1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
|
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach. It should eventually be removed.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "codegenprepare"
STATISTIC(NumBlocksElim, "Number of blocks eliminated");
STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
"sunken Cmps");
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
"of sunken Casts");
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
"computations were sunk");
STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
STATISTIC(NumRetsDup, "Number of return instructions duplicated");
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
static cl::opt<bool> DisableBranchOpts(
"disable-cgp-branch-opts", cl::Hidden, cl::init(false),
cl::desc("Disable branch optimizations in CodeGenPrepare"));
static cl::opt<bool>
DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
cl::desc("Disable GC optimizations in CodeGenPrepare"));
static cl::opt<bool> DisableSelectToBranch(
"disable-cgp-select2branch", cl::Hidden, cl::init(false),
cl::desc("Disable select to branch conversion."));
static cl::opt<bool> AddrSinkUsingGEPs(
"addr-sink-using-gep", cl::Hidden, cl::init(false),
cl::desc("Address sinking in CGP using GEPs."));
static cl::opt<bool> EnableAndCmpSinking(
"enable-andcmp-sinking", cl::Hidden, cl::init(true),
cl::desc("Enable sinkinig and/cmp into branches."));
static cl::opt<bool> DisableStoreExtract(
"disable-cgp-store-extract", cl::Hidden, cl::init(false),
cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
static cl::opt<bool> StressStoreExtract(
"stress-cgp-store-extract", cl::Hidden, cl::init(false),
cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
static cl::opt<bool> DisableExtLdPromotion(
"disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
"CodeGenPrepare"));
static cl::opt<bool> StressExtLdPromotion(
"stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
"optimization in CodeGenPrepare"));
namespace {
typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
class TypePromotionTransaction;
class CodeGenPrepare : public FunctionPass {
const TargetMachine *TM;
const TargetLowering *TLI;
const TargetTransformInfo *TTI;
const TargetLibraryInfo *TLInfo;
/// As we scan instructions optimizing them, this is the next instruction
/// to optimize. Transforms that can invalidate this should update it.
BasicBlock::iterator CurInstIterator;
/// Keeps track of non-local addresses that have been sunk into a block.
/// This allows us to avoid inserting duplicate code for blocks with
/// multiple load/stores of the same address.
ValueMap<Value*, Value*> SunkAddrs;
/// Keeps track of all instructions inserted for the current function.
SetOfInstrs InsertedInsts;
/// Keeps track of the type of the related instruction before their
/// promotion for the current function.
InstrToOrigTy PromotedInsts;
/// True if CFG is modified in any way.
bool ModifiedDT;
/// True if optimizing for size.
bool OptSize;
/// DataLayout for the Function being processed.
const DataLayout *DL;
public:
static char ID; // Pass identification, replacement for typeid
explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
const char *getPassName() const override { return "CodeGen Prepare"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
private:
bool eliminateFallThrough(Function &F);
bool eliminateMostlyEmptyBlocks(Function &F);
bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
void eliminateMostlyEmptyBlock(BasicBlock *BB);
bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
bool optimizeInst(Instruction *I, bool& ModifiedDT);
bool optimizeMemoryInst(Instruction *I, Value *Addr,
Type *AccessTy, unsigned AS);
bool optimizeInlineAsmInst(CallInst *CS);
bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
bool moveExtToFormExtLoad(Instruction *&I);
bool optimizeExtUses(Instruction *I);
bool optimizeSelectInst(SelectInst *SI);
bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
bool optimizeSwitchInst(SwitchInst *CI);
bool optimizeExtractElementInst(Instruction *Inst);
bool dupRetToEnableTailCallOpts(BasicBlock *BB);
bool placeDbgValues(Function &F);
bool sinkAndCmp(Function &F);
bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
Instruction *&Inst,
const SmallVectorImpl<Instruction *> &Exts,
unsigned CreatedInstCost);
bool splitBranchCondition(Function &F);
bool simplifyOffsetableRelocate(Instruction &I);
void stripInvariantGroupMetadata(Instruction &I);
};
}
char CodeGenPrepare::ID = 0;
INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
"Optimize for code generation", false, false)
FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
return new CodeGenPrepare(TM);
}
bool CodeGenPrepare::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
DL = &F.getParent()->getDataLayout();
bool EverMadeChange = false;
// Clear per function information.
InsertedInsts.clear();
PromotedInsts.clear();
ModifiedDT = false;
if (TM)
TLI = TM->getSubtargetImpl(F)->getTargetLowering();
TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
OptSize = F.optForSize();
/// This optimization identifies DIV instructions that can be
/// profitably bypassed and carried out with a shorter, faster divide.
if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
const DenseMap<unsigned int, unsigned int> &BypassWidths =
TLI->getBypassSlowDivWidths();
for (Function::iterator I = F.begin(); I != F.end(); I++)
EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
}
// Eliminate blocks that contain only PHI nodes and an
// unconditional branch.
EverMadeChange |= eliminateMostlyEmptyBlocks(F);
// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
EverMadeChange |= placeDbgValues(F);
// If there is a mask, compare against zero, and branch that can be combined
// into a single target instruction, push the mask and compare into branch
// users. Do this before OptimizeBlock -> OptimizeInst ->
// OptimizeCmpExpression, which perturbs the pattern being searched for.
if (!DisableBranchOpts) {
EverMadeChange |= sinkAndCmp(F);
EverMadeChange |= splitBranchCondition(F);
}
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (Function::iterator I = F.begin(); I != F.end(); ) {
BasicBlock *BB = &*I++;
bool ModifiedDTOnIteration = false;
MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
// Restart BB iteration if the dominator tree of the Function was changed
if (ModifiedDTOnIteration)
break;
}
EverMadeChange |= MadeChange;
}
SunkAddrs.clear();
if (!DisableBranchOpts) {
MadeChange = false;
SmallPtrSet<BasicBlock*, 8> WorkList;
for (BasicBlock &BB : F) {
SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
MadeChange |= ConstantFoldTerminator(&BB, true);
if (!MadeChange) continue;
for (SmallVectorImpl<BasicBlock*>::iterator
II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
if (pred_begin(*II) == pred_end(*II))
WorkList.insert(*II);
}
// Delete the dead blocks and any of their dead successors.
MadeChange |= !WorkList.empty();
while (!WorkList.empty()) {
BasicBlock *BB = *WorkList.begin();
WorkList.erase(BB);
SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
DeleteDeadBlock(BB);
for (SmallVectorImpl<BasicBlock*>::iterator
II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
if (pred_begin(*II) == pred_end(*II))
WorkList.insert(*II);
}
// Merge pairs of basic blocks with unconditional branches, connected by
// a single edge.
if (EverMadeChange || MadeChange)
MadeChange |= eliminateFallThrough(F);
EverMadeChange |= MadeChange;
}
if (!DisableGCOpts) {
SmallVector<Instruction *, 2> Statepoints;
for (BasicBlock &BB : F)
for (Instruction &I : BB)
if (isStatepoint(I))
Statepoints.push_back(&I);
for (auto &I : Statepoints)
EverMadeChange |= simplifyOffsetableRelocate(*I);
}
return EverMadeChange;
}
/// Merge basic blocks which are connected by a single edge, where one of the
/// basic blocks has a single successor pointing to the other basic block,
/// which has a single predecessor.
bool CodeGenPrepare::eliminateFallThrough(Function &F) {
bool Changed = false;
// Scan all of the blocks in the function, except for the entry block.
for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
BasicBlock *BB = &*I++;
// If the destination block has a single pred, then this is a trivial
// edge, just collapse it.
BasicBlock *SinglePred = BB->getSinglePredecessor();
// Don't merge if BB's address is taken.
if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
if (Term && !Term->isConditional()) {
Changed = true;
DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
// Remember if SinglePred was the entry block of the function.
// If so, we will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(BB, nullptr);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
// We have erased a block. Update the iterator.
I = BB->getIterator();
}
}
return Changed;
}
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
/// blocks so we can split them the way we want them.
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
bool MadeChange = false;
// Note that this intentionally skips the entry block.
for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
BasicBlock *BB = &*I++;
// If this block doesn't end with an uncond branch, ignore it.
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isUnconditional())
continue;
// If the instruction before the branch (skipping debug info) isn't a phi
// node, then other stuff is happening here.
BasicBlock::iterator BBI = BI->getIterator();
if (BBI != BB->begin()) {
--BBI;
while (isa<DbgInfoIntrinsic>(BBI)) {
if (BBI == BB->begin())
break;
--BBI;
}
if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
continue;
}
// Do not break infinite loops.
BasicBlock *DestBB = BI->getSuccessor(0);
if (DestBB == BB)
continue;
if (!canMergeBlocks(BB, DestBB))
continue;
eliminateMostlyEmptyBlock(BB);
MadeChange = true;
}
return MadeChange;
}
/// Return true if we can merge BB into DestBB if there is a single
/// unconditional branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
const BasicBlock *DestBB) const {
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
// the successor. If there are more complex condition (e.g. preheaders),
// don't mess around with them.
BasicBlock::const_iterator BBI = BB->begin();
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
for (const User *U : PN->users()) {
const Instruction *UI = cast<Instruction>(U);
if (UI->getParent() != DestBB || !isa<PHINode>(UI))
return false;
// If User is inside DestBB block and it is a PHINode then check
// incoming value. If incoming value is not from BB then this is
// a complex condition (e.g. preheaders) we want to avoid here.
if (UI->getParent() == DestBB) {
if (const PHINode *UPN = dyn_cast<PHINode>(UI))
for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
if (Insn && Insn->getParent() == BB &&
Insn->getParent() != UPN->getIncomingBlock(I))
return false;
}
}
}
}
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
// and DestBB may have conflicting incoming values for the block. If so, we
// can't merge the block.
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
if (!DestBBPN) return true; // no conflict.
// Collect the preds of BB.
SmallPtrSet<const BasicBlock*, 16> BBPreds;
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
// It is faster to get preds from a PHI than with pred_iterator.
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
BBPreds.insert(BBPN->getIncomingBlock(i));
} else {
BBPreds.insert(pred_begin(BB), pred_end(BB));
}
// Walk the preds of DestBB.
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
if (BBPreds.count(Pred)) { // Common predecessor?
BBI = DestBB->begin();
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
const Value *V1 = PN->getIncomingValueForBlock(Pred);
const Value *V2 = PN->getIncomingValueForBlock(BB);
// If V2 is a phi node in BB, look up what the mapped value will be.
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
if (V2PN->getParent() == BB)
V2 = V2PN->getIncomingValueForBlock(Pred);
// If there is a conflict, bail out.
if (V1 != V2) return false;
}
}
}
return true;
}
/// Eliminate a basic block that has only phi's and an unconditional branch in
/// it.
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
// If the destination block has a single pred, then this is a trivial edge,
// just collapse it.
if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
if (SinglePred != DestBB) {
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
return;
}
}
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
// to handle the new incoming edges it is about to have.
PHINode *PN;
for (BasicBlock::iterator BBI = DestBB->begin();
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
// Remove the incoming value for BB, and remember it.
Value *InVal = PN->removeIncomingValue(BB, false);
// Two options: either the InVal is a phi node defined in BB or it is some
// value that dominates BB.
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
if (InValPhi && InValPhi->getParent() == BB) {
// Add all of the input values of the input PHI as inputs of this phi.
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(InValPhi->getIncomingValue(i),
InValPhi->getIncomingBlock(i));
} else {
// Otherwise, add one instance of the dominating value for each edge that
// we will be adding.
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
PN->addIncoming(InVal, *PI);
}
}
}
// The PHIs are now updated, change everything that refers to BB to use
// DestBB and remove BB.
BB->replaceAllUsesWith(DestBB);
BB->eraseFromParent();
++NumBlocksElim;
DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}
// Computes a map of base pointer relocation instructions to corresponding
// derived pointer relocation instructions given a vector of all relocate calls
static void computeBaseDerivedRelocateMap(
const SmallVectorImpl<User *> &AllRelocateCalls,
DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
RelocateInstMap) {
// Collect information in two maps: one primarily for locating the base object
// while filling the second map; the second map is the final structure holding
// a mapping between Base and corresponding Derived relocate calls
DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
for (auto &U : AllRelocateCalls) {
GCRelocateOperands ThisRelocate(U);
IntrinsicInst *I = cast<IntrinsicInst>(U);
auto K = std::make_pair(ThisRelocate.getBasePtrIndex(),
ThisRelocate.getDerivedPtrIndex());
RelocateIdxMap.insert(std::make_pair(K, I));
}
for (auto &Item : RelocateIdxMap) {
std::pair<unsigned, unsigned> Key = Item.first;
if (Key.first == Key.second)
// Base relocation: nothing to insert
continue;
IntrinsicInst *I = Item.second;
auto BaseKey = std::make_pair(Key.first, Key.first);
// We're iterating over RelocateIdxMap so we cannot modify it.
auto MaybeBase = RelocateIdxMap.find(BaseKey);
if (MaybeBase == RelocateIdxMap.end())
// TODO: We might want to insert a new base object relocate and gep off
// that, if there are enough derived object relocates.
continue;
RelocateInstMap[MaybeBase->second].push_back(I);
}
}
// Accepts a GEP and extracts the operands into a vector provided they're all
// small integer constants
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
SmallVectorImpl<Value *> &OffsetV) {
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
// Only accept small constant integer operands
auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!Op || Op->getZExtValue() > 20)
return false;
}
for (unsigned i = 1; i < GEP->getNumOperands(); i++)
OffsetV.push_back(GEP->getOperand(i));
return true;
}
// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
// replace, computes a replacement, and affects it.
static bool
simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
const SmallVectorImpl<IntrinsicInst *> &Targets) {
bool MadeChange = false;
for (auto &ToReplace : Targets) {
GCRelocateOperands MasterRelocate(RelocatedBase);
GCRelocateOperands ThisRelocate(ToReplace);
assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() &&
"Not relocating a derived object of the original base object");
if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) {
// A duplicate relocate call. TODO: coalesce duplicates.
continue;
}
if (RelocatedBase->getParent() != ToReplace->getParent()) {
// Base and derived relocates are in different basic blocks.
