summaryrefslogtreecommitdiff
path: root/lib/CodeGen/WinEHPrepare.cpp
blob: 5a13e556d54a53484d5f03de9132e470bb306db5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants. It snifs the personality function to see which kind of
// preparation is necessary. If the personality function uses the Itanium LSDA,
// this pass delegates to the DWARF EH preparation pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <memory>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "winehprepare"

namespace {

struct HandlerAllocas {
  TinyPtrVector<AllocaInst *> Allocas;
  int ParentFrameAllocationIndex;
};

// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
typedef MapVector<Value *, HandlerAllocas> FrameVarInfoMap;

class WinEHPrepare : public FunctionPass {
  std::unique_ptr<FunctionPass> DwarfPrepare;

  enum HandlerType { Catch, Cleanup };

public:
  static char ID; // Pass identification, replacement for typeid.
  WinEHPrepare(const TargetMachine *TM = nullptr)
      : FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {}

  bool runOnFunction(Function &Fn) override;

  bool doFinalization(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  const char *getPassName() const override {
    return "Windows exception handling preparation";
  }

private:
  bool prepareCPPEHHandlers(Function &F,
                            SmallVectorImpl<LandingPadInst *> &LPads);
  bool outlineHandler(HandlerType CatchOrCleanup, Function *SrcFn,
                      Constant *SelectorType, LandingPadInst *LPad,
                      CallInst *&EHAlloc, FrameVarInfoMap &VarInfo);
};

class WinEHFrameVariableMaterializer : public ValueMaterializer {
public:
  WinEHFrameVariableMaterializer(Function *OutlinedFn,
                                 FrameVarInfoMap &FrameVarInfo);
  ~WinEHFrameVariableMaterializer() {}

  virtual Value *materializeValueFor(Value *V) override;

private:
  FrameVarInfoMap &FrameVarInfo;
  IRBuilder<> Builder;
};

class WinEHCloningDirectorBase : public CloningDirector {
public:
  WinEHCloningDirectorBase(LandingPadInst *LPI, Function *HandlerFn,
                           FrameVarInfoMap &VarInfo)
      : LPI(LPI), Materializer(HandlerFn, VarInfo),
        SelectorIDType(Type::getInt32Ty(LPI->getContext())),
        Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}

  CloningAction handleInstruction(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
                                  BasicBlock *NewBB) override;

  virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                         const Instruction *Inst,
                                         BasicBlock *NewBB) = 0;
  virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
                                       const Instruction *Inst,
                                       BasicBlock *NewBB) = 0;
  virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                        const Instruction *Inst,
                                        BasicBlock *NewBB) = 0;
  virtual CloningAction handleResume(ValueToValueMapTy &VMap,
                                     const ResumeInst *Resume,
                                     BasicBlock *NewBB) = 0;

  ValueMaterializer *getValueMaterializer() override { return &Materializer; }

protected:
  LandingPadInst *LPI;
  WinEHFrameVariableMaterializer Materializer;
  Type *SelectorIDType;
  Type *Int8PtrType;

  const Value *ExtractedEHPtr;
  const Value *ExtractedSelector;
  const Value *EHPtrStoreAddr;
  const Value *SelectorStoreAddr;
};

class WinEHCatchDirector : public WinEHCloningDirectorBase {
public:
  WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
                     FrameVarInfoMap &VarInfo)
      : WinEHCloningDirectorBase(LPI, CatchFn, VarInfo),
        CurrentSelector(Selector->stripPointerCasts()) {}

  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
                               BasicBlock *NewBB) override;
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                const Instruction *Inst,
                                BasicBlock *NewBB) override;
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                             BasicBlock *NewBB) override;

private:
  Value *CurrentSelector;
};

class WinEHCleanupDirector : public WinEHCloningDirectorBase {
public:
  WinEHCleanupDirector(LandingPadInst *LPI, Function *CleanupFn,
                       FrameVarInfoMap &VarInfo)
      : WinEHCloningDirectorBase(LPI, CleanupFn, VarInfo) {}

  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
                               BasicBlock *NewBB) override;
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                const Instruction *Inst,
                                BasicBlock *NewBB) override;
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                             BasicBlock *NewBB) override;
};

