do not promote any struct whose size is too big.
    if (AllocaSize > SRThreshold) continue;
    
    // If the alloca looks like a good candidate for scalar replacement, and if
    // all its users can be transformed, then split up the aggregate into its
    // separate elements.
    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
      DoScalarReplacement(AI, WorkList);
      Changed = true;
      continue;
    }

    // If we can turn this aggregate value (potentially with casts) into a
    // simple scalar value that can be mem2reg'd into a register value.
    // IsNotTrivial tracks whether this is something that mem2reg could have
    // promoted itself.  If so, we don't want to transform it needlessly.  Note
    // that we can't just check based on the type: the alloca may be of an i32
    // but that has pointer arithmetic to set byte 3 of it or something.
    if (AllocaInst *NewAI =
          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
      NewAI->takeName(AI);
      AI->eraseFromParent();
      ++NumConverted;
      Changed = true;
      continue;
    }      
    
    // Otherwise, couldn't process this alloca.
  }

  return Changed;
}

/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocaInst *AI, 
                               std::vector<AllocaInst*> &WorkList) {
  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
  SmallVector<AllocaInst*, 32> ElementAllocas;
  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
    ElementAllocas.reserve(ST->getNumContainedTypes());
    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
                                      AI->getAlignment(),
                                      AI->getName() + "." + Twine(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  } else {
    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
    ElementAllocas.reserve(AT->getNumElements());
    const Type *ElTy = AT->getElementType();
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
                                      AI->getName() + "." + Twine(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  }

  // Now that we have created the new alloca instructions, rewrite all the
  // uses of the old alloca.
  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);

  // Now erase any instructions that were made dead while rewriting the alloca.
  DeleteDeadInstructions();
  AI->eraseFromParent();

  ++NumReplaced;
}

/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
/// recursively including all their operands that become trivially dead.
void SROA::DeleteDeadInstructions() {
  while (!DeadInsts.empty()) {
    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());

    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
        // Zero out the operand and see if it becomes trivially dead.
        // (But, don't add allocas to the dead instruction list -- they are
        // already on the worklist and will be deleted separately.)
        *OI = 0;
        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
          DeadInsts.push_back(U);
      }

    I->eraseFromParent();
  }
}
    
/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
/// performing scalar replacement of alloca AI.  The results are flagged in
/// the Info parameter.  Offset indicates the position within AI that is
/// referenced by this instruction.
void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
                               AllocaInfo &Info) {
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);

    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
      isSafeForScalarRepl(BC, AI, Offset, Info);
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
      uint64_t GEPOffset = Offset;
      isSafeGEP(GEPI, AI, GEPOffset, Info);
      if (!Info.isUnsafe)
        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
      if (Length)
        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
                        UI.getOperandNo() == 0, Info);
      else
        MarkUnsafe(Info);
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      if (!LI->isVolatile()) {
        const Type *LIType = LI->getType();
        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
                        LIType, false, Info);
      } else
        MarkUnsafe(Info);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      // Store is ok if storing INTO the pointer, not storing the pointer
      if (!SI->isVolatile() && SI->getOperand(0) != I) {
        const Type *SIType = SI->getOperand(0)->getType();
        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
                        SIType, true, Info);
      } else
        MarkUnsafe(Info);
    } else {
      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
      MarkUnsafe(Info);
    }
    if (Info.isUnsafe) return;
  }
}

/// isSafeGEP - Check if a GEP instruction can be handled for scalar
/// replacement.  It is safe when all the indices are constant, in-bounds
/// references, and when the resulting offset corresponds to an element within
/// the alloca type.  The results are flagged in the Info parameter.  Upon
/// return, Offset is adjusted as specified by the GEP indices.
void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
                     uint64_t &Offset, AllocaInfo &Info) {
  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
  if (GEPIt == E)
    return;

  // Walk through the GEP type indices, checking the types that this indexes
  // into.
  for (; GEPIt != E; ++GEPIt) {
    // Ignore struct elements, no extra checking needed for these.
    if ((*GEPIt)->isStructTy())
      continue;

    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
    if (!IdxVal)
      return MarkUnsafe(Info);
  }

  // Compute the offset due to this GEP and check if the alloca has a
  // component element at that offset.
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
                                 &Indices[0], Indices.size());
  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
    MarkUnsafe(Info);
}