// In this case transform is only valid when base dominates derived
// relocate. However it would be too expensive to check dominance
// for each such relocate, so we skip the whole transformation.
continue;
}
Value *Base = ThisRelocate.getBasePtr();
auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr());
if (!Derived || Derived->getPointerOperand() != Base)
continue;
SmallVector<Value *, 2> OffsetV;
if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
continue;
// Create a Builder and replace the target callsite with a gep
assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
// Insert after RelocatedBase
IRBuilder<> Builder(RelocatedBase->getNextNode());
Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
// If gc_relocate does not match the actual type, cast it to the right type.
// In theory, there must be a bitcast after gc_relocate if the type does not
// match, and we should reuse it to get the derived pointer. But it could be
// cases like this:
// bb1:
// ...
// %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
// br label %merge
//
// bb2:
// ...
// %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
// br label %merge
//
// merge:
// %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
// %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
//
// In this case, we can not find the bitcast any more. So we insert a new bitcast
// no matter there is already one or not. In this way, we can handle all cases, and
// the extra bitcast should be optimized away in later passes.
Instruction *ActualRelocatedBase = RelocatedBase;
if (RelocatedBase->getType() != Base->getType()) {
ActualRelocatedBase =
cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType()));
}
Value *Replacement = Builder.CreateGEP(
Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
Instruction *ReplacementInst = cast<Instruction>(Replacement);
Replacement->takeName(ToReplace);
// If the newly generated derived pointer's type does not match the original derived
// pointer's type, cast the new derived pointer to match it. Same reasoning as above.
Instruction *ActualReplacement = ReplacementInst;
if (ReplacementInst->getType() != ToReplace->getType()) {
ActualReplacement =
cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType()));
}
ToReplace->replaceAllUsesWith(ActualReplacement);
ToReplace->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
// Turns this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = relocate(%tok, i32 4, i32 4)
// %ptr' = relocate(%tok, i32 4, i32 5)
// %val = load %ptr'
//
// into this:
//
// %base = ...
// %ptr = gep %base + 15
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
// %base' = gc.relocate(%tok, i32 4, i32 4)
// %ptr' = gep %base' + 15
// %val = load %ptr'
bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
bool MadeChange = false;
SmallVector<User *, 2> AllRelocateCalls;
for (auto *U : I.users())
if (isGCRelocate(dyn_cast<Instruction>(U)))
// Collect all the relocate calls associated with a statepoint
AllRelocateCalls.push_back(U);
// We need atleast one base pointer relocation + one derived pointer
// relocation to mangle
if (AllRelocateCalls.size() < 2)
return false;
// RelocateInstMap is a mapping from the base relocate instruction to the
// corresponding derived relocate instructions
DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
if (RelocateInstMap.empty())
return false;
for (auto &Item : RelocateInstMap)
// Item.first is the RelocatedBase to offset against
// Item.second is the vector of Targets to replace
MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
return MadeChange;
}
/// SinkCast - Sink the specified cast instruction into its user blocks
static bool SinkCast(CastInst *CI) {
BasicBlock *DefBB = CI->getParent();
/// InsertedCasts - Only insert a cast in each block once.
DenseMap<BasicBlock*, CastInst*> InsertedCasts;
bool MadeChange = false;
for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this cast is used in. For PHI's this is the
// appropriate predecessor block.
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User)) {
UserBB = PN->getIncomingBlock(TheUse);
}
// Preincrement use iterator so we don't invalidate it.
++UI;
// If this user is in the same block as the cast, don't change the cast.
if (UserBB == DefBB) continue;
// If we have already inserted a cast into this block, use it.
CastInst *&InsertedCast = InsertedCasts[UserBB];
if (!InsertedCast) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
CI->getType(), "", &*InsertPt);
}
// Replace a use of the cast with a use of the new cast.
TheUse = InsertedCast;
MadeChange = true;
++NumCastUses;
}
// If we removed all uses, nuke the cast.
if (CI->use_empty()) {
CI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
/// If the specified cast instruction is a noop copy (e.g. it's casting from
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
/// reduce the number of virtual registers that must be created and coalesced.
///
/// Return true if any changes are made.
///
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
const DataLayout &DL) {
// If this is a noop copy,
EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(DL, CI->getType());
// This is an fp<->int conversion?
if (SrcVT.isInteger() != DstVT.isInteger())
return false;
// If this is an extension, it will be a zero or sign extension, which
// isn't a noop.
if (SrcVT.bitsLT(DstVT)) return false;
// If these values will be promoted, find out what they will be promoted
// to. This helps us consider truncates on PPC as noop copies when they
// are.
if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
TargetLowering::TypePromoteInteger)
SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
if (TLI.getTypeAction(CI->getContext(), DstVT) ==
TargetLowering::TypePromoteInteger)
DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
// If, after promotion, these are the same types, this is a noop copy.
if (SrcVT != DstVT)
return false;
return SinkCast(CI);
}
/// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
/// possible.
///
/// Return true if any changes were made.
static bool CombineUAddWithOverflow(CmpInst *CI) {
Value *A, *B;
Instruction *AddI;
if (!match(CI,
m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
return false;
Type *Ty = AddI->getType();
if (!isa<IntegerType>(Ty))
return false;
// We don't want to move around uses of condition values this late, so we we
// check if it is legal to create the call to the intrinsic in the basic
// block containing the icmp:
if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
return false;
#ifndef NDEBUG
// Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
// for now:
if (AddI->hasOneUse())
assert(*AddI->user_begin() == CI && "expected!");
#endif
Module *M = CI->getParent()->getParent()->getParent();
Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
auto *UAddWithOverflow =
CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
auto *Overflow =
ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
CI->replaceAllUsesWith(Overflow);
AddI->replaceAllUsesWith(UAdd);
CI->eraseFromParent();
AddI->eraseFromParent();
return true;
}
/// Sink the given CmpInst into user blocks to reduce the number of virtual
/// registers that must be created and coalesced. This is a clear win except on
/// targets with multiple condition code registers (PowerPC), where it might
/// lose; some adjustment may be wanted there.
///
/// Return true if any changes are made.
static bool SinkCmpExpression(CmpInst *CI) {
BasicBlock *DefBB = CI->getParent();
/// Only insert a cmp in each block once.
DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
bool MadeChange = false;
for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
// Don't bother for PHI nodes.
if (isa<PHINode>(User))
continue;
// Figure out which BB this cmp is used in.
BasicBlock *UserBB = User->getParent();
// If this user is in the same block as the cmp, don't change the cmp.
if (UserBB == DefBB) continue;
// If we have already inserted a cmp into this block, use it.
CmpInst *&InsertedCmp = InsertedCmps[UserBB];
if (!InsertedCmp) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedCmp =
CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
}
// Replace a use of the cmp with a use of the new cmp.
TheUse = InsertedCmp;
MadeChange = true;
++NumCmpUses;
}
// If we removed all uses, nuke the cmp.
if (CI->use_empty()) {
CI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
static bool OptimizeCmpExpression(CmpInst *CI) {
if (SinkCmpExpression(CI))
return true;
if (CombineUAddWithOverflow(CI))
return true;
return false;
}
/// Check if the candidates could be combined with a shift instruction, which
/// includes:
/// 1. Truncate instruction
/// 2. And instruction and the imm is a mask of the low bits:
/// imm & (imm+1) == 0
static bool isExtractBitsCandidateUse(Instruction *User) {
if (!isa<TruncInst>(User)) {
if (User->getOpcode() != Instruction::And ||
!isa<ConstantInt>(User->getOperand(1)))
return false;
const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
if ((Cimm & (Cimm + 1)).getBoolValue())
return false;
}
return true;
}
/// Sink both shift and truncate instruction to the use of truncate's BB.
static bool
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
const TargetLowering &TLI, const DataLayout &DL) {
BasicBlock *UserBB = User->getParent();
DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
TruncInst *TruncI = dyn_cast<TruncInst>(User);
bool MadeChange = false;
for (Value::user_iterator TruncUI = TruncI->user_begin(),
TruncE = TruncI->user_end();
TruncUI != TruncE;) {
Use &TruncTheUse = TruncUI.getUse();
Instruction *TruncUser = cast<Instruction>(*TruncUI);
// Preincrement use iterator so we don't invalidate it.
++TruncUI;
int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
if (!ISDOpcode)
continue;
// If the use is actually a legal node, there will not be an
// implicit truncate.
// FIXME: always querying the result type is just an
// approximation; some nodes' legality is determined by the
// operand or other means. There's no good way to find out though.
if (TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
continue;
// Don't bother for PHI nodes.
if (isa<PHINode>(TruncUser))
continue;
BasicBlock *TruncUserBB = TruncUser->getParent();
if (UserBB == TruncUserBB)
continue;
BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
if (!InsertedShift && !InsertedTrunc) {
BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
assert(InsertPt != TruncUserBB->end());
// Sink the shift
if (ShiftI->getOpcode() == Instruction::AShr)
InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
else
InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
// Sink the trunc
BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
TruncInsertPt++;
assert(TruncInsertPt != TruncUserBB->end());
InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
TruncI->getType(), "", &*TruncInsertPt);
MadeChange = true;
TruncTheUse = InsertedTrunc;
}
}
return MadeChange;
}
/// Sink the shift *right* instruction into user blocks if the uses could
/// potentially be combined with this shift instruction and generate BitExtract
/// instruction. It will only be applied if the architecture supports BitExtract
/// instruction. Here is an example:
/// BB1:
/// %x.extract.shift = lshr i64 %arg1, 32
/// BB2:
/// %x.extract.trunc = trunc i64 %x.extract.shift to i16
/// ==>
///
/// BB2:
/// %x.extract.shift.1 = lshr i64 %arg1, 32
/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
///
/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
/// instruction.
/// Return true if any changes are made.
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
const TargetLowering &TLI,
const DataLayout &DL) {
BasicBlock *DefBB = ShiftI->getParent();
/// Only insert instructions in each block once.
DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
bool MadeChange = false;
for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
UI != E;) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Preincrement use iterator so we don't invalidate it.
++UI;
// Don't bother for PHI nodes.
if (isa<PHINode>(User))
continue;
if (!isExtractBitsCandidateUse(User))
continue;
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) {
// If the shift and truncate instruction are in the same BB. The use of
// the truncate(TruncUse) may still introduce another truncate if not
// legal. In this case, we would like to sink both shift and truncate
// instruction to the BB of TruncUse.
// for example:
// BB1:
// i64 shift.result = lshr i64 opnd, imm
// trunc.result = trunc shift.result to i16
//
// BB2:
// ----> We will have an implicit truncate here if the architecture does
// not have i16 compare.
// cmp i16 trunc.result, opnd2
//
if (isa<TruncInst>(User) && shiftIsLegal
// If the type of the truncate is legal, no trucate will be
// introduced in other basic blocks.
&&
(!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
MadeChange =
SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
continue;
}
// If we have already inserted a shift into this block, use it.
BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
if (!InsertedShift) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
if (ShiftI->getOpcode() == Instruction::AShr)
InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
else
InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
"", &*InsertPt);
MadeChange = true;
}
// Replace a use of the shift with a use of the new shift.
TheUse = InsertedShift;
}
// If we removed all uses, nuke the shift.
if (ShiftI->use_empty())
ShiftI->eraseFromParent();
return MadeChange;
}
// Translate a masked load intrinsic like
// <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
// <16 x i1> %mask, <16 x i32> %passthru)
// to a chain of basic blocks, with loading element one-by-one if
// the appropriate mask bit is set
//
// %1 = bitcast i8* %addr to i32*
// %2 = extractelement <16 x i1> %mask, i32 0
// %3 = icmp eq i1 %2, true
// br i1 %3, label %cond.load, label %else
//
//cond.load: ; preds = %0
// %4 = getelementptr i32* %1, i32 0
// %5 = load i32* %4
// %6 = insertelement <16 x i32> undef, i32 %5, i32 0
// br label %else
//
//else: ; preds = %0, %cond.load
// %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
// %7 = extractelement <16 x i1> %mask, i32 1
// %8 = icmp eq i1 %7, true
// br i1 %8, label %cond.load1, label %else2
//
//cond.load1: ; preds = %else
// %9 = getelementptr i32* %1, i32 1
// %10 = load i32* %9
// %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
// br label %else2
//
//else2: ; preds = %else, %cond.load1
// %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
// %12 = extractelement <16 x i1> %mask, i32 2
// %13 = icmp eq i1 %12, true
// br i1 %13, label %cond.load4, label %else5
//
static void ScalarizeMaskedLoad(CallInst *CI) {
Value *Ptr = CI->getArgOperand(0);
Value *Alignment = CI->getArgOperand(1);
Value *Mask = CI->getArgOperand(2);
Value *Src0 = CI->getArgOperand(3);
unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
VectorType *VecType = dyn_cast<VectorType>(CI->getType());
assert(VecType && "Unexpected return type of masked load intrinsic");
Type *EltTy = CI->getType()->getVectorElementType();
IRBuilder<> Builder(CI->getContext());
Instruction *InsertPt = CI;
BasicBlock *IfBlock = CI->getParent();
BasicBlock *CondBlock = nullptr;
BasicBlock *PrevIfBlock = CI->getParent();
Builder.SetInsertPoint(InsertPt);
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
// Short-cut if the mask is all-true.
bool IsAllOnesMask = isa<Constant>(Mask) &&
cast<Constant>(Mask)->isAllOnesValue();
if (IsAllOnesMask) {
Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
CI->replaceAllUsesWith(NewI);
CI->eraseFromParent();
return;
}
// Adjust alignment for the scalar instruction.
AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
// Bitcast %addr fron i8* to EltTy*
Type *NewPtrType =
EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
unsigned VectorWidth = VecType->getNumElements();
Value *UndefVal = UndefValue::get(VecType);
// The result vector
Value *VResult = UndefVal;
if (isa<ConstantVector>(Mask)) {
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
continue;
Value *Gep =
Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
VResult = Builder.CreateInsertElement(VResult, Load,
Builder.getInt32(Idx));
}
Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
CI->replaceAllUsesWith(NewI);
CI->eraseFromParent();
return;
}
PHINode *Phi = nullptr;
Value *PrevPhi = UndefVal;
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
// Fill the "else" block, created in the previous iteration
//
// %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
// %mask_1 = extractelement <16 x i1> %mask, i32 Idx
// %to_load = icmp eq i1 %mask_1, true
// br i1 %to_load, label %cond.load, label %else
//
if (Idx > 0) {
Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
Phi->addIncoming(VResult, CondBlock);
Phi->addIncoming(PrevPhi, PrevIfBlock);
PrevPhi = Phi;
VResult = Phi;
}
Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
ConstantInt::get(Predicate->getType(), 1));
// Create "cond" block
//
// %EltAddr = getelementptr i32* %1, i32 0
// %Elt = load i32* %EltAddr
// VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
//
CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
Builder.SetInsertPoint(InsertPt);
Value *Gep =
Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
// Create "else" block, fill it in the next iteration
BasicBlock *NewIfBlock =
CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
PrevIfBlock = IfBlock;
IfBlock = NewIfBlock;
}
Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
Phi->addIncoming(VResult, CondBlock);
Phi->addIncoming(PrevPhi, PrevIfBlock);
Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
CI->replaceAllUsesWith(NewI);
CI->eraseFromParent();
}
// Translate a masked store intrinsic, like
// void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
// <16 x i1> %mask)
// to a chain of basic blocks, that stores element one-by-one if
// the appropriate mask bit is set
//
// %1 = bitcast i8* %addr to i32*
// %2 = extractelement <16 x i1> %mask, i32 0
// %3 = icmp eq i1 %2, true
// br i1 %3, label %cond.store, label %else
//
// cond.store: ; preds = %0
// %4 = extractelement <16 x i32> %val, i32 0
// %5 = getelementptr i32* %1, i32 0
// store i32 %4, i32* %5
// br label %else
//
// else: ; preds = %0, %cond.store
// %6 = extractelement <16 x i1> %mask, i32 1
// %7 = icmp eq i1 %6, true
// br i1 %7, label %cond.store1, label %else2
//
// cond.store1: ; preds = %else
// %8 = extractelement <16 x i32> %val, i32 1
// %9 = getelementptr i32* %1, i32 1
// store i32 %8, i32* %9
// br label %else2
// . . .
static void ScalarizeMaskedStore(CallInst *CI) {
Value *Src = CI->getArgOperand(0);
Value *Ptr = CI->getArgOperand(1);
Value *Alignment = CI->getArgOperand(2);
Value *Mask = CI->getArgOperand(3);
unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
VectorType *VecType = dyn_cast<VectorType>(Src->getType());
assert(VecType && "Unexpected data type in masked store intrinsic");
Type *EltTy = VecType->getElementType();
IRBuilder<> Builder(CI->getContext());
Instruction *InsertPt = CI;
BasicBlock *IfBlock = CI->getParent();
Builder.SetInsertPoint(InsertPt);
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
// Short-cut if the mask is all-true.
bool IsAllOnesMask = isa<Constant>(Mask) &&
cast<Constant>(Mask)->isAllOnesValue();
if (IsAllOnesMask) {
Builder.CreateAlignedStore(Src, Ptr, AlignVal);
CI->eraseFromParent();
return;
}
// Adjust alignment for the scalar instruction.
AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
// Bitcast %addr fron i8* to EltTy*
Type *NewPtrType =
EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
unsigned VectorWidth = VecType->getNumElements();
if (isa<ConstantVector>(Mask)) {
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
continue;
Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
Value *Gep =
Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
}
CI->eraseFromParent();
return;
}
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
// Fill the "else" block, created in the previous iteration
//
// %mask_1 = extractelement <16 x i1> %mask, i32 Idx
// %to_store = icmp eq i1 %mask_1, true
// br i1 %to_store, label %cond.store, label %else
//
Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
ConstantInt::get(Predicate->getType(), 1));
// Create "cond" block
//
// %OneElt = extractelement <16 x i32> %Src, i32 Idx
// %EltAddr = getelementptr i32* %1, i32 0
// %store i32 %OneElt, i32* %EltAddr
//
BasicBlock *CondBlock =
IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
Builder.SetInsertPoint(InsertPt);
Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
Value *Gep =
Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
// Create "else" block, fill it in the next iteration
BasicBlock *NewIfBlock =
CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
IfBlock = NewIfBlock;
}
CI->eraseFromParent();
}
// Translate a masked gather intrinsic like
// <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
// <16 x i1> %Mask, <16 x i32> %Src)
// to a chain of basic blocks, with loading element one-by-one if
// the appropriate mask bit is set
//
// % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
// % Mask0 = extractelement <16 x i1> %Mask, i32 0
// % ToLoad0 = icmp eq i1 % Mask0, true
// br i1 % ToLoad0, label %cond.load, label %else
//
// cond.load:
// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
// % Load0 = load i32, i32* % Ptr0, align 4
// % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
// br label %else
//
// else:
// %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
// % Mask1 = extractelement <16 x i1> %Mask, i32 1
// % ToLoad1 = icmp eq i1 % Mask1, true
// br i1 % ToLoad1, label %cond.load1, label %else2
//
// cond.load1:
// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
// % Load1 = load i32, i32* % Ptr1, align 4
// % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
// br label %else2
// . . .
// % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
// ret <16 x i32> %Result
static void ScalarizeMaskedGather(CallInst *CI) {
Value *Ptrs = CI->getArgOperand(0);
Value *Alignment = CI->getArgOperand(1);
Value *Mask = CI->getArgOperand(2);
Value *Src0 = CI->getArgOperand(3);
VectorType *VecType = dyn_cast<VectorType>(CI->getType());
assert(VecType && "Unexpected return type of masked load intrinsic");
IRBuilder<> Builder(CI->getContext());
Instruction *InsertPt = CI;
BasicBlock *IfBlock = CI->getParent();
BasicBlock *CondBlock = nullptr;
BasicBlock *PrevIfBlock = CI->getParent();
Builder.SetInsertPoint(InsertPt);
unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
Value *UndefVal = UndefValue::get(VecType);
// The result vector
Value *VResult = UndefVal;
unsigned VectorWidth = VecType->getNumElements();
// Shorten the way if the mask is a vector of constants.
bool IsConstMask = isa<ConstantVector>(Mask);
if (IsConstMask) {
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
continue;
Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
"Ptr" + Twine(Idx));
LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
"Load" + Twine(Idx));
VResult = Builder.CreateInsertElement(VResult, Load,
Builder.getInt32(Idx),
"Res" + Twine(Idx));
}
Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
CI->replaceAllUsesWith(NewI);
CI->eraseFromParent();
return;
}
PHINode *Phi = nullptr;
Value *PrevPhi = UndefVal;
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
// Fill the "else" block, created in the previous iteration
//
// %Mask1 = extractelement <16 x i1> %Mask, i32 1
// %ToLoad1 = icmp eq i1 %Mask1, true
// br i1 %ToLoad1, label %cond.load, label %else
//
if (Idx > 0) {
Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
Phi->addIncoming(VResult, CondBlock);
Phi->addIncoming(PrevPhi, PrevIfBlock);
PrevPhi = Phi;
VResult = Phi;
}
Value *Predicate = Builder.CreateExtractElement(Mask,
Builder.getInt32(Idx),
"Mask" + Twine(Idx));
Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
ConstantInt::get(Predicate->getType(), 1),
"ToLoad" + Twine(Idx));
// Create "cond" block
//
// %EltAddr = getelementptr i32* %1, i32 0
// %Elt = load i32* %EltAddr
// VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
//
CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
Builder.SetInsertPoint(InsertPt);
Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
"Ptr" + Twine(Idx));
LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
"Load" + Twine(Idx));
VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
"Res" + Twine(Idx));
// Create "else" block, fill it in the next iteration
BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
PrevIfBlock = IfBlock;
IfBlock = NewIfBlock;
}
Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
Phi->addIncoming(VResult, CondBlock);
Phi->addIncoming(PrevPhi, PrevIfBlock);
Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
CI->replaceAllUsesWith(NewI);
CI->eraseFromParent();
}
// Translate a masked scatter intrinsic, like
// void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
// <16 x i1> %Mask)
// to a chain of basic blocks, that stores element one-by-one if
// the appropriate mask bit is set.
//
// % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
// % Mask0 = extractelement <16 x i1> % Mask, i32 0
// % ToStore0 = icmp eq i1 % Mask0, true
// br i1 %ToStore0, label %cond.store, label %else
//
// cond.store:
// % Elt0 = extractelement <16 x i32> %Src, i32 0
// % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
// store i32 %Elt0, i32* % Ptr0, align 4
// br label %else
//
// else:
// % Mask1 = extractelement <16 x i1> % Mask, i32 1
// % ToStore1 = icmp eq i1 % Mask1, true
// br i1 % ToStore1, label %cond.store1, label %else2
//
// cond.store1:
// % Elt1 = extractelement <16 x i32> %Src, i32 1
// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
// store i32 % Elt1, i32* % Ptr1, align 4
// br label %else2
// . . .
static void ScalarizeMaskedScatter(CallInst *CI) {
Value *Src = CI->getArgOperand(0);
Value *Ptrs = CI->getArgOperand(1);
Value *Alignment = CI->getArgOperand(2);
Value *Mask = CI->getArgOperand(3);
assert(isa<VectorType>(Src->getType()) &&
"Unexpected data type in masked scatter intrinsic");
assert(isa<VectorType>(Ptrs->getType()) &&
isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
"Vector of pointers is expected in masked scatter intrinsic");
IRBuilder<> Builder(CI->getContext());
Instruction *InsertPt = CI;
BasicBlock *IfBlock = CI->getParent();
Builder.SetInsertPoint(InsertPt);
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
unsigned VectorWidth = Src->getType()->getVectorNumElements();
// Shorten the way if the mask is a vector of constants.
bool IsConstMask = isa<ConstantVector>(Mask);
if (IsConstMask) {
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
continue;
Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
"Elt" + Twine(Idx));
Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
"Ptr" + Twine(Idx));
Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
}
CI->eraseFromParent();
return;
}
for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
// Fill the "else" block, created in the previous iteration
//
// % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
// % ToStore = icmp eq i1 % Mask1, true
// br i1 % ToStore, label %cond.store, label %else
//
Value *Predicate = Builder.CreateExtractElement(Mask,
Builder.getInt32(Idx),
"Mask" + Twine(Idx));
Value *Cmp =
Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
ConstantInt::get(Predicate->getType(), 1),
"ToStore" + Twine(Idx));
// Create "cond" block
//
// % Elt1 = extractelement <16 x i32> %Src, i32 1
// % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
// %store i32 % Elt1, i32* % Ptr1
//
BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
Builder.SetInsertPoint(InsertPt);
Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
"Elt" + Twine(Idx));
Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
"Ptr" + Twine(Idx));
Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
// Create "else" block, fill it in the next iteration
BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
IfBlock = NewIfBlock;
}
CI->eraseFromParent();
}
bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
BasicBlock *BB = CI->getParent();
// Lower inline assembly if we can.
// If we found an inline asm expession, and if the target knows how to
// lower it to normal LLVM code, do so now.
if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
if (TLI->ExpandInlineAsm(CI)) {
// Avoid invalidating the iterator.
CurInstIterator = BB->begin();
// Avoid processing instructions out of order, which could cause
// reuse before a value is defined.
SunkAddrs.clear();
return true;
}
// Sink address computing for memory operands into the block.
if (optimizeInlineAsmInst(CI))
return true;
}
// Align the pointer arguments to this call if the target thinks it's a good
// idea
unsigned MinSize, PrefAlign;
if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
for (auto &Arg : CI->arg_operands()) {
// We want to align both objects whose address is used directly and
// objects whose address is used in casts and GEPs, though it only makes
// sense for GEPs if the offset is a multiple of the desired alignment and
// if size - offset meets the size threshold.
if (!Arg->getType()->isPointerTy())
continue;
APInt Offset(DL->getPointerSizeInBits(
cast<PointerType>(Arg->getType())->getAddressSpace()),
0);
Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
uint64_t Offset2 = Offset.getLimitedValue();
if ((Offset2 & (PrefAlign-1)) != 0)
continue;
AllocaInst *AI;
if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
AI->setAlignment(PrefAlign);
// Global variables can only be aligned if they are defined in this
// object (i.e. they are uniquely initialized in this object), and
// over-aligning global variables that have an explicit section is
// forbidden.
GlobalVariable *GV;
if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() &&
!GV->hasSection() && GV->getAlignment() < PrefAlign &&
DL->getTypeAllocSize(GV->getType()->getElementType()) >=
MinSize + Offset2)
GV->setAlignment(PrefAlign);
}
// If this is a memcpy (or similar) then we may be able to improve the
// alignment
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
unsigned Align = getKnownAlignment(MI->getDest(), *DL);
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
if (Align > MI->getAlignment())
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
}
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (II) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::objectsize: {
// Lower all uses of llvm.objectsize.*
bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
Type *ReturnTy = CI->getType();
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
// Substituting this can cause recursive simplifications, which can
// invalidate our iterator. Use a WeakVH to hold onto it in case this
// happens.