} // end anonymous namespace

char WinEHPrepare::ID = 0;
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
                   false, false)

FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
  return new WinEHPrepare(TM);
}

static bool isMSVCPersonality(EHPersonality Pers) {
  return Pers == EHPersonality::MSVC_Win64SEH ||
         Pers == EHPersonality::MSVC_CXX;
}

bool WinEHPrepare::runOnFunction(Function &Fn) {
  SmallVector<LandingPadInst *, 4> LPads;
  SmallVector<ResumeInst *, 4> Resumes;
  for (BasicBlock &BB : Fn) {
    if (auto *LP = BB.getLandingPadInst())
      LPads.push_back(LP);
    if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
      Resumes.push_back(Resume);
  }

  // No need to prepare functions that lack landing pads.
  if (LPads.empty())
    return false;

  // Classify the personality to see what kind of preparation we need.
  EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());

  // Delegate through to the DWARF pass if this is unrecognized.
  if (!isMSVCPersonality(Pers))
    return DwarfPrepare->runOnFunction(Fn);

  // FIXME: This only returns true if the C++ EH handlers were outlined.
  //        When that code is complete, it should always return whatever
  //        prepareCPPEHHandlers returns.
  if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
    return true;

  // FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
  if (Resumes.empty())
    return false;

  for (ResumeInst *Resume : Resumes) {
    IRBuilder<>(Resume).CreateUnreachable();
    Resume->eraseFromParent();
  }

  return true;
}

bool WinEHPrepare::doFinalization(Module &M) {
  return DwarfPrepare->doFinalization(M);
}

void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
  DwarfPrepare->getAnalysisUsage(AU);
}

bool WinEHPrepare::prepareCPPEHHandlers(
    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
  // These containers are used to re-map frame variables that are used in
  // outlined catch and cleanup handlers.  They will be populated as the
  // handlers are outlined.
  FrameVarInfoMap FrameVarInfo;
  SmallVector<CallInst *, 4> HandlerAllocs;

  bool HandlersOutlined = false;

  for (LandingPadInst *LPad : LPads) {
    // Look for evidence that this landingpad has already been processed.
    bool LPadHasActionList = false;
    BasicBlock *LPadBB = LPad->getParent();
    for (Instruction &Inst : LPadBB->getInstList()) {
      // FIXME: Make this an intrinsic.
      if (auto *Call = dyn_cast<CallInst>(&Inst))
        if (Call->getCalledFunction()->getName() == "llvm.eh.actions") {
          LPadHasActionList = true;
          break;
        }
    }

    // If we've already outlined the handlers for this landingpad,
    // there's nothing more to do here.
    if (LPadHasActionList)
      continue;

    for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
         ++Idx) {
      if (LPad->isCatch(Idx)) {
        // Create a new instance of the handler data structure in the
        // HandlerData vector.
        CallInst *EHAlloc = nullptr;
        bool Outlined = outlineHandler(Catch, &F, LPad->getClause(Idx), LPad,
                                       EHAlloc, FrameVarInfo);
        if (Outlined) {
          HandlersOutlined = true;
          // These values must be resolved after all handlers have been
          // outlined.
          if (EHAlloc)
            HandlerAllocs.push_back(EHAlloc);
        }
      } // End if (isCatch)
    }   // End for each clause

    // FIXME: This only handles the simple case where there is a 1:1
    //        correspondence between landing pad and cleanup blocks.
    //        It does not handle cases where there are catch blocks between
    //        cleanup blocks or the case where a cleanup block is shared by
    //        multiple landing pads.  Those cases will be supported later
    //        when landing pad block analysis is added.
    if (LPad->isCleanup()) {
      CallInst *EHAlloc = nullptr;
      bool Outlined =
          outlineHandler(Cleanup, &F, nullptr, LPad, EHAlloc, FrameVarInfo);
      if (Outlined) {
        HandlersOutlined = true;
        // This value must be resolved after all handlers have been outlined.
        if (EHAlloc)
          HandlerAllocs.push_back(EHAlloc);
      }
    }
  } // End for each landingpad

  // If nothing got outlined, there is no more processing to be done.
  if (!HandlersOutlined)
    return false;

  // FIXME: We will replace the landingpad bodies with llvm.eh.actions
  //        calls and indirect branches here and then delete blocks
  //        which are no longer reachable.  That will get rid of the
  //        handlers that we have outlined.  There is code below
  //        that looks for allocas with no uses in the parent function.
  //        That will only happen after the pruning is implemented.