/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
/// alloca or has an offset and size that corresponds to a component element
/// within it.  The offset checked here may have been formed from a GEP with a
/// pointer bitcasted to a different type.
void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
                           const Type *MemOpType, bool isStore,
                           AllocaInfo &Info) {
  // Check if this is a load/store of the entire alloca.
  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
    // (which are essentially the same as the MemIntrinsics, especially with
    // regard to copying padding between elements), or references using the
    // aggregate type of the alloca.
    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
      if (!UsesAggregateType) {
        if (isStore)
          Info.isMemCpyDst = true;
        else
          Info.isMemCpySrc = true;
      }
      return;
    }
  }
  // Check if the offset/size correspond to a component within the alloca type.
  const Type *T = AI->getAllocatedType();
  if (TypeHasComponent(T, Offset, MemSize))
    return;

  return MarkUnsafe(Info);
}

/// TypeHasComponent - Return true if T has a component type with the
/// specified offset and size.  If Size is zero, do not check the size.
bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
  const Type *EltTy;
  uint64_t EltSize;
  if (const StructType *ST = dyn_cast<StructType>(T)) {
    const StructLayout *Layout = TD->getStructLayout(ST);
    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
    EltTy = ST->getContainedType(EltIdx);
    EltSize = TD->getTypeAllocSize(EltTy);
    Offset -= Layout->getElementOffset(EltIdx);
  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
    EltTy = AT->getElementType();
    EltSize = TD->getTypeAllocSize(EltTy);
    if (Offset >= AT->getNumElements() * EltSize)
      return false;
    Offset %= EltSize;
  } else {
    return false;
  }
  if (Offset == 0 && (Size == 0 || EltSize == Size))
    return true;
  // Check if the component spans multiple elements.
  if (Offset + Size > EltSize)
    return false;
  return TypeHasComponent(EltTy, Offset, Size);
}

/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
/// the instruction I, which references it, to use the separate elements.
/// Offset indicates the position within AI that is referenced by this
/// instruction.
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
                                SmallVector<AllocaInst*, 32> &NewElts) {
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);

    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
      RewriteBitCast(BC, AI, Offset, NewElts);
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
      RewriteGEP(GEPI, AI, Offset, NewElts);
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
      uint64_t MemSize = Length->getZExtValue();
      if (Offset == 0 &&
          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
      // Otherwise the intrinsic can only touch a single element and the
      // address operand will be updated, so nothing else needs to be done.
    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      const Type *LIType = LI->getType();
      if (LIType == AI->getAllocatedType()) {
        // Replace:
        //   %res = load { i32, i32 }* %alloc
        // with:
        //   %load.0 = load i32* %alloc.0
        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
        //   %load.1 = load i32* %alloc.1
        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
        // (Also works for arrays instead of structs)
        Value *Insert = UndefValue::get(LIType);
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
          Value *Load = new LoadInst(NewElts[i], "load", LI);
          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
        }
        LI->replaceAllUsesWith(Insert);
        DeadInsts.push_back(LI);
      } else if (LIType->isIntegerTy() &&
                 TD->getTypeAllocSize(LIType) ==
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
        // If this is a load of the entire alloca to an integer, rewrite it.
        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      Value *Val = SI->getOperand(0);
      const Type *SIType = Val->getType();
      if (SIType == AI->getAllocatedType()) {
        // Replace:
        //   store { i32, i32 } %val, { i32, i32 }* %alloc
        // with:
        //   %val.0 = extractvalue { i32, i32 } %val, 0
        //   store i32 %val.0, i32* %alloc.0
        //   %val.1 = extractvalue { i32, i32 } %val, 1
        //   store i32 %val.1, i32* %alloc.1
        // (Also works for arrays instead of structs)
        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
          new StoreInst(Extract, NewElts[i], SI);
        }
        DeadInsts.push_back(SI);
      } else if (SIType->isIntegerTy() &&
                 TD->getTypeAllocSize(SIType) ==
                 TD->getTypeAllocSize(AI->getAllocatedType())) {
        // If this is a store of the entire alloca from an integer, rewrite it.
        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
      }
    }
  }
}

/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
/// and recursively continue updating all of its uses.
void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
                          SmallVector<AllocaInst*, 32> &NewElts) {
  RewriteForScalarRepl(BC, AI, Offset, NewElts);
  if (BC->getOperand(0) != AI)
    return;

  // The bitcast references the original alloca.  Replace its uses with
  // references to the first new element alloca.
  Instruction *Val = NewElts[0];
  if (Val->getType() != BC->getDestTy()) {
    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
    Val->takeName(BC);
  }
  BC->replaceAllUsesWith(Val);
  DeadInsts.push_back(BC);
}