WeakVH IterHandle(&*CurInstIterator);
replaceAndRecursivelySimplify(CI, RetVal,
TLInfo, nullptr);
// If the iterator instruction was recursively deleted, start over at the
// start of the block.
if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
CurInstIterator = BB->begin();
SunkAddrs.clear();
}
return true;
}
case Intrinsic::masked_load: {
// Scalarize unsupported vector masked load
if (!TTI->isLegalMaskedLoad(CI->getType())) {
ScalarizeMaskedLoad(CI);
ModifiedDT = true;
return true;
}
return false;
}
case Intrinsic::masked_store: {
if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
ScalarizeMaskedStore(CI);
ModifiedDT = true;
return true;
}
return false;
}
case Intrinsic::masked_gather: {
if (!TTI->isLegalMaskedGather(CI->getType())) {
ScalarizeMaskedGather(CI);
ModifiedDT = true;
return true;
}
return false;
}
case Intrinsic::masked_scatter: {
if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
ScalarizeMaskedScatter(CI);
ModifiedDT = true;
return true;
}
return false;
}
case Intrinsic::aarch64_stlxr:
case Intrinsic::aarch64_stxr: {
ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
if (!ExtVal || !ExtVal->hasOneUse() ||
ExtVal->getParent() == CI->getParent())
return false;
// Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
ExtVal->moveBefore(CI);
// Mark this instruction as "inserted by CGP", so that other
// optimizations don't touch it.
InsertedInsts.insert(ExtVal);
return true;
}
case Intrinsic::invariant_group_barrier:
II->replaceAllUsesWith(II->getArgOperand(0));
II->eraseFromParent();
return true;
}
if (TLI) {
// Unknown address space.
// TODO: Target hook to pick which address space the intrinsic cares
// about?
unsigned AddrSpace = ~0u;
SmallVector<Value*, 2> PtrOps;
Type *AccessTy;
if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
while (!PtrOps.empty())
if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
return true;
}
}
// From here on out we're working with named functions.
if (!CI->getCalledFunction()) return false;
// Lower all default uses of _chk calls. This is very similar
// to what InstCombineCalls does, but here we are only lowering calls
// to fortified library functions (e.g. __memcpy_chk) that have the default
// "don't know" as the objectsize. Anything else should be left alone.
FortifiedLibCallSimplifier Simplifier(TLInfo, true);
if (Value *V = Simplifier.optimizeCall(CI)) {
CI->replaceAllUsesWith(V);
CI->eraseFromParent();
return true;
}
return false;
}
/// Look for opportunities to duplicate return instructions to the predecessor
/// to enable tail call optimizations. The case it is currently looking for is:
/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// br label %return
/// bb1:
/// %tmp1 = tail call i32 @f1()
/// br label %return
/// bb2:
/// %tmp2 = tail call i32 @f2()
/// br label %return
/// return:
/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
/// ret i32 %retval
/// @endcode
///
/// =>
///
/// @code
/// bb0:
/// %tmp0 = tail call i32 @f0()
/// ret i32 %tmp0
/// bb1:
/// %tmp1 = tail call i32 @f1()
/// ret i32 %tmp1
/// bb2:
/// %tmp2 = tail call i32 @f2()
/// ret i32 %tmp2
/// @endcode
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
if (!TLI)
return false;
ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
if (!RI)
return false;
PHINode *PN = nullptr;
BitCastInst *BCI = nullptr;
Value *V = RI->getReturnValue();
if (V) {
BCI = dyn_cast<BitCastInst>(V);
if (BCI)
V = BCI->getOperand(0);
PN = dyn_cast<PHINode>(V);
if (!PN)
return false;
}
if (PN && PN->getParent() != BB)
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
// See llvm::isInTailCallPosition().
const Function *F = BB->getParent();
AttributeSet CallerAttrs = F->getAttributes();
if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
return false;
// Make sure there are no instructions between the PHI and return, or that the
// return is the first instruction in the block.
if (PN) {
BasicBlock::iterator BI = BB->begin();
do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
if (&*BI == BCI)
// Also skip over the bitcast.
++BI;
if (&*BI != RI)
return false;
} else {
BasicBlock::iterator BI = BB->begin();
while (isa<DbgInfoIntrinsic>(BI)) ++BI;
if (&*BI != RI)
return false;
}
/// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
/// call.
SmallVector<CallInst*, 4> TailCalls;
if (PN) {
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
// Make sure the phi value is indeed produced by the tail call.
if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
TLI->mayBeEmittedAsTailCall(CI))
TailCalls.push_back(CI);
}
} else {
SmallPtrSet<BasicBlock*, 4> VisitedBBs;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
if (!VisitedBBs.insert(*PI).second)
continue;
BasicBlock::InstListType &InstList = (*PI)->getInstList();
BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
if (RI == RE)
continue;
CallInst *CI = dyn_cast<CallInst>(&*RI);
if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
TailCalls.push_back(CI);
}
}
bool Changed = false;
for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
CallInst *CI = TailCalls[i];
CallSite CS(CI);
// Conservatively require the attributes of the call to match those of the
// return. Ignore noalias because it doesn't affect the call sequence.
AttributeSet CalleeAttrs = CS.getAttributes();
if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
removeAttribute(Attribute::NoAlias) !=
AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
removeAttribute(Attribute::NoAlias))
continue;
// Make sure the call instruction is followed by an unconditional branch to
// the return block.
BasicBlock *CallBB = CI->getParent();
BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
continue;
// Duplicate the return into CallBB.
(void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
ModifiedDT = Changed = true;
++NumRetsDup;
}
// If we eliminated all predecessors of the block, delete the block now.
if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
BB->eraseFromParent();
return Changed;
}
//===----------------------------------------------------------------------===//
// Memory Optimization
//===----------------------------------------------------------------------===//
namespace {
/// This is an extended version of TargetLowering::AddrMode
/// which holds actual Value*'s for register values.
struct ExtAddrMode : public TargetLowering::AddrMode {
Value *BaseReg;
Value *ScaledReg;
ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
void print(raw_ostream &OS) const;
void dump() const;
bool operator==(const ExtAddrMode& O) const {
return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
(BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
(HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
}
};
#ifndef NDEBUG
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
AM.print(OS);
return OS;
}
#endif
void ExtAddrMode::print(raw_ostream &OS) const {
bool NeedPlus = false;
OS << "[";
if (BaseGV) {
OS << (NeedPlus ? " + " : "")
<< "GV:";
BaseGV->printAsOperand(OS, /*PrintType=*/false);
NeedPlus = true;
}
if (BaseOffs) {
OS << (NeedPlus ? " + " : "")
<< BaseOffs;
NeedPlus = true;
}
if (BaseReg) {
OS << (NeedPlus ? " + " : "")
<< "Base:";
BaseReg->printAsOperand(OS, /*PrintType=*/false);
NeedPlus = true;
}
if (Scale) {
OS << (NeedPlus ? " + " : "")
<< Scale << "*";
ScaledReg->printAsOperand(OS, /*PrintType=*/false);
}
OS << ']';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ExtAddrMode::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
/// \brief This class provides transaction based operation on the IR.
/// Every change made through this class is recorded in the internal state and
/// can be undone (rollback) until commit is called.
class TypePromotionTransaction {
/// \brief This represents the common interface of the individual transaction.
/// Each class implements the logic for doing one specific modification on
/// the IR via the TypePromotionTransaction.
class TypePromotionAction {
protected:
/// The Instruction modified.
Instruction *Inst;
public:
/// \brief Constructor of the action.
/// The constructor performs the related action on the IR.
TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
virtual ~TypePromotionAction() {}
/// \brief Undo the modification done by this action.
/// When this method is called, the IR must be in the same state as it was
/// before this action was applied.
/// \pre Undoing the action works if and only if the IR is in the exact same
/// state as it was directly after this action was applied.
virtual void undo() = 0;
/// \brief Advocate every change made by this action.
/// When the results on the IR of the action are to be kept, it is important
/// to call this function, otherwise hidden information may be kept forever.
virtual void commit() {
// Nothing to be done, this action is not doing anything.
}
};
/// \brief Utility to remember the position of an instruction.
class InsertionHandler {
/// Position of an instruction.
/// Either an instruction:
/// - Is the first in a basic block: BB is used.
/// - Has a previous instructon: PrevInst is used.
union {
Instruction *PrevInst;
BasicBlock *BB;
} Point;
/// Remember whether or not the instruction had a previous instruction.
bool HasPrevInstruction;
public:
/// \brief Record the position of \p Inst.
InsertionHandler(Instruction *Inst) {
BasicBlock::iterator It = Inst->getIterator();
HasPrevInstruction = (It != (Inst->getParent()->begin()));
if (HasPrevInstruction)
Point.PrevInst = &*--It;
else
Point.BB = Inst->getParent();
}
/// \brief Insert \p Inst at the recorded position.
void insert(Instruction *Inst) {
if (HasPrevInstruction) {
if (Inst->getParent())
Inst->removeFromParent();
Inst->insertAfter(Point.PrevInst);
} else {
Instruction *Position = &*Point.BB->getFirstInsertionPt();
if (Inst->getParent())
Inst->moveBefore(Position);
else
Inst->insertBefore(Position);
}
}
};
/// \brief Move an instruction before another.
class InstructionMoveBefore : public TypePromotionAction {
/// Original position of the instruction.
InsertionHandler Position;
public:
/// \brief Move \p Inst before \p Before.
InstructionMoveBefore(Instruction *Inst, Instruction *Before)
: TypePromotionAction(Inst), Position(Inst) {
DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
Inst->moveBefore(Before);
}
/// \brief Move the instruction back to its original position.
void undo() override {
DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
Position.insert(Inst);
}
};
/// \brief Set the operand of an instruction with a new value.
class OperandSetter : public TypePromotionAction {
/// Original operand of the instruction.
Value *Origin;
/// Index of the modified instruction.
unsigned Idx;
public:
/// \brief Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
: TypePromotionAction(Inst), Idx(Idx) {
DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
<< "for:" << *Inst << "\n"
<< "with:" << *NewVal << "\n");
Origin = Inst->getOperand(Idx);
Inst->setOperand(Idx, NewVal);
}
/// \brief Restore the original value of the instruction.
void undo() override {
DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
<< "for: " << *Inst << "\n"
<< "with: " << *Origin << "\n");
Inst->setOperand(Idx, Origin);
}
};
/// \brief Hide the operands of an instruction.
/// Do as if this instruction was not using any of its operands.
class OperandsHider : public TypePromotionAction {
/// The list of original operands.
SmallVector<Value *, 4> OriginalValues;
public:
/// \brief Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
unsigned NumOpnds = Inst->getNumOperands();
OriginalValues.reserve(NumOpnds);
for (unsigned It = 0; It < NumOpnds; ++It) {
// Save the current operand.
Value *Val = Inst->getOperand(It);
OriginalValues.push_back(Val);
// Set a dummy one.
// We could use OperandSetter here, but that would imply an overhead
// that we are not willing to pay.
Inst->setOperand(It, UndefValue::get(Val->getType()));
}
}
/// \brief Restore the original list of uses.
void undo() override {
DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
Inst->setOperand(It, OriginalValues[It]);
}
};
/// \brief Build a truncate instruction.
class TruncBuilder : public TypePromotionAction {
Value *Val;
public:
/// \brief Build a truncate instruction of \p Opnd producing a \p Ty
/// result.
/// trunc Opnd to Ty.
TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
IRBuilder<> Builder(Opnd);
Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
}
/// \brief Get the built value.
Value *getBuiltValue() { return Val; }
/// \brief Remove the built instruction.
void undo() override {
DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// \brief Build a sign extension instruction.
class SExtBuilder : public TypePromotionAction {
Value *Val;
public:
/// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
/// result.
/// sext Opnd to Ty.
SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
: TypePromotionAction(InsertPt) {
IRBuilder<> Builder(InsertPt);
Val = Builder.CreateSExt(Opnd, Ty, "promoted");
DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
}
/// \brief Get the built value.
Value *getBuiltValue() { return Val; }
/// \brief Remove the built instruction.
void undo() override {
DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// \brief Build a zero extension instruction.
class ZExtBuilder : public TypePromotionAction {
Value *Val;
public:
/// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
/// result.
/// zext Opnd to Ty.
ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
: TypePromotionAction(InsertPt) {
IRBuilder<> Builder(InsertPt);
Val = Builder.CreateZExt(Opnd, Ty, "promoted");
DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
}
/// \brief Get the built value.
Value *getBuiltValue() { return Val; }
/// \brief Remove the built instruction.
void undo() override {
DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
if (Instruction *IVal = dyn_cast<Instruction>(Val))
IVal->eraseFromParent();
}
};
/// \brief Mutate an instruction to another type.
class TypeMutator : public TypePromotionAction {
/// Record the original type.
Type *OrigTy;
public:
/// \brief Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction *Inst, Type *NewTy)
: TypePromotionAction(Inst), OrigTy(Inst->getType()) {
DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
<< "\n");
Inst->mutateType(NewTy);
}
/// \brief Mutate the instruction back to its original type.
void undo() override {
DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
<< "\n");
Inst->mutateType(OrigTy);
}
};
/// \brief Replace the uses of an instruction by another instruction.
class UsesReplacer : public TypePromotionAction {
/// Helper structure to keep track of the replaced uses.
struct InstructionAndIdx {
/// The instruction using the instruction.
Instruction *Inst;
/// The index where this instruction is used for Inst.
unsigned Idx;
InstructionAndIdx(Instruction *Inst, unsigned Idx)
: Inst(Inst), Idx(Idx) {}
};
/// Keep track of the original uses (pair Instruction, Index).
SmallVector<InstructionAndIdx, 4> OriginalUses;
typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
public:
/// \brief Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
<< "\n");
// Record the original uses.
for (Use &U : Inst->uses()) {
Instruction *UserI = cast<Instruction>(U.getUser());
OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
}
// Now, we can replace the uses.