  // Remap the frame variables.
  SmallVector<Type *, 2> StructTys;
  StructTys.push_back(Type::getInt32Ty(F.getContext()));   // EH state
  StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object

  // Start the index at two since we always have the above fields at 0 and 1.
  int Idx = 2;

  // FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
  //        and add padding as necessary to provide the proper alignment.

  // Map the alloca instructions to the corresponding index in the
  // frame allocation structure.  If any alloca is used only in a single
  // handler and is not used in the parent frame after outlining, it will
  // be assigned an index of -1, meaning the handler can keep its
  // "temporary" alloca and the original alloca can be erased from the
  // parent function.  If we later encounter this alloca in a second
  // handler, we will assign it a place in the frame allocation structure
  // at that time.  Since the instruction replacement doesn't happen until
  // all the entries in the HandlerData have been processed this isn't a
  // problem.
  for (auto &VarInfoEntry : FrameVarInfo) {
    Value *ParentVal = VarInfoEntry.first;
    HandlerAllocas &AllocaInfo = VarInfoEntry.second;

    if (auto *ParentAlloca = dyn_cast<AllocaInst>(ParentVal)) {
      // If the instruction still has uses in the parent function or if it is
      // referenced by more than one handler, add it to the frame allocation
      // structure.
      if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
        Type *VarTy = ParentAlloca->getAllocatedType();
        StructTys.push_back(VarTy);
        AllocaInfo.ParentFrameAllocationIndex = Idx++;
      } else {
        // If the variable is not used in the parent frame and it is only used
        // in one handler, the alloca can be removed from the parent frame
        // and the handler will keep its "temporary" alloca to define the value.
        // An element index of -1 is used to indicate this condition.
        AllocaInfo.ParentFrameAllocationIndex = -1;
      }
    } else {
      // FIXME: Sink non-alloca values into the handler if they have no other
      //        uses in the parent function after outlining and are only used in
      //        one handler.
      Type *VarTy = ParentVal->getType();
      StructTys.push_back(VarTy);
      AllocaInfo.ParentFrameAllocationIndex = Idx++;
    }
  }

  // Having filled the StructTys vector and assigned an index to each element,
  // we can now create the structure.
  StructType *EHDataStructTy = StructType::create(
      F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
  IRBuilder<> Builder(F.getParent()->getContext());

  // Create a frame allocation.
  Module *M = F.getParent();
  LLVMContext &Context = M->getContext();
  BasicBlock *Entry = &F.getEntryBlock();
  Builder.SetInsertPoint(Entry->getFirstInsertionPt());
  Function *FrameAllocFn =
      Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
  uint64_t EHAllocSize = M->getDataLayout().getTypeAllocSize(EHDataStructTy);
  Value *FrameAllocArgs[] = {
      ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
  CallInst *FrameAlloc =
      Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");

  Value *FrameEHData = Builder.CreateBitCast(
      FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");

  // Now visit each handler that is using the structure and bitcast its EHAlloc
  // value to be a pointer to the frame alloc structure.
  DenseMap<Function *, Value *> EHDataMap;
  for (CallInst *EHAlloc : HandlerAllocs) {
    // The EHAlloc has no uses at this time, so we need to just insert the
    // cast before the next instruction. There is always a next instruction.
    BasicBlock::iterator II = EHAlloc;
    ++II;
    Builder.SetInsertPoint(cast<Instruction>(II));
    Value *EHData = Builder.CreateBitCast(
        EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
    EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
  }

  // Finally, replace all of the temporary allocas for frame variables used in
  // the outlined handlers and the original frame allocas with GEP instructions
  // that get the equivalent pointer from the frame allocation struct.
  Instruction *FrameEHDataInst = cast<Instruction>(FrameEHData);
  BasicBlock::iterator II = FrameEHDataInst;
  ++II;
  Instruction *AllocaInsertPt = II;
  for (auto &VarInfoEntry : FrameVarInfo) {
    Value *ParentVal = VarInfoEntry.first;
    HandlerAllocas &AllocaInfo = VarInfoEntry.second;
    int Idx = AllocaInfo.ParentFrameAllocationIndex;