/// FindElementAndOffset - Return the index of the element containing Offset
/// within the specified type, which must be either a struct or an array.
/// Sets T to the type of the element and Offset to the offset within that
/// element.  IdxTy is set to the type of the index result to be used in a
/// GEP instruction.
uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
                                    const Type *&IdxTy) {
  uint64_t Idx = 0;
  if (const StructType *ST = dyn_cast<StructType>(T)) {
    const StructLayout *Layout = TD->getStructLayout(ST);
    Idx = Layout->getElementContainingOffset(Offset);
    T = ST->getContainedType(Idx);
    Offset -= Layout->getElementOffset(Idx);
    IdxTy = Type::getInt32Ty(T->getContext());
    return Idx;
  }
  const ArrayType *AT = cast<ArrayType>(T);
  T = AT->getElementType();
  uint64_t EltSize = TD->getTypeAllocSize(T);
  Idx = Offset / EltSize;
  Offset -= Idx * EltSize;
  IdxTy = Type::getInt64Ty(T->getContext());
  return Idx;
}

/// RewriteGEP - Check if this GEP instruction moves the pointer across
/// elements of the alloca that are being split apart, and if so, rewrite
/// the GEP to be relative to the new element.
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
                      SmallVector<AllocaInst*, 32> &NewElts) {
  uint64_t OldOffset = Offset;
  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
                                 &Indices[0], Indices.size());

  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);

  const Type *T = AI->getAllocatedType();
  const Type *IdxTy;
  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
  if (GEPI->getOperand(0) == AI)
    OldIdx = ~0ULL; // Force the GEP to be rewritten.

  T = AI->getAllocatedType();
  uint64_t EltOffset = Offset;
  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);

  // If this GEP does not move the pointer across elements of the alloca
  // being split, then it does not needs to be rewritten.
  if (Idx == OldIdx)
    return;

  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
  SmallVector<Value*, 8> NewArgs;
  NewArgs.push_back(Constant::getNullValue(i32Ty));
  while (EltOffset != 0) {
    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
  }
  Instruction *Val = NewElts[Idx];
  if (NewArgs.size() > 1) {
    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
                                            NewArgs.end(), "", GEPI);
    Val->takeName(GEPI);
  }
  if (Val->getType() != GEPI->getType())
    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
  GEPI->replaceAllUsesWith(Val);
  DeadInsts.push_back(GEPI);
}

/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
/// Rewrite it to copy or set the elements of the scalarized memory.
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
                                        AllocaInst *AI,
                                        SmallVector<AllocaInst*, 32> &NewElts) {
  // If this is a memcpy/memmove, construct the other pointer as the
  // appropriate type.  The "Other" pointer is the pointer that goes to memory
  // that doesn't have anything to do with the alloca that we are promoting. For
  // memset, this Value* stays null.
  Value *OtherPtr = 0;
  unsigned MemAlignment = MI->getAlignment();
  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
    if (Inst == MTI->getRawDest())
      OtherPtr = MTI->getRawSource();
    else {
      assert(Inst == MTI->getRawSource());
      OtherPtr = MTI->getRawDest();
    }
  }

  // If there is an other pointer, we want to convert it to the same pointer
  // type as AI has, so we can GEP through it safely.
  if (OtherPtr) {
    unsigned AddrSpace =
      cast<PointerType>(OtherPtr->getType())->getAddressSpace();

    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
    // optimization, but it's also required to detect the corner case where
    // both pointer operands are referencing the same memory, and where
    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
    // function is only called for mem intrinsics that access the whole
    // aggregate, so non-zero GEPs are not an issue here.)
    OtherPtr = OtherPtr->stripPointerCasts();
    
    // Copying the alloca to itself is a no-op: just delete it.
    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
      // This code will run twice for a no-op memcpy -- once for each operand.
      // Put only one reference to MI on the DeadInsts list.
      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
             E = DeadInsts.end(); I != E; ++I)
        if (*I == MI) return;
      DeadInsts.push_back(MI);
      return;
    }
    
    // If the pointer is not the right type, insert a bitcast to the right
    // type.
    const Type *NewTy =
      PointerType::get(AI->getType()->getElementType(), AddrSpace);
    
    if (OtherPtr->getType() != NewTy)
      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
  }
  
  // Process each element of the aggregate.
  Value *TheFn = MI->getCalledValue();
  const Type *BytePtrTy = MI->getRawDest()->getType();
  bool SROADest = MI->getRawDest() == Inst;
  