Inst->replaceAllUsesWith(New);
}
/// \brief Reassign the original uses of Inst to Inst.
void undo() override {
DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
for (use_iterator UseIt = OriginalUses.begin(),
EndIt = OriginalUses.end();
UseIt != EndIt; ++UseIt) {
UseIt->Inst->setOperand(UseIt->Idx, Inst);
}
}
};
/// \brief Remove an instruction from the IR.
class InstructionRemover : public TypePromotionAction {
/// Original position of the instruction.
InsertionHandler Inserter;
/// Helper structure to hide all the link to the instruction. In other
/// words, this helps to do as if the instruction was removed.
OperandsHider Hider;
/// Keep track of the uses replaced, if any.
UsesReplacer *Replacer;
public:
/// \brief Remove all reference of \p Inst and optinally replace all its
/// uses with New.
/// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction *Inst, Value *New = nullptr)
: TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
Replacer(nullptr) {
if (New)
Replacer = new UsesReplacer(Inst, New);
DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
Inst->removeFromParent();
}
~InstructionRemover() override { delete Replacer; }
/// \brief Really remove the instruction.
void commit() override { delete Inst; }
/// \brief Resurrect the instruction and reassign it to the proper uses if
/// new value was provided when build this action.
void undo() override {
DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
Inserter.insert(Inst);
if (Replacer)
Replacer->undo();
Hider.undo();
}
};
public:
/// Restoration point.
/// The restoration point is a pointer to an action instead of an iterator
/// because the iterator may be invalidated but not the pointer.
typedef const TypePromotionAction *ConstRestorationPt;
/// Advocate every changes made in that transaction.
void commit();
/// Undo all the changes made after the given point.
void rollback(ConstRestorationPt Point);
/// Get the current restoration point.
ConstRestorationPt getRestorationPoint() const;
/// \name API for IR modification with state keeping to support rollback.
/// @{
/// Same as Instruction::setOperand.
void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
/// Same as Instruction::eraseFromParent.
void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
/// Same as Value::replaceAllUsesWith.
void replaceAllUsesWith(Instruction *Inst, Value *New);
/// Same as Value::mutateType.
void mutateType(Instruction *Inst, Type *NewTy);
/// Same as IRBuilder::createTrunc.
Value *createTrunc(Instruction *Opnd, Type *Ty);
/// Same as IRBuilder::createSExt.
Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
/// Same as IRBuilder::createZExt.
Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
/// Same as Instruction::moveBefore.
void moveBefore(Instruction *Inst, Instruction *Before);
/// @}
private:
/// The ordered list of actions made so far.
SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
};
void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
Value *NewVal) {
Actions.push_back(
make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
}
void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
Value *NewVal) {
Actions.push_back(
make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
}
void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
Value *New) {
Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
}
void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
}
Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
Type *Ty) {
std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
Value *TypePromotionTransaction::createSExt(Instruction *Inst,
Value *Opnd, Type *Ty) {
std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
Value *TypePromotionTransaction::createZExt(Instruction *Inst,
Value *Opnd, Type *Ty) {
std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
Value *Val = Ptr->getBuiltValue();
Actions.push_back(std::move(Ptr));
return Val;
}
void TypePromotionTransaction::moveBefore(Instruction *Inst,
Instruction *Before) {
Actions.push_back(
make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
}
TypePromotionTransaction::ConstRestorationPt
TypePromotionTransaction::getRestorationPoint() const {
return !Actions.empty() ? Actions.back().get() : nullptr;
}
void TypePromotionTransaction::commit() {
for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
++It)
(*It)->commit();
Actions.clear();
}
void TypePromotionTransaction::rollback(
TypePromotionTransaction::ConstRestorationPt Point) {
while (!Actions.empty() && Point != Actions.back().get()) {
std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
Curr->undo();
}
}
/// \brief A helper class for matching addressing modes.
///
/// This encapsulates the logic for matching the target-legal addressing modes.
class AddressingModeMatcher {
SmallVectorImpl<Instruction*> &AddrModeInsts;
const TargetMachine &TM;
const TargetLowering &TLI;
const DataLayout &DL;
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
/// the memory instruction that we're computing this address for.
Type *AccessTy;
unsigned AddrSpace;
Instruction *MemoryInst;
/// This is the addressing mode that we're building up. This is
/// part of the return value of this addressing mode matching stuff.
ExtAddrMode &AddrMode;
/// The instructions inserted by other CodeGenPrepare optimizations.
const SetOfInstrs &InsertedInsts;
/// A map from the instructions to their type before promotion.
InstrToOrigTy &PromotedInsts;
/// The ongoing transaction where every action should be registered.
TypePromotionTransaction &TPT;
/// This is set to true when we should not do profitability checks.
/// When true, IsProfitableToFoldIntoAddressingMode always returns true.
bool IgnoreProfitability;
AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
const TargetMachine &TM, Type *AT, unsigned AS,
Instruction *MI, ExtAddrMode &AM,
const SetOfInstrs &InsertedInsts,
InstrToOrigTy &PromotedInsts,
TypePromotionTransaction &TPT)
: AddrModeInsts(AMI), TM(TM),
TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
->getTargetLowering()),
DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
PromotedInsts(PromotedInsts), TPT(TPT) {
IgnoreProfitability = false;
}
public:
/// Find the maximal addressing mode that a load/store of V can fold,
/// give an access type of AccessTy. This returns a list of involved
/// instructions in AddrModeInsts.
/// \p InsertedInsts The instructions inserted by other CodeGenPrepare
/// optimizations.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p The ongoing transaction where every action should be registered.
static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
Instruction *MemoryInst,
SmallVectorImpl<Instruction*> &AddrModeInsts,
const TargetMachine &TM,
const SetOfInstrs &InsertedInsts,
InstrToOrigTy &PromotedInsts,
TypePromotionTransaction &TPT) {
ExtAddrMode Result;
bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
MemoryInst, Result, InsertedInsts,
PromotedInsts, TPT).matchAddr(V, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
return Result;
}
private:
bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
bool matchAddr(Value *V, unsigned Depth);
bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
bool *MovedAway = nullptr);
bool isProfitableToFoldIntoAddressingMode(Instruction *I,
ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter);
bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
Value *PromotedOperand) const;
};
/// Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
unsigned Depth) {
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
// mode. Just process that directly.
if (Scale == 1)
return matchAddr(ScaleReg, Depth);
// If the scale is 0, it takes nothing to add this.
if (Scale == 0)
return true;
// If we already have a scale of this value, we can add to it, otherwise, we
// need an available scale field.
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
return false;
ExtAddrMode TestAddrMode = AddrMode;
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
// [A+B + A*7] -> [B+A*8].
TestAddrMode.Scale += Scale;
TestAddrMode.ScaledReg = ScaleReg;
// If the new address isn't legal, bail out.
if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
return false;
// It was legal, so commit it.
AddrMode = TestAddrMode;
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
// X*Scale + C*Scale to addr mode.
ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
if (isa<Instruction>(ScaleReg) && // not a constant expr.
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
TestAddrMode.ScaledReg = AddLHS;
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
// If this addressing mode is legal, commit it and remember that we folded
// this instruction.
if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
AddrMode = TestAddrMode;
return true;
}
}
// Otherwise, not (x+c)*scale, just return what we have.
return true;
}
/// This is a little filter, which returns true if an addressing computation
/// involving I might be folded into a load/store accessing it.
/// This doesn't need to be perfect, but needs to accept at least
/// the set of instructions that MatchOperationAddr can.
static bool MightBeFoldableInst(Instruction *I) {
switch (I->getOpcode()) {
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
// Don't touch identity bitcasts.
if (I->getType() == I->getOperand(0)->getType())
return false;
return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return true;
case Instruction::IntToPtr:
// We know the input is intptr_t, so this is foldable.
return true;
case Instruction::Add:
return true;
case Instruction::Mul:
case Instruction::Shl:
// Can only handle X*C and X << C.
return isa<ConstantInt>(I->getOperand(1));
case Instruction::GetElementPtr:
return true;
default:
return false;
}
}
/// \brief Check whether or not \p Val is a legal instruction for \p TLI.
/// \note \p Val is assumed to be the product of some type promotion.
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
/// to be legal, as the non-promoted value would have had the same state.
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
const DataLayout &DL, Value *Val) {
Instruction *PromotedInst = dyn_cast<Instruction>(Val);
if (!PromotedInst)
return false;
int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
// If the ISDOpcode is undefined, it was undefined before the promotion.
if (!ISDOpcode)
return true;
// Otherwise, check if the promoted instruction is legal or not.
return TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
}
/// \brief Hepler class to perform type promotion.
class TypePromotionHelper {
/// \brief Utility function to check whether or not a sign or zero extension
/// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
/// either using the operands of \p Inst or promoting \p Inst.
/// The type of the extension is defined by \p IsSExt.
/// In other words, check if:
/// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
/// #1 Promotion applies:
/// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
/// #2 Operand reuses:
/// ext opnd1 to ConsideredExtType.
/// \p PromotedInsts maps the instructions to their type before promotion.
static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
const InstrToOrigTy &PromotedInsts, bool IsSExt);
/// \brief Utility function to determine if \p OpIdx should be promoted when
/// promoting \p Inst.
static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
return !(isa<SelectInst>(Inst) && OpIdx == 0);
}
/// \brief Utility function to promote the operand of \p Ext when this
/// operand is a promotable trunc or sext or zext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInstsCost[out] contains the cost of all instructions
/// created to promote the operand of Ext.
/// Newly added extensions are inserted in \p Exts.
/// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
/// \return The promoted value which is used instead of Ext.
static Value *promoteOperandForTruncAndAnyExt(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
/// \brief Utility function to promote the operand of \p Ext when this
/// operand is promotable and is not a supported trunc or sext.
/// \p PromotedInsts maps the instructions to their type before promotion.
/// \p CreatedInstsCost[out] contains the cost of all the instructions
/// created to promote the operand of Ext.
/// Newly added extensions are inserted in \p Exts.
/// Newly added truncates are inserted in \p Truncs.
/// Should never be called directly.
/// \return The promoted value which is used instead of Ext.
static Value *promoteOperandForOther(Instruction *Ext,
TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts,
unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs,
const TargetLowering &TLI, bool IsSExt);
/// \see promoteOperandForOther.
static Value *signExtendOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
Exts, Truncs, TLI, true);
}
/// \see promoteOperandForOther.
static Value *zeroExtendOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
Exts, Truncs, TLI, false);
}
public:
/// Type for the utility function that promotes the operand of Ext.
typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts,
unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs,
const TargetLowering &TLI);
/// \brief Given a sign/zero extend instruction \p Ext, return the approriate
/// action to promote the operand of \p Ext instead of using Ext.
/// \return NULL if no promotable action is possible with the current
/// sign extension.
/// \p InsertedInsts keeps track of all the instructions inserted by the
/// other CodeGenPrepare optimizations. This information is important
/// because we do not want to promote these instructions as CodeGenPrepare
/// will reinsert them later. Thus creating an infinite loop: create/remove.
/// \p PromotedInsts maps the instructions to their type before promotion.
static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
const TargetLowering &TLI,
const InstrToOrigTy &PromotedInsts);
};
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
Type *ConsideredExtType,
const InstrToOrigTy &PromotedInsts,
bool IsSExt) {
// The promotion helper does not know how to deal with vector types yet.
// To be able to fix that, we would need to fix the places where we
// statically extend, e.g., constants and such.
if (Inst->getType()->isVectorTy())
return false;
// We can always get through zext.
if (isa<ZExtInst>(Inst))
return true;
// sext(sext) is ok too.
if (IsSExt && isa<SExtInst>(Inst))
return true;
// We can get through binary operator, if it is legal. In other words, the
// binary operator must have a nuw or nsw flag.
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
(IsSExt && BinOp->hasNoSignedWrap())))
return true;
// Check if we can do the following simplification.
// ext(trunc(opnd)) --> ext(opnd)
if (!isa<TruncInst>(Inst))
return false;
Value *OpndVal = Inst->getOperand(0);
// Check if we can use this operand in the extension.
// If the type is larger than the result type of the extension, we cannot.
if (!OpndVal->getType()->isIntegerTy() ||
OpndVal->getType()->getIntegerBitWidth() >
ConsideredExtType->getIntegerBitWidth())
return false;
// If the operand of the truncate is not an instruction, we will not have
// any information on the dropped bits.
// (Actually we could for constant but it is not worth the extra logic).
Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
if (!Opnd)
return false;
// Check if the source of the type is narrow enough.
// I.e., check that trunc just drops extended bits of the same kind of
// the extension.
// #1 get the type of the operand and check the kind of the extended bits.
const Type *OpndType;
InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
OpndType = It->second.getPointer();
else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
OpndType = Opnd->getOperand(0)->getType();
else
return false;
// #2 check that the truncate just drops extended bits.
return Inst->getType()->getIntegerBitWidth() >=
OpndType->getIntegerBitWidth();
}
TypePromotionHelper::Action TypePromotionHelper::getAction(
Instruction *Ext, const SetOfInstrs &InsertedInsts,
const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
"Unexpected instruction type");
Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
Type *ExtTy = Ext->getType();
bool IsSExt = isa<SExtInst>(Ext);
// If the operand of the extension is not an instruction, we cannot
// get through.
// If it, check we can get through.
if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
return nullptr;
// Do not promote if the operand has been added by codegenprepare.
// Otherwise, it means we are undoing an optimization that is likely to be
// redone, thus causing potential infinite loop.
if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
return nullptr;
// SExt or Trunc instructions.
// Return the related handler.
if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
isa<ZExtInst>(ExtOpnd))
return promoteOperandForTruncAndAnyExt;
// Regular instruction.