    // If the mapped value isn't already an alloca, we need to spill it if it
    // is a computed value or copy it if it is an argument.
    AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
    if (!ParentAlloca) {
      if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
        // Lower this argument to a copy and then demote that to the stack.
        // We can't just use the argument location because the handler needs
        // it to be in the frame allocation block.
        // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
        Value *TrueValue = ConstantInt::getTrue(Context);
        Value *UndefValue = UndefValue::get(Arg->getType());
        Instruction *SI =
            SelectInst::Create(TrueValue, Arg, UndefValue,
                               Arg->getName() + ".tmp", AllocaInsertPt);
        Arg->replaceAllUsesWith(SI);
        // Reset the select operand, because it was clobbered by the RAUW above.
        SI->setOperand(1, Arg);
        ParentAlloca = DemoteRegToStack(*SI, true, SI);
      } else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
        ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
      } else {
        Instruction *ParentInst = cast<Instruction>(ParentVal);
        ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
      }
    }

    // If we have an index of -1 for this instruction, it means it isn't used
    // outside of this handler.  In that case, we just keep the "temporary"
    // alloca in the handler and erase the original alloca from the parent.
    if (Idx == -1) {
      ParentAlloca->eraseFromParent();
    } else {
      // Otherwise, we replace the parent alloca and all outlined allocas
      // which map to it with GEP instructions.

      // First replace the original alloca.
      Builder.SetInsertPoint(ParentAlloca);
      Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
      Value *ElementPtr =
          Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
      ParentAlloca->replaceAllUsesWith(ElementPtr);
      ParentAlloca->removeFromParent();
      ElementPtr->takeName(ParentAlloca);
      if (ParentAlloca == AllocaInsertPt)
        AllocaInsertPt = dyn_cast<Instruction>(ElementPtr);
      delete ParentAlloca;

      // Next replace all outlined allocas that are mapped to it.
      for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
        Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
        // FIXME: Sink this GEP into the blocks where it is used.
        Builder.SetInsertPoint(TempAlloca);
        Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
        ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
        TempAlloca->replaceAllUsesWith(ElementPtr);
        TempAlloca->removeFromParent();
        ElementPtr->takeName(TempAlloca);
        delete TempAlloca;
      }
    } // end else of if (Idx == -1)
  }   // End for each FrameVarInfo entry.

  return HandlersOutlined;
}

bool WinEHPrepare::outlineHandler(HandlerType CatchOrCleanup, Function *SrcFn,
                                  Constant *SelectorType, LandingPadInst *LPad,
                                  CallInst *&EHAlloc,
                                  FrameVarInfoMap &VarInfo) {
  Module *M = SrcFn->getParent();
  LLVMContext &Context = M->getContext();

  // Create a new function to receive the handler contents.
  Type *Int8PtrType = Type::getInt8PtrTy(Context);
  std::vector<Type *> ArgTys;
  ArgTys.push_back(Int8PtrType);
  ArgTys.push_back(Int8PtrType);
  Function *Handler;
  if (CatchOrCleanup == Catch) {
    FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
                               SrcFn->getName() + ".catch", M);
  } else {
    FunctionType *FnType =
        FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
                               SrcFn->getName() + ".cleanup", M);
  }

  // Generate a standard prolog to setup the frame recovery structure.
  IRBuilder<> Builder(Context);
  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
  Handler->getBasicBlockList().push_front(Entry);
  Builder.SetInsertPoint(Entry);
  Builder.SetCurrentDebugLocation(LPad->getDebugLoc());