  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));

  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
    // If this is a memcpy/memmove, emit a GEP of the other element address.
    Value *OtherElt = 0;
    unsigned OtherEltAlign = MemAlignment;
    
    if (OtherPtr) {
      Value *Idx[2] = { Zero,
                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
                                              OtherPtr->getName()+"."+Twine(i),
                                                   MI);
      uint64_t EltOffset;
      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
      const Type *OtherTy = OtherPtrTy->getElementType();
      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
      } else {
        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
        EltOffset = TD->getTypeAllocSize(EltTy)*i;
      }
      
      // The alignment of the other pointer is the guaranteed alignment of the
      // element, which is affected by both the known alignment of the whole
      // mem intrinsic and the alignment of the element.  If the alignment of
      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
      // known alignment is just 4 bytes.
      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
    }
    
    Value *EltPtr = NewElts[i];
    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
    
    // If we got down to a scalar, insert a load or store as appropriate.
    if (EltTy->isSingleValueType()) {
      if (isa<MemTransferInst>(MI)) {
        if (SROADest) {
          // From Other to Alloca.
          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
          new StoreInst(Elt, EltPtr, MI);
        } else {
          // From Alloca to Other.
          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
        }
        continue;
      }
      assert(isa<MemSetInst>(MI));
      
      // If the stored element is zero (common case), just store a null
      // constant.
      Constant *StoreVal;
      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
        if (CI->isZero()) {
          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
        } else {
          // If EltTy is a vector type, get the element type.
          const Type *ValTy = EltTy->getScalarType();

          // Construct an integer with the right value.
          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
          APInt OneVal(EltSize, CI->getZExtValue());
          APInt TotalVal(OneVal);
          // Set each byte.
          for (unsigned i = 0; 8*i < EltSize; ++i) {
            TotalVal = TotalVal.shl(8);
            TotalVal |= OneVal;
          }
          
          // Convert the integer value to the appropriate type.
          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
          if (ValTy->isPointerTy())
            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
          else if (ValTy->isFloatingPointTy())
            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
          assert(StoreVal->getType() == ValTy && "Type mismatch!");
          
          // If the requested value was a vector constant, create it.
          if (EltTy != ValTy) {
            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
            StoreVal = ConstantVector::get(&Elts[0], NumElts);
          }
        }
        new StoreInst(StoreVal, EltPtr, MI);
        continue;
      }
      // Otherwise, if we're storing a byte variable, use a memset call for
      // this element.
    }
    
    // Cast the element pointer to BytePtrTy.
    if (EltPtr->getType() != BytePtrTy)
      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
    
    // Cast the other pointer (if we have one) to BytePtrTy. 
    if (OtherElt && OtherElt->getType() != BytePtrTy) {
      // Preserve address space of OtherElt
      const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
      const PointerType* PTy = cast<PointerType>(BytePtrTy);
      if (OtherPTy->getElementType() != PTy->getElementType()) {
        Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
                                             OtherPTy->getAddressSpace());
        OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
                                   OtherElt->getNameStr(), MI);
      }
    }
    
    unsigned EltSize = TD->getTypeAllocSize(EltTy);
    
    // Finally, insert the meminst for this element.
    if (isa<MemTransferInst>(MI)) {
      Value *Ops[] = {
        SROADest ? EltPtr : OtherElt,  // Dest ptr
        SROADest ? OtherElt : EltPtr,  // Src ptr
        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
        // Align
        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
        MI->getVolatileCst()
      };
      // In case we fold the address space overloaded memcpy of A to B
      // with memcpy of B to C, change the function to be a memcpy of A to C.
      const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
                            Ops[2]->getType() };
      Module *M = MI->getParent()->getParent()->getParent();
      TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
    } else {
      assert(isa<MemSetInst>(MI));
      Value *Ops[] = {
        EltPtr, MI->getArgOperand(1),  // Dest, Value,
        ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
        Zero,  // Align
        ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
      };
      const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
      Module *M = MI->getParent()->getParent()->getParent();
      TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
      CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
    }
  }
  DeadInsts.push_back(MI);
}

/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
/// overwrites the entire allocation.  Extract out the pieces of the stored
/// integer and store them individually.
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
                                         SmallVector<AllocaInst*, 32> &NewElts){
  // Extract each element out of the integer according to its structure offset
  // and store the element value to the individual alloca.
  Value *SrcVal = SI->getOperand(0);
  const Type *AllocaEltTy = AI->getAllocatedType();
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
  