// Abort early if we will have to insert non-free instructions.
if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
return nullptr;
return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
}
Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
llvm::Instruction *SExt, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
// By construction, the operand of SExt is an instruction. Otherwise we cannot
// get through it and this method should not be called.
Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
Value *ExtVal = SExt;
bool HasMergedNonFreeExt = false;
if (isa<ZExtInst>(SExtOpnd)) {
// Replace s|zext(zext(opnd))
// => zext(opnd).
HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
Value *ZExt =
TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
TPT.replaceAllUsesWith(SExt, ZExt);
TPT.eraseInstruction(SExt);
ExtVal = ZExt;
} else {
// Replace z|sext(trunc(opnd)) or sext(sext(opnd))
// => z|sext(opnd).
TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
}
CreatedInstsCost = 0;
// Remove dead code.
if (SExtOpnd->use_empty())
TPT.eraseInstruction(SExtOpnd);
// Check if the extension is still needed.
Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
if (ExtInst) {
if (Exts)
Exts->push_back(ExtInst);
CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
}
return ExtVal;
}
// At this point we have: ext ty opnd to ty.
// Reassign the uses of ExtInst to the opnd and remove ExtInst.
Value *NextVal = ExtInst->getOperand(0);
TPT.eraseInstruction(ExtInst, NextVal);
return NextVal;
}
Value *TypePromotionHelper::promoteOperandForOther(
Instruction *Ext, TypePromotionTransaction &TPT,
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
SmallVectorImpl<Instruction *> *Exts,
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
bool IsSExt) {
// By construction, the operand of Ext is an instruction. Otherwise we cannot
// get through it and this method should not be called.
Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
CreatedInstsCost = 0;
if (!ExtOpnd->hasOneUse()) {
// ExtOpnd will be promoted.
// All its uses, but Ext, will need to use a truncated value of the
// promoted version.
// Create the truncate now.
Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
ITrunc->removeFromParent();
// Insert it just after the definition.
ITrunc->insertAfter(ExtOpnd);
if (Truncs)
Truncs->push_back(ITrunc);
}
TPT.replaceAllUsesWith(ExtOpnd, Trunc);
// Restore the operand of Ext (which has been replaced by the previous call
// to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
TPT.setOperand(Ext, 0, ExtOpnd);
}
// Get through the Instruction:
// 1. Update its type.
// 2. Replace the uses of Ext by Inst.
// 3. Extend each operand that needs to be extended.
// Remember the original type of the instruction before promotion.
// This is useful to know that the high bits are sign extended bits.
PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
// Step #1.
TPT.mutateType(ExtOpnd, Ext->getType());
// Step #2.
TPT.replaceAllUsesWith(Ext, ExtOpnd);
// Step #3.
Instruction *ExtForOpnd = Ext;
DEBUG(dbgs() << "Propagate Ext to operands\n");
for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
++OpIdx) {
DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
!shouldExtOperand(ExtOpnd, OpIdx)) {
DEBUG(dbgs() << "No need to propagate\n");
continue;
}
// Check if we can statically extend the operand.
Value *Opnd = ExtOpnd->getOperand(OpIdx);
if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
DEBUG(dbgs() << "Statically extend\n");
unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
: Cst->getValue().zext(BitWidth);
TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
continue;
}
// UndefValue are typed, so we have to statically sign extend them.
if (isa<UndefValue>(Opnd)) {
DEBUG(dbgs() << "Statically extend\n");
TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
continue;
}
// Otherwise we have to explicity sign extend the operand.
// Check if Ext was reused to extend an operand.
if (!ExtForOpnd) {
// If yes, create a new one.
DEBUG(dbgs() << "More operands to ext\n");
Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
: TPT.createZExt(Ext, Opnd, Ext->getType());
if (!isa<Instruction>(ValForExtOpnd)) {
TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
continue;
}
ExtForOpnd = cast<Instruction>(ValForExtOpnd);
}
if (Exts)
Exts->push_back(ExtForOpnd);
TPT.setOperand(ExtForOpnd, 0, Opnd);
// Move the sign extension before the insertion point.
TPT.moveBefore(ExtForOpnd, ExtOpnd);
TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
// If more sext are required, new instructions will have to be created.
ExtForOpnd = nullptr;
}
if (ExtForOpnd == Ext) {
DEBUG(dbgs() << "Extension is useless now\n");
TPT.eraseInstruction(Ext);
}
return ExtOpnd;
}
/// Check whether or not promoting an instruction to a wider type is profitable.
/// \p NewCost gives the cost of extension instructions created by the
/// promotion.
/// \p OldCost gives the cost of extension instructions before the promotion
/// plus the number of instructions that have been
/// matched in the addressing mode the promotion.
/// \p PromotedOperand is the value that has been promoted.
/// \return True if the promotion is profitable, false otherwise.
bool AddressingModeMatcher::isPromotionProfitable(
unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
// The cost of the new extensions is greater than the cost of the
// old extension plus what we folded.
// This is not profitable.
if (NewCost > OldCost)
return false;
if (NewCost < OldCost)
return true;
// The promotion is neutral but it may help folding the sign extension in
// loads for instance.
// Check that we did not create an illegal instruction.
return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
}
/// Given an instruction or constant expr, see if we can fold the operation
/// into the addressing mode. If so, update the addressing mode and return
/// true, otherwise return false without modifying AddrMode.
/// If \p MovedAway is not NULL, it contains the information of whether or
/// not AddrInst has to be folded into the addressing mode on success.
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
/// because it has been moved away.
/// Thus AddrInst must not be added in the matched instructions.
/// This state can happen when AddrInst is a sext, since it may be moved away.
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
/// not be referenced anymore.
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
unsigned Depth,
bool *MovedAway) {
// Avoid exponential behavior on extremely deep expression trees.
if (Depth >= 5) return false;
// By default, all matched instructions stay in place.
if (MovedAway)
*MovedAway = false;
switch (Opcode) {
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
return matchAddr(AddrInst->getOperand(0), Depth);
case Instruction::IntToPtr: {
auto AS = AddrInst->getType()->getPointerAddressSpace();
auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
// This inttoptr is a no-op if the integer type is pointer sized.
if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::BitCast:
// BitCast is always a noop, and we can handle it as long as it is
// int->int or pointer->pointer (we don't want int<->fp or something).
if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
// Don't touch identity bitcasts. These were probably put here by LSR,
// and we don't want to mess around with them. Assume it knows what it
// is doing.
AddrInst->getOperand(0)->getType() != AddrInst->getType())
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
case Instruction::AddrSpaceCast: {
unsigned SrcAS
= AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::Add: {
// Check to see if we can merge in the RHS then the LHS. If so, we win.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// Start a transaction at this point.
// The LHS may match but not the RHS.
// Therefore, we need a higher level restoration point to undo partially
// matched operation.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
matchAddr(AddrInst->getOperand(0), Depth+1))
return true;
// Restore the old addr mode info.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
matchAddr(AddrInst->getOperand(1), Depth+1))
return true;
// Otherwise we definitely can't merge the ADD in.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
break;
}
//case Instruction::Or:
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
//break;
case Instruction::Mul:
case Instruction::Shl: {
// Can only handle X*C and X << C.
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
if (!RHS)
return false;
int64_t Scale = RHS->getSExtValue();
if (Opcode == Instruction::Shl)
Scale = 1LL << Scale;
return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
}
case Instruction::GetElementPtr: {
// Scan the GEP. We check it if it contains constant offsets and at most
// one variable offset.
int VariableOperand = -1;
unsigned VariableScale = 0;
int64_t ConstantOffset = 0;
gep_type_iterator GTI = gep_type_begin(AddrInst);
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx =
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
ConstantOffset += SL->getElementOffset(Idx);
} else {
uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
ConstantOffset += CI->getSExtValue()*TypeSize;
} else if (TypeSize) { // Scales of zero don't do anything.
// We only allow one variable index at the moment.
if (VariableOperand != -1)
return false;
// Remember the variable index.
VariableOperand = i;
VariableScale = TypeSize;
}
}
}
// A common case is for the GEP to only do a constant offset. In this case,
// just add it to the disp field and check validity.
if (VariableOperand == -1) {
AddrMode.BaseOffs += ConstantOffset;
if (ConstantOffset == 0 ||
TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
// Check to see if we can fold the base pointer in too.
if (matchAddr(AddrInst->getOperand(0), Depth+1))
return true;
}
AddrMode.BaseOffs -= ConstantOffset;
return false;
}
// Save the valid addressing mode in case we can't match.
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// See if the scale and offset amount is valid for this target.
AddrMode.BaseOffs += ConstantOffset;
// Match the base operand of the GEP.
if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
// If it couldn't be matched, just stuff the value in a register.
if (AddrMode.HasBaseReg) {
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
}
// Match the remaining variable portion of the GEP.
if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
Depth)) {
// If it couldn't be matched, try stuffing the base into a register
// instead of matching it, and retrying the match of the scale.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
if (AddrMode.HasBaseReg)
return false;
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
AddrMode.BaseOffs += ConstantOffset;
if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
VariableScale, Depth)) {
// If even that didn't work, bail.
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
return false;
}
}
return true;
}
case Instruction::SExt:
case Instruction::ZExt: {
Instruction *Ext = dyn_cast<Instruction>(AddrInst);
if (!Ext)
return false;
// Try to move this ext out of the way of the addressing mode.
// Ask for a method for doing so.
TypePromotionHelper::Action TPH =
TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
if (!TPH)
return false;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
unsigned CreatedInstsCost = 0;
unsigned ExtCost = !TLI.isExtFree(Ext);
Value *PromotedOperand =
TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
// SExt has been moved away.
// Thus either it will be rematched later in the recursive calls or it is
// gone. Anyway, we must not fold it into the addressing mode at this point.
// E.g.,
// op = add opnd, 1
// idx = ext op
// addr = gep base, idx
// is now:
// promotedOpnd = ext opnd <- no match here
// op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
// addr = gep base, op <- match
if (MovedAway)
*MovedAway = true;
assert(PromotedOperand &&
"TypePromotionHelper should have filtered out those cases");
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
if (!matchAddr(PromotedOperand, Depth) ||
// The total of the new cost is equal to the cost of the created
// instructions.
// The total of the old cost is equal to the cost of the extension plus
// what we have saved in the addressing mode.
!isPromotionProfitable(CreatedInstsCost,
ExtCost + (AddrModeInsts.size() - OldSize),
PromotedOperand)) {
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
TPT.rollback(LastKnownGood);
return false;
}
return true;
}
}
return false;
}
/// If we can, try to add the value of 'Addr' into the current addressing mode.
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
/// for the target.
///
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
// Start a transaction at this point that we will rollback if the matching
// fails.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
// Fold in immediates if legal for the target.
AddrMode.BaseOffs += CI->getSExtValue();
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.BaseOffs -= CI->getSExtValue();
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
// If this is a global variable, try to fold it into the addressing mode.
if (!AddrMode.BaseGV) {
AddrMode.BaseGV = GV;
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.BaseGV = nullptr;
}
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
// Check to see if it is possible to fold this operation.
bool MovedAway = false;
if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
// This instruction may have been moved away. If so, there is nothing
// to check here.
if (MovedAway)
return true;
// Okay, it's possible to fold this. Check to see if it is actually
// *profitable* to do so. We use a simple cost model to avoid increasing
// register pressure too much.
if (I->hasOneUse() ||
isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
AddrModeInsts.push_back(I);
return true;
}
// It isn't profitable to do this, roll back.
//cerr << "NOT FOLDING: " << *I;
AddrMode = BackupAddrMode;
AddrModeInsts.resize(OldSize);
TPT.rollback(LastKnownGood);
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
if (matchOperationAddr(CE, CE->getOpcode(), Depth))
return true;
TPT.rollback(LastKnownGood);
} else if (isa<ConstantPointerNull>(Addr)) {
// Null pointer gets folded without affecting the addressing mode.
return true;
}
// Worse case, the target should support [reg] addressing modes. :)
if (!AddrMode.HasBaseReg) {
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = Addr;
// Still check for legality in case the target supports [imm] but not [i+r].
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.HasBaseReg = false;
AddrMode.BaseReg = nullptr;
}
// If the base register is already taken, see if we can do [r+r].
if (AddrMode.Scale == 0) {
AddrMode.Scale = 1;
AddrMode.ScaledReg = Addr;
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
return true;
AddrMode.Scale = 0;
AddrMode.ScaledReg = nullptr;
}
// Couldn't match.
TPT.rollback(LastKnownGood);
return false;
}
/// Check to see if all uses of OpVal by the specified inline asm call are due
/// to memory operands. If so, return true, otherwise return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
const TargetMachine &TM) {
const Function *F = CI->getParent()->getParent();
const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
ImmutableCallSite(CI));
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI->ComputeConstraintToUse(OpInfo, SDValue());
// If this asm operand is our Value*, and if it isn't an indirect memory
// operand, we can't fold it!
if (OpInfo.CallOperandVal == OpVal &&
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
!OpInfo.isIndirect))
return false;
}
return true;
}
/// Recursively walk all the uses of I until we find a memory use.
/// If we find an obviously non-foldable instruction, return true.
/// Add the ultimately found memory instructions to MemoryUses.
static bool FindAllMemoryUses(
Instruction *I,
SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
// If we already considered this instruction, we're done.
if (!ConsideredInsts.insert(I).second)
return false;
// If this is an obviously unfoldable instruction, bail out.
if (!MightBeFoldableInst(I))
return true;
// Loop over all the uses, recursively processing them.
for (Use &U : I->uses()) {
Instruction *UserI = cast<Instruction>(U.getUser());
if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
unsigned opNo = U.getOperandNo();
if (opNo == 0) return true; // Storing addr, not into addr.