  // The outlined handler will be called with the parent's frame pointer as
  // its second argument. To enable the handler to access variables from
  // the parent frame, we use that pointer to get locate a special block
  // of memory that was allocated using llvm.eh.allocateframe for this
  // purpose.  During the outlining process we will determine which frame
  // variables are used in handlers and create a structure that maps these
  // variables into the frame allocation block.
  //
  // The frame allocation block also contains an exception state variable
  // used by the runtime and a pointer to the exception object pointer
  // which will be filled in by the runtime for use in the handler.
  Function *RecoverFrameFn =
      Intrinsic::getDeclaration(M, Intrinsic::framerecover);
  Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
                          &(Handler->getArgumentList().back())};
  EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");

  std::unique_ptr<WinEHCloningDirectorBase> Director;

  if (CatchOrCleanup == Catch) {
    Director.reset(
        new WinEHCatchDirector(LPad, Handler, SelectorType, VarInfo));
  } else {
    Director.reset(new WinEHCleanupDirector(LPad, Handler, VarInfo));
  }

  ValueToValueMapTy VMap;

  // FIXME: Map other values referenced in the filter handler.

  SmallVector<ReturnInst *, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;

  BasicBlock::iterator II = LPad;

  CloneAndPruneIntoFromInst(
      Handler, SrcFn, ++II, VMap,
      /*ModuleLevelChanges=*/false, Returns, "", &InlinedFunctionInfo,
      &SrcFn->getParent()->getDataLayout(), Director.get());

  // Move all the instructions in the first cloned block into our entry block.
  BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
  Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
  FirstClonedBB->eraseFromParent();

  return true;
}

CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // Intercept instructions which extract values from the landing pad aggregate.
  if (auto *Extract = dyn_cast<ExtractValueInst>(Inst)) {
    if (Extract->getAggregateOperand() == LPI) {
      assert(Extract->getNumIndices() == 1 &&
             "Unexpected operation: extracting both landing pad values");
      assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) &&
             "Unexpected operation: extracting an unknown landing pad element");

      if (*(Extract->idx_begin()) == 0) {
        // Element 0 doesn't directly corresponds to anything in the WinEH
        // scheme.
        // It will be stored to a memory location, then later loaded and finally
        // the loaded value will be used as the argument to an
        // llvm.eh.begincatch
        // call.  We're tracking it here so that we can skip the store and load.
        ExtractedEHPtr = Inst;
      } else {
        // Element 1 corresponds to the filter selector.  We'll map it to 1 for
        // matching purposes, but it will also probably be stored to memory and
        // reloaded, so we need to track the instuction so that we can map the
        // loaded value too.
        VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
        ExtractedSelector = Inst;
      }

      // Tell the caller not to clone this instruction.
      return CloningDirector::SkipInstruction;
    }
    // Other extract value instructions just get cloned.
    return CloningDirector::CloneInstruction;
  }

  if (auto *Store = dyn_cast<StoreInst>(Inst)) {
    // Look for and suppress stores of the extracted landingpad values.
    const Value *StoredValue = Store->getValueOperand();
    if (StoredValue == ExtractedEHPtr) {
      EHPtrStoreAddr = Store->getPointerOperand();
      return CloningDirector::SkipInstruction;
    }
    if (StoredValue == ExtractedSelector) {
      SelectorStoreAddr = Store->getPointerOperand();
      return CloningDirector::SkipInstruction;
    }

    // Any other store just gets cloned.
    return CloningDirector::CloneInstruction;
  }

  if (auto *Load = dyn_cast<LoadInst>(Inst)) {
    // Look for loads of (previously suppressed) landingpad values.
    // The EHPtr load can be ignored (it should only be used as
    // an argument to llvm.eh.begincatch), but the selector value
    // needs to be mapped to a constant value of 1 to be used to
    // simplify the branching to always flow to the current handler.
    const Value *LoadAddr = Load->getPointerOperand();
    if (LoadAddr == EHPtrStoreAddr) {
      VMap[Inst] = UndefValue::get(Int8PtrType);
      return CloningDirector::SkipInstruction;
    }
    if (LoadAddr == SelectorStoreAddr) {
      VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
      return CloningDirector::SkipInstruction;
    }

    // Any other loads just get cloned.
    return CloningDirector::CloneInstruction;
  }

  if (auto *Resume = dyn_cast<ResumeInst>(Inst))
    return handleResume(VMap, Resume, NewBB);

  if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
    return handleBeginCatch(VMap, Inst, NewBB);
  if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
    return handleEndCatch(VMap, Inst, NewBB);
  if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
    return handleTypeIdFor(VMap, Inst, NewBB);