  // Handle tail padding by extending the operand
  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
    SrcVal = new ZExtInst(SrcVal,
                          IntegerType::get(SI->getContext(), AllocaSizeBits), 
                          "", SI);

  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
               << '\n');

  // There are two forms here: AI could be an array or struct.  Both cases
  // have different ways to compute the element offset.
  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
    const StructLayout *Layout = TD->getStructLayout(EltSTy);
    
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
      // Get the number of bits to shift SrcVal to get the value.
      const Type *FieldTy = EltSTy->getElementType(i);
      uint64_t Shift = Layout->getElementOffsetInBits(i);
      
      if (TD->isBigEndian())
        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
      
      Value *EltVal = SrcVal;
      if (Shift) {
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
                                            "sroa.store.elt", SI);
      }
      
      // Truncate down to an integer of the right size.
      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
      
      // Ignore zero sized fields like {}, they obviously contain no data.
      if (FieldSizeBits == 0) continue;
      
      if (FieldSizeBits != AllocaSizeBits)
        EltVal = new TruncInst(EltVal,
                             IntegerType::get(SI->getContext(), FieldSizeBits),
                              "", SI);
      Value *DestField = NewElts[i];
      if (EltVal->getType() == FieldTy) {
        // Storing to an integer field of this size, just do it.
      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
        // Bitcast to the right element type (for fp/vector values).
        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
      } else {
        // Otherwise, bitcast the dest pointer (for aggregates).
        DestField = new BitCastInst(DestField,
                              PointerType::getUnqual(EltVal->getType()),
                                    "", SI);
      }
      new StoreInst(EltVal, DestField, SI);
    }
    
  } else {
    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
    const Type *ArrayEltTy = ATy->getElementType();
    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);

    uint64_t Shift;
    
    if (TD->isBigEndian())
      Shift = AllocaSizeBits-ElementOffset;
    else 
      Shift = 0;
    
    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
      // Ignore zero sized fields like {}, they obviously contain no data.
      if (ElementSizeBits == 0) continue;
      
      Value *EltVal = SrcVal;
      if (Shift) {
        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
                                            "sroa.store.elt", SI);
      }
      
      // Truncate down to an integer of the right size.
      if (ElementSizeBits != AllocaSizeBits)
        EltVal = new TruncInst(EltVal, 
                               IntegerType::get(SI->getContext(), 
                                                ElementSizeBits),"",SI);
      Value *DestField = NewElts[i];
      if (EltVal->getType() == ArrayEltTy) {
        // Storing to an integer field of this size, just do it.
      } else if (ArrayEltTy->isFloatingPointTy() ||
                 ArrayEltTy->isVectorTy()) {
        // Bitcast to the right element type (for fp/vector values).
        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
      } else {
        // Otherwise, bitcast the dest pointer (for aggregates).
        DestField = new BitCastInst(DestField,
                              PointerType::getUnqual(EltVal->getType()),
                                    "", SI);
      }
      new StoreInst(EltVal, DestField, SI);
      
      if (TD->isBigEndian())
        Shift -= ElementOffset;
      else 
        Shift += ElementOffset;
    }
  }
  
  DeadInsts.push_back(SI);
}

/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
/// an integer.  Load the individual pieces to form the aggregate value.
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
                                        SmallVector<AllocaInst*, 32> &NewElts) {
  // Extract each element out of the NewElts according to its structure offset
  // and form the result value.
  const Type *AllocaEltTy = AI->getAllocatedType();
  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
  
  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
               << '\n');
  
  // There are two forms here: AI could be an array or struct.  Both cases
  // have different ways to compute the element offset.
  const StructLayout *Layout = 0;
  uint64_t ArrayEltBitOffset = 0;
  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
    Layout = TD->getStructLayout(EltSTy);
  } else {
    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
  }    
  
  Value *ResultVal = 
    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
  
  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
    // Load the value from the alloca.  If the NewElt is an aggregate, cast
    // the pointer to an integer of the same size before doing the load.
    Value *SrcField = NewElts[i];
    const Type *FieldTy =
      cast<PointerType>(SrcField->getType())->getElementType();
    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
    
    // Ignore zero sized fields like {}, they obviously contain no data.
    if (FieldSizeBits == 0) continue;
    
    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 
                                                     FieldSizeBits);
    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
        !FieldTy->isVectorTy())
      SrcField = new BitCastInst(SrcField,
                                 PointerType::getUnqual(FieldIntTy),
                                 "", LI);
    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);