MemoryUses.push_back(std::make_pair(SI, opNo));
continue;
}
if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
if (!IA) return true;
// If this is a memory operand, we're cool, otherwise bail out.
if (!IsOperandAMemoryOperand(CI, IA, I, TM))
return true;
continue;
}
if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
return true;
}
return false;
}
/// Return true if Val is already known to be live at the use site that we're
/// folding it into. If so, there is no cost to include it in the addressing
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
/// instruction already.
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
Value *KnownLive2) {
// If Val is either of the known-live values, we know it is live!
if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
return true;
// All values other than instructions and arguments (e.g. constants) are live.
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
// If Val is a constant sized alloca in the entry block, it is live, this is
// true because it is just a reference to the stack/frame pointer, which is
// live for the whole function.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
if (AI->isStaticAlloca())
return true;
// Check to see if this value is already used in the memory instruction's
// block. If so, it's already live into the block at the very least, so we
// can reasonably fold it.
return Val->isUsedInBasicBlock(MemoryInst->getParent());
}
/// It is possible for the addressing mode of the machine to fold the specified
/// instruction into a load or store that ultimately uses it.
/// However, the specified instruction has multiple uses.
/// Given this, it may actually increase register pressure to fold it
/// into the load. For example, consider this code:
///
/// X = ...
/// Y = X+1
/// use(Y) -> nonload/store
/// Z = Y+1
/// load Z
///
/// In this case, Y has multiple uses, and can be folded into the load of Z
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
/// number of computations either.
///
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case. This would make Y die earlier.
bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter) {
if (IgnoreProfitability) return true;
// AMBefore is the addressing mode before this instruction was folded into it,
// and AMAfter is the addressing mode after the instruction was folded. Get
// the set of registers referenced by AMAfter and subtract out those
// referenced by AMBefore: this is the set of values which folding in this
// address extends the lifetime of.
//
// Note that there are only two potential values being referenced here,
// BaseReg and ScaleReg (global addresses are always available, as are any
// folded immediates).
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
// lifetime wasn't extended by adding this instruction.
if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
BaseReg = nullptr;
if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
ScaledReg = nullptr;
// If folding this instruction (and it's subexprs) didn't extend any live
// ranges, we're ok with it.
if (!BaseReg && !ScaledReg)
return true;
// If all uses of this instruction are ultimately load/store/inlineasm's,
// check to see if their addressing modes will include this instruction. If
// so, we can fold it into all uses, so it doesn't matter if it has multiple
// uses.
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
SmallPtrSet<Instruction*, 16> ConsideredInsts;
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
return false; // Has a non-memory, non-foldable use!
// Now that we know that all uses of this instruction are part of a chain of
// computation involving only operations that could theoretically be folded
// into a memory use, loop over each of these uses and see if they could
// *actually* fold the instruction.
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
Instruction *User = MemoryUses[i].first;
unsigned OpNo = MemoryUses[i].second;
// Get the access type of this use. If the use isn't a pointer, we don't
// know what it accesses.
Value *Address = User->getOperand(OpNo);
PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
if (!AddrTy)
return false;
Type *AddressAccessTy = AddrTy->getElementType();
unsigned AS = AddrTy->getAddressSpace();
// Do a match against the root of this address, ignoring profitability. This
// will tell us if the addressing mode for the memory operation will
// *actually* cover the shared instruction.
ExtAddrMode Result;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
MemoryInst, Result, InsertedInsts,
PromotedInsts, TPT);
Matcher.IgnoreProfitability = true;
bool Success = Matcher.matchAddr(Address, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
// The match was to check the profitability, the changes made are not
// part of the original matcher. Therefore, they should be dropped
// otherwise the original matcher will not present the right state.
TPT.rollback(LastKnownGood);
// If the match didn't cover I, then it won't be shared by it.
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
I) == MatchedAddrModeInsts.end())
return false;
MatchedAddrModeInsts.clear();
}
return true;
}
} // end anonymous namespace
/// Return true if the specified values are defined in a
/// different basic block than BB.
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
if (Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() != BB;
return false;
}
/// Load and Store Instructions often have addressing modes that can do
/// significant amounts of computation. As such, instruction selection will try
/// to get the load or store to do as much computation as possible for the
/// program. The problem is that isel can only see within a single block. As
/// such, we sink as much legal addressing mode work into the block as possible.
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands.
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
Type *AccessTy, unsigned AddrSpace) {
Value *Repl = Addr;
// Try to collapse single-value PHI nodes. This is necessary to undo
// unprofitable PRE transformations.
SmallVector<Value*, 8> worklist;
SmallPtrSet<Value*, 16> Visited;
worklist.push_back(Addr);
// Use a worklist to iteratively look through PHI nodes, and ensure that
// the addressing mode obtained from the non-PHI roots of the graph
// are equivalent.
Value *Consensus = nullptr;
unsigned NumUsesConsensus = 0;
bool IsNumUsesConsensusValid = false;
SmallVector<Instruction*, 16> AddrModeInsts;
ExtAddrMode AddrMode;
TypePromotionTransaction TPT;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
while (!worklist.empty()) {
Value *V = worklist.back();
worklist.pop_back();
// Break use-def graph loops.
if (!Visited.insert(V).second) {
Consensus = nullptr;
break;
}
// For a PHI node, push all of its incoming values.
if (PHINode *P = dyn_cast<PHINode>(V)) {
for (Value *IncValue : P->incoming_values())
worklist.push_back(IncValue);
continue;
}
// For non-PHIs, determine the addressing mode being computed.
SmallVector<Instruction*, 16> NewAddrModeInsts;
ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
InsertedInsts, PromotedInsts, TPT);
// This check is broken into two cases with very similar code to avoid using
// getNumUses() as much as possible. Some values have a lot of uses, so
// calling getNumUses() unconditionally caused a significant compile-time
// regression.
if (!Consensus) {
Consensus = V;
AddrMode = NewAddrMode;
AddrModeInsts = NewAddrModeInsts;
continue;
} else if (NewAddrMode == AddrMode) {
if (!IsNumUsesConsensusValid) {
NumUsesConsensus = Consensus->getNumUses();
IsNumUsesConsensusValid = true;
}
// Ensure that the obtained addressing mode is equivalent to that obtained
// for all other roots of the PHI traversal. Also, when choosing one
// such root as representative, select the one with the most uses in order
// to keep the cost modeling heuristics in AddressingModeMatcher
// applicable.
unsigned NumUses = V->getNumUses();
if (NumUses > NumUsesConsensus) {
Consensus = V;
NumUsesConsensus = NumUses;
AddrModeInsts = NewAddrModeInsts;
}
continue;
}
Consensus = nullptr;
break;
}
// If the addressing mode couldn't be determined, or if multiple different
// ones were determined, bail out now.
if (!Consensus) {
TPT.rollback(LastKnownGood);
return false;
}
TPT.commit();
// Check to see if any of the instructions supersumed by this addr mode are
// non-local to I's BB.
bool AnyNonLocal = false;
for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
AnyNonLocal = true;
break;
}
}
// If all the instructions matched are already in this BB, don't do anything.
if (!AnyNonLocal) {
DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
return false;
}
// Insert this computation right after this user. Since our caller is
// scanning from the top of the BB to the bottom, reuse of the expr are
// guaranteed to happen later.
IRBuilder<> Builder(MemoryInst);
// Now that we determined the addressing expression we want to use and know
// that we have to sink it into this block. Check to see if we have already
// done this for some other load/store instr in this block. If so, reuse the
// computation.
Value *&SunkAddr = SunkAddrs[Addr];
if (SunkAddr) {
DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst << "\n");
if (SunkAddr->getType() != Addr->getType())
SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
} else if (AddrSinkUsingGEPs ||
(!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
->useAA())) {
// By default, we use the GEP-based method when AA is used later. This
// prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst << "\n");
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
Value *ResultPtr = nullptr, *ResultIndex = nullptr;
// First, find the pointer.
if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
ResultPtr = AddrMode.BaseReg;
AddrMode.BaseReg = nullptr;
}
if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
// We can't add more than one pointer together, nor can we scale a
// pointer (both of which seem meaningless).
if (ResultPtr || AddrMode.Scale != 1)
return false;
ResultPtr = AddrMode.ScaledReg;
AddrMode.Scale = 0;
}
if (AddrMode.BaseGV) {
if (ResultPtr)
return false;
ResultPtr = AddrMode.BaseGV;
}
// If the real base value actually came from an inttoptr, then the matcher
// will look through it and provide only the integer value. In that case,
// use it here.
if (!ResultPtr && AddrMode.BaseReg) {
ResultPtr =
Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
AddrMode.BaseReg = nullptr;
} else if (!ResultPtr && AddrMode.Scale == 1) {
ResultPtr =
Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
AddrMode.Scale = 0;
}
if (!ResultPtr &&
!AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
SunkAddr = Constant::getNullValue(Addr->getType());
} else if (!ResultPtr) {
return false;
} else {
Type *I8PtrTy =
Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
Type *I8Ty = Builder.getInt8Ty();
// Start with the base register. Do this first so that subsequent address
// matching finds it last, which will prevent it from trying to match it
// as the scaled value in case it happens to be a mul. That would be
// problematic if we've sunk a different mul for the scale, because then
// we'd end up sinking both muls.
if (AddrMode.BaseReg) {
Value *V = AddrMode.BaseReg;
if (V->getType() != IntPtrTy)
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
ResultIndex = V;
}
// Add the scale value.
if (AddrMode.Scale) {
Value *V = AddrMode.ScaledReg;
if (V->getType() == IntPtrTy) {
// done.
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
cast<IntegerType>(V->getType())->getBitWidth()) {
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
} else {
// It is only safe to sign extend the BaseReg if we know that the math
// required to create it did not overflow before we extend it. Since
// the original IR value was tossed in favor of a constant back when
// the AddrMode was created we need to bail out gracefully if widths
// do not match instead of extending it.
Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
if (I && (ResultIndex != AddrMode.BaseReg))
I->eraseFromParent();
return false;
}
if (AddrMode.Scale != 1)
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
"sunkaddr");
if (ResultIndex)
ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
else
ResultIndex = V;
}
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (ResultIndex) {
// We need to add this separately from the scale above to help with
// SDAG consecutive load/store merging.
if (ResultPtr->getType() != I8PtrTy)
ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
}
ResultIndex = V;
}
if (!ResultIndex) {
SunkAddr = ResultPtr;
} else {
if (ResultPtr->getType() != I8PtrTy)
ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
}
if (SunkAddr->getType() != Addr->getType())
SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
}
} else {
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst << "\n");
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
Value *Result = nullptr;
// Start with the base register. Do this first so that subsequent address
// matching finds it last, which will prevent it from trying to match it
// as the scaled value in case it happens to be a mul. That would be
// problematic if we've sunk a different mul for the scale, because then
// we'd end up sinking both muls.
if (AddrMode.BaseReg) {
Value *V = AddrMode.BaseReg;
if (V->getType()->isPointerTy())
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
if (V->getType() != IntPtrTy)
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
Result = V;
}
// Add the scale value.
if (AddrMode.Scale) {
Value *V = AddrMode.ScaledReg;
if (V->getType() == IntPtrTy) {
// done.
} else if (V->getType()->isPointerTy()) {
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
cast<IntegerType>(V->getType())->getBitWidth()) {
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
} else {
// It is only safe to sign extend the BaseReg if we know that the math
// required to create it did not overflow before we extend it. Since
// the original IR value was tossed in favor of a constant back when
// the AddrMode was created we need to bail out gracefully if widths
// do not match instead of extending it.
Instruction *I = dyn_cast_or_null<Instruction>(Result);
if (I && (Result != AddrMode.BaseReg))
I->eraseFromParent();
return false;
}
if (AddrMode.Scale != 1)
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
"sunkaddr");
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
// Add in the BaseGV if present.
if (AddrMode.BaseGV) {
Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (Result)
Result = Builder.CreateAdd(Result, V, "sunkaddr");
else
Result = V;
}
if (!Result)
SunkAddr = Constant::getNullValue(Addr->getType());
else
SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
}
MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
// If we have no uses, recursively delete the value and all dead instructions
// using it.
if (Repl->use_empty()) {
// This can cause recursive deletion, which can invalidate our iterator.
// Use a WeakVH to hold onto it in case this happens.
WeakVH IterHandle(&*CurInstIterator);
BasicBlock *BB = CurInstIterator->getParent();
RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
if (IterHandle != CurInstIterator.getNodePtrUnchecked()) {
// If the iterator instruction was recursively deleted, start over at the
// start of the block.
CurInstIterator = BB->begin();
SunkAddrs.clear();
}
}
++NumMemoryInsts;
return true;
}
/// If there are any memory operands, use OptimizeMemoryInst to sink their
/// address computing into the block when possible / profitable.
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
bool MadeChange = false;
const TargetRegisterInfo *TRI =
TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(*DL, TRI, CS);
unsigned ArgNo = 0;
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI->ComputeConstraintToUse(OpInfo, SDValue());
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
OpInfo.isIndirect) {
Value *OpVal = CS->getArgOperand(ArgNo++);
MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
} else if (OpInfo.Type == InlineAsm::isInput)
ArgNo++;
}
return MadeChange;
}
/// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
/// sign extensions.
static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
assert(!Inst->use_empty() && "Input must have at least one use");
const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
bool IsSExt = isa<SExtInst>(FirstUser);
Type *ExtTy = FirstUser->getType();
for (const User *U : Inst->users()) {
const Instruction *UI = cast<Instruction>(U);
if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
return false;
Type *CurTy = UI->getType();
// Same input and output types: Same instruction after CSE.
if (CurTy == ExtTy)
continue;
// If IsSExt is true, we are in this situation:
// a = Inst
// b = sext ty1 a to ty2
// c = sext ty1 a to ty3
// Assuming ty2 is shorter than ty3, this could be turned into:
// a = Inst
// b = sext ty1 a to ty2
// c = sext ty2 b to ty3
// However, the last sext is not free.
if (IsSExt)
return false;
// This is a ZExt, maybe this is free to extend from one type to another.
// In that case, we would not account for a different use.
Type *NarrowTy;
Type *LargeTy;
if (ExtTy->getScalarType()->getIntegerBitWidth() >
CurTy->getScalarType()->getIntegerBitWidth()) {
NarrowTy = CurTy;
LargeTy = ExtTy;
} else {
NarrowTy = ExtTy;
LargeTy = CurTy;
}
if (!TLI.isZExtFree(NarrowTy, LargeTy))
return false;
}
// All uses are the same or can be derived from one another for free.
return true;
}
/// \brief Try to form ExtLd by promoting \p Exts until they reach a
/// load instruction.
/// If an ext(load) can be formed, it is returned via \p LI for the load
/// and \p Inst for the extension.
/// Otherwise LI == nullptr and Inst == nullptr.
/// When some promotion happened, \p TPT contains the proper state to
/// revert them.
///
/// \return true when promoting was necessary to expose the ext(load)
/// opportunity, false otherwise.
///
/// Example:
/// \code
/// %ld = load i32* %addr
/// %add = add nuw i32 %ld, 4
/// %zext = zext i32 %add to i64
/// \endcode
/// =>
/// \code
/// %ld = load i32* %addr
/// %zext = zext i32 %ld to i64
/// %add = add nuw i64 %zext, 4
/// \encode
/// Thanks to the promotion, we can match zext(load i32*) to i64.
bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
LoadInst *&LI, Instruction *&Inst,
const SmallVectorImpl<Instruction *> &Exts,
unsigned CreatedInstsCost = 0) {
// Iterate over all the extensions to see if one form an ext(load).
for (auto I : Exts) {
// Check if we directly have ext(load).
if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
Inst = I;
// No promotion happened here.
return false;
}
// Check whether or not we want to do any promotion.
if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
continue;
// Get the action to perform the promotion.
TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
I, InsertedInsts, *TLI, PromotedInsts);
// Check if we can promote.
if (!TPH)
continue;
// Save the current state.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
SmallVector<Instruction *, 4> NewExts;
unsigned NewCreatedInstsCost = 0;
unsigned ExtCost = !TLI->isExtFree(I);
// Promote.
Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
&NewExts, nullptr, *TLI);
assert(PromotedVal &&
"TypePromotionHelper should have filtered out those cases");
// We would be able to merge only one extension in a load.
// Therefore, if we have more than 1 new extension we heuristically
// cut this search path, because it means we degrade the code quality.
// With exactly 2, the transformation is neutral, because we will merge
// one extension but leave one. However, we optimistically keep going,
// because the new extension may be removed too.
long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
TotalCreatedInstsCost -= ExtCost;
if (!StressExtLdPromotion &&
(TotalCreatedInstsCost > 1 ||
!isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
// The promotion is not profitable, rollback to the previous state.
TPT.rollback(LastKnownGood);
continue;
}
// The promotion is profitable.
// Check if it exposes an ext(load).
(void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
// If we have created a new extension, i.e., now we have two
// extensions. We must make sure one of them is merged with
// the load, otherwise we may degrade the code quality.
(LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
// Promotion happened.
return true;
// If this does not help to expose an ext(load) then, rollback.
TPT.rollback(LastKnownGood);
}
// None of the extension can form an ext(load).
LI = nullptr;
Inst = nullptr;
return false;
}
/// Move a zext or sext fed by a load into the same basic block as the load,
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
/// extend into the load.
/// \p I[in/out] the extension may be modified during the process if some
/// promotions apply.
///
bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
// Try to promote a chain of computation if it allows to form
// an extended load.
TypePromotionTransaction TPT;
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
SmallVector<Instruction *, 1> Exts;
Exts.push_back(I);
// Look for a load being extended.
LoadInst *LI = nullptr;
Instruction *OldExt = I;
bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
if (!LI || !I) {
assert(!HasPromoted && !LI && "If we did not match any load instruction "
"the code must remain the same");
I = OldExt;
return false;
}
// If they're already in the same block, there's nothing to do.
// Make the cheap checks first if we did not promote.
// If we promoted, we need to check if it is indeed profitable.
if (!HasPromoted && LI->getParent() == I->getParent())
return false;
EVT VT = TLI->getValueType(*DL, I->getType());
EVT LoadVT = TLI->getValueType(*DL, LI->getType());
// If the load has other users and the truncate is not free, this probably
// isn't worthwhile.
if (!LI->hasOneUse() && TLI &&
(TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
!TLI->isTruncateFree(I->getType(), LI->getType())) {
I = OldExt;
TPT.rollback(LastKnownGood);
return false;
}
// Check whether the target supports casts folded into loads.
unsigned LType;
if (isa<ZExtInst>(I))
LType = ISD::ZEXTLOAD;
else {
assert(isa<SExtInst>(I) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
I = OldExt;
TPT.rollback(LastKnownGood);
return false;
}
// Move the extend into the same block as the load, so that SelectionDAG
// can fold it.
TPT.commit();
I->removeFromParent();
I->insertAfter(LI);
++NumExtsMoved;
return true;
}
bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
BasicBlock *DefBB = I->getParent();
// If the result of a {s|z}ext and its source are both live out, rewrite all
// other uses of the source with result of extension.
Value *Src = I->getOperand(0);
if (Src->hasOneUse())
return false;
// Only do this xform if truncating is free.
if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
return false;
// Only safe to perform the optimization if the source is also defined in
// this block.
if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
return false;
bool DefIsLiveOut = false;
for (User *U : I->users()) {
Instruction *UI = cast<Instruction>(U);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
DefIsLiveOut = true;
break;
}
if (!DefIsLiveOut)
return false;
// Make sure none of the uses are PHI nodes.
for (User *U : Src->users()) {
Instruction *UI = cast<Instruction>(U);
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
// Be conservative. We don't want this xform to end up introducing
// reloads just before load / store instructions.
if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
return false;
}
// InsertedTruncs - Only insert one trunc in each block once.
DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
bool MadeChange = false;
for (Use &U : Src->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
// Figure out which BB this ext is used in.
BasicBlock *UserBB = User->getParent();
if (UserBB == DefBB) continue;
// Both src and def are live in this block. Rewrite the use.
Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
if (!InsertedTrunc) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
InsertedInsts.insert(InsertedTrunc);
}
// Replace a use of the {s|z}ext source with a use of the result.
U = InsertedTrunc;
++NumExtUses;
MadeChange = true;
}
return MadeChange;
}
/// Check if V (an operand of a select instruction) is an expensive instruction
/// that is only used once.
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
auto *I = dyn_cast<Instruction>(V);
// If it's safe to speculatively execute, then it should not have side
// effects; therefore, it's safe to sink and possibly *not* execute.
return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
}
/// Returns true if a SelectInst should be turned into an explicit branch.
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
SelectInst *SI) {
// FIXME: This should use the same heuristics as IfConversion to determine
// whether a select is better represented as a branch. This requires that
// branch probability metadata is preserved for the select, which is not the
// case currently.
CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
// If a branch is predictable, an out-of-order CPU can avoid blocking on its
// comparison condition. If the compare has more than one use, there's
// probably another cmov or setcc around, so it's not worth emitting a branch.
if (!Cmp || !Cmp->hasOneUse())
return false;
Value *CmpOp0 = Cmp->getOperand(0);
Value *CmpOp1 = Cmp->getOperand(1);
// Emit "cmov on compare with a memory operand" as a branch to avoid stalls
// on a load from memory. But if the load is used more than once, do not
// change the select to a branch because the load is probably needed
// regardless of whether the branch is taken or not.
if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
(isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()))
return true;
// If either operand of the select is expensive and only needed on one side
// of the select, we should form a branch.
if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
sinkSelectOperand(TTI, SI->getFalseValue()))
return true;
return false;
}
/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
// Can we convert the 'select' to CF ?
if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
return false;
TargetLowering::SelectSupportKind SelectKind;
if (VectorCond)
SelectKind = TargetLowering::VectorMaskSelect;
else if (SI->getType()->isVectorTy())
SelectKind = TargetLowering::ScalarCondVectorVal;
else
SelectKind = TargetLowering::ScalarValSelect;
// Do we have efficient codegen support for this kind of 'selects' ?
if (TLI->isSelectSupported(SelectKind)) {
// We have efficient codegen support for the select instruction.
// Check if it is profitable to keep this 'select'.
if (!TLI->isPredictableSelectExpensive() ||
!isFormingBranchFromSelectProfitable(TTI, SI))
return false;
}
ModifiedDT = true;
// Transform a sequence like this:
// start:
// %cmp = cmp uge i32 %a, %b
// %sel = select i1 %cmp, i32 %c, i32 %d
//
// Into:
// start:
// %cmp = cmp uge i32 %a, %b
// br i1 %cmp, label %select.true, label %select.false
// select.true:
// br label %select.end
// select.false:
// br label %select.end
// select.end:
// %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
//
// In addition, we may sink instructions that produce %c or %d from
// the entry block into the destination(s) of the new branch.
// If the true or false blocks do not contain a sunken instruction, that
// block and its branch may be optimized away. In that case, one side of the
// first branch will point directly to select.end, and the corresponding PHI
// predecessor block will be the start block.
// First, we split the block containing the select into 2 blocks.
BasicBlock *StartBlock = SI->getParent();
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
// Delete the unconditional branch that was just created by the split.
StartBlock->getTerminator()->eraseFromParent();
// These are the new basic blocks for the conditional branch.
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr;
BasicBlock *FalseBlock = nullptr;
// Sink expensive instructions into the conditional blocks to avoid executing
// them speculatively.
if (sinkSelectOperand(TTI, SI->getTrueValue())) {
TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
EndBlock->getParent(), EndBlock);
auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
auto *TrueInst = cast<Instruction>(SI->getTrueValue());
TrueInst->moveBefore(TrueBranch);
}
if (sinkSelectOperand(TTI, SI->getFalseValue())) {
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
EndBlock->getParent(), EndBlock);
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
auto *FalseInst = cast<Instruction>(SI->getFalseValue());
FalseInst->moveBefore(FalseBranch);
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
// for a new input value to the PHI.
if (TrueBlock == FalseBlock) {
assert(TrueBlock == nullptr &&
"Unexpected basic block transform while optimizing select");
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
EndBlock->getParent(), EndBlock);
BranchInst::Create(EndBlock, FalseBlock);
}
// Insert the real conditional branch based on the original condition.
// If we did not create a new block for one of the 'true' or 'false' paths
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
if (TrueBlock == nullptr) {
BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
TrueBlock = StartBlock;
} else if (FalseBlock == nullptr) {
BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
FalseBlock = StartBlock;
} else {
BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
}
// The select itself is replaced with a PHI Node.
PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
PN->takeName(SI);
PN->addIncoming(SI->getTrueValue(), TrueBlock);
PN->addIncoming(SI->getFalseValue(), FalseBlock);
SI->replaceAllUsesWith(PN);
SI->eraseFromParent();
// Instruct OptimizeBlock to skip to the next block.
CurInstIterator = StartBlock->end();
++NumSelectsExpanded;
return true;
}
static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
SmallVector<int, 16> Mask(SVI->getShuffleMask());
int SplatElem = -1;
for (unsigned i = 0; i < Mask.size(); ++i) {
if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
return false;
SplatElem = Mask[i];
}
return true;
}
/// Some targets have expensive vector shifts if the lanes aren't all the same
/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
/// it's often worth sinking a shufflevector splat down to its use so that
/// codegen can spot all lanes are identical.
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
BasicBlock *DefBB = SVI->getParent();
// Only do this xform if variable vector shifts are particularly expensive.
if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
return false;
// We only expect better codegen by sinking a shuffle if we can recognise a
// constant splat.
if (!isBroadcastShuffle(SVI))
return false;
// InsertedShuffles - Only insert a shuffle in each block once.
DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
bool MadeChange = false;
for (User *U : SVI->users()) {
Instruction *UI = cast<Instruction>(U);
// Figure out which BB this ext is used in.
BasicBlock *UserBB = UI->getParent();
if (UserBB == DefBB) continue;
// For now only apply this when the splat is used by a shift instruction.
if (!UI->isShift()) continue;
// Everything checks out, sink the shuffle if the user's block doesn't
// already have a copy.
Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
if (!InsertedShuffle) {
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
assert(InsertPt != UserBB->end());
InsertedShuffle =
new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
SVI->getOperand(2), "", &*InsertPt);
}
UI->replaceUsesOfWith(SVI, InsertedShuffle);
MadeChange = true;
}
// If we removed all uses, nuke the shuffle.
if (SVI->use_empty()) {
SVI->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
if (!TLI || !DL)
return false;
Value *Cond = SI->getCondition();
Type *OldType = Cond->getType();
LLVMContext &Context = Cond->getContext();
MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
unsigned RegWidth = RegType.getSizeInBits();
if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
return false;
// If the register width is greater than the type width, expand the condition
// of the switch instruction and each case constant to the width of the
// register. By widening the type of the switch condition, subsequent
// comparisons (for case comparisons) will not need to be extended to the
// preferred register width, so we will potentially eliminate N-1 extends,
// where N is the number of cases in the switch.
auto *NewType = Type::getIntNTy(Context, RegWidth);
// Zero-extend the switch condition and case constants unless the switch
// condition is a function argument that is already being sign-extended.
// In that case, we can avoid an unnecessary mask/extension by sign-extending
// everything instead.
Instruction::CastOps ExtType = Instruction::ZExt;
if (auto *Arg = dyn_cast<Argument>(Cond))
if (Arg->hasSExtAttr())
ExtType = Instruction::SExt;