  // Continue with the default cloning behavior.
  return CloningDirector::CloneInstruction;
}

CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // The argument to the call is some form of the first element of the
  // landingpad aggregate value, but that doesn't matter.  It isn't used
  // here.
  // The second argument is an outparameter where the exception object will be
  // stored. Typically the exception object is a scalar, but it can be an
  // aggregate when catching by value.
  // FIXME: Leave something behind to indicate where the exception object lives
  // for this handler. Should it be part of llvm.eh.actions?
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
                                   const Instruction *Inst, BasicBlock *NewBB) {
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
  // It might be interesting to track whether or not we are inside a catch
  // function, but that might make the algorithm more brittle than it needs
  // to be.

  // The end catch call can occur in one of two places: either in a
  // landingpad
  // block that is part of the catch handlers exception mechanism, or at the
  // end of the catch block.  If it occurs in a landing pad, we must skip it
  // and continue so that the landing pad gets cloned.
  // FIXME: This case isn't fully supported yet and shouldn't turn up in any
  //        of the test cases until it is.
  if (IntrinCall->getParent()->isLandingPad())
    return CloningDirector::SkipInstruction;

  // If an end catch occurs anywhere else the next instruction should be an
  // unconditional branch instruction that we want to replace with a return
  // to the the address of the branch target.
  const BasicBlock *EndCatchBB = IntrinCall->getParent();
  const TerminatorInst *Terminator = EndCatchBB->getTerminator();
  const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
  assert(Branch && Branch->isUnconditional());
  assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
         BasicBlock::const_iterator(Branch));

  ReturnInst::Create(NewBB->getContext(),
                     BlockAddress::get(Branch->getSuccessor(0)), NewBB);

  // We just added a terminator to the cloned block.
  // Tell the caller to stop processing the current basic block so that
  // the branch instruction will be skipped.
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
  Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
  // This causes a replacement that will collapse the landing pad CFG based
  // on the filter function we intend to match.
  if (Selector == CurrentSelector)
    VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
  else
    VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
  // Tell the caller not to clone this instruction.
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
                                 const ResumeInst *Resume, BasicBlock *NewBB) {
  // Resume instructions shouldn't be reachable from catch handlers.
  // We still need to handle it, but it will be pruned.
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // Catch blocks within cleanup handlers will always be unreachable.
  // We'll insert an unreachable instruction now, but it will be pruned
  // before the cloning process is complete.
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // Catch blocks within cleanup handlers will always be unreachable.
  // We'll insert an unreachable instruction now, but it will be pruned
  // before the cloning process is complete.
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // This causes a replacement that will collapse the landing pad CFG
  // to just the cleanup code.
  VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
  // Tell the caller not to clone this instruction.
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
    ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);

  // We just added a terminator to the cloned block.
  // Tell the caller to stop processing the current basic block so that
  // the branch instruction will be skipped.
  return CloningDirector::StopCloningBB;
}

WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
    Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
    : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
  Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
  // FIXME: Do something with the FrameVarMapped so that it is shared across the
  // function.
}

Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
  // If we're asked to materialize a value that is an instruction, we
  // temporarily create an alloca in the outlined function and add this
  // to the FrameVarInfo map.  When all the outlining is complete, we'll
  // collect these into a structure, spilling non-alloca values in the
  // parent frame as necessary, and replace these temporary allocas with
  // GEPs referencing the frame allocation block.

  // If the value is an alloca, the mapping is direct.
  if (auto *AV = dyn_cast<AllocaInst>(V)) {
    AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
    Builder.Insert(NewAlloca, AV->getName());
    FrameVarInfo[AV].Allocas.push_back(NewAlloca);
    return NewAlloca;
  }

  // For other types of instructions or arguments, we need an alloca based on
  // the value's type and a load of the alloca.  The alloca will be replaced
  // by a GEP, but the load will stay.  In the parent function, the value will
  // be spilled to a location in the frame allocation block.
  if (isa<Instruction>(V) || isa<Argument>(V)) {
    AllocaInst *NewAlloca =
        Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
    FrameVarInfo[V].Allocas.push_back(NewAlloca);
    LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
    return NewLoad;
  }

  // Don't materialize other values.
  return nullptr;
}