    // If SrcField is a fp or vector of the right size but that isn't an
    // integer type, bitcast to an integer so we can shift it.
    if (SrcField->getType() != FieldIntTy)
      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);

    // Zero extend the field to be the same size as the final alloca so that
    // we can shift and insert it.
    if (SrcField->getType() != ResultVal->getType())
      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
    
    // Determine the number of bits to shift SrcField.
    uint64_t Shift;
    if (Layout) // Struct case.
      Shift = Layout->getElementOffsetInBits(i);
    else  // Array case.
      Shift = i*ArrayEltBitOffset;
    
    if (TD->isBigEndian())
      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
    
    if (Shift) {
      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
    }

    // Don't create an 'or x, 0' on the first iteration.
    if (!isa<Constant>(ResultVal) ||
        !cast<Constant>(ResultVal)->isNullValue())
      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
    else
      ResultVal = SrcField;
  }

  // Handle tail padding by truncating the result
  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);

  LI->replaceAllUsesWith(ResultVal);
  DeadInsts.push_back(LI);
}

/// HasPadding - Return true if the specified type has any structure or
/// alignment padding, false otherwise.
static bool HasPadding(const Type *Ty, const TargetData &TD) {
  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
    return HasPadding(ATy->getElementType(), TD);
  
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
    return HasPadding(VTy->getElementType(), TD);
  
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    const StructLayout *SL = TD.getStructLayout(STy);
    unsigned PrevFieldBitOffset = 0;
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);

      // Padding in sub-elements?
      if (HasPadding(STy->getElementType(i), TD))
        return true;

      // Check to see if there is any padding between this element and the
      // previous one.
      if (i) {
        unsigned PrevFieldEnd =
        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
        if (PrevFieldEnd < FieldBitOffset)
          return true;
      }

      PrevFieldBitOffset = FieldBitOffset;
    }

    //  Check for tail padding.
    if (unsigned EltCount = STy->getNumElements()) {
      unsigned PrevFieldEnd = PrevFieldBitOffset +
                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
      if (PrevFieldEnd < SL->getSizeInBits())
        return true;
    }
  }
  
  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
}

/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
  // Loop over the use list of the alloca.  We can only transform it if all of
  // the users are safe to transform.
  AllocaInfo Info;
  
  isSafeForScalarRepl(AI, AI, 0, Info);
  if (Info.isUnsafe) {
    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
    return false;
  }
  
  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
  // source and destination, we have to be careful.  In particular, the memcpy
  // could be moving around elements that live in structure padding of the LLVM
  // types, but may actually be used.  In these cases, we refuse to promote the
  // struct.
  if (Info.isMemCpySrc && Info.isMemCpyDst &&
      HasPadding(AI->getAllocatedType(), *TD))
    return false;

  return true;
}



/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable.  This intentionally only accepts
/// constant expressions because we don't can't rewrite arbitrary instructions.
static bool PointsToConstantGlobal(Value *V) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return GV->isConstant();
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::BitCast || 
        CE->getOpcode() == Instruction::GetElementPtr)
      return PointsToConstantGlobal(CE->getOperand(0));
  return false;
}

/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant  global, we
/// can optimize this.
static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
                                           bool isOffset) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    User *U = cast<Instruction>(*UI);

    if (LoadInst *LI = dyn_cast<LoadInst>(U))
      // Ignore non-volatile loads, they are always ok.
      if (!LI->isVolatile())
        continue;
    
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
      // If uses of the bitcast are ok, we are ok.
      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
        return false;
      continue;
    }
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
      // doesn't, it does.
      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
                                         isOffset || !GEP->hasAllZeroIndices()))
        return false;
      continue;
    }
    
    // If this is isn't our memcpy/memmove, reject it as something we can't
    // handle.
    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
    if (MI == 0)
      return false;

    // If we already have seen a copy, reject the second one.
    if (TheCopy) return false;
    
    // If the pointer has been offset from the start of the alloca, we can't
    // safely handle this.
    if (isOffset) return false;

    // If the memintrinsic isn't using the alloca as the dest, reject it.
    if (UI.getOperandNo() != 0) return false;
    
    // If the source of the memcpy/move is not a constant global, reject it.
    if (!PointsToConstantGlobal(MI->getSource()))
      return false;
    
    // Otherwise, the transform is safe.  Remember the copy instruction.
    TheCopy = MI;
  }
  return true;
}

/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global.  If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
  MemTransferInst *TheCopy = 0;
  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
    return TheCopy;
  return 0;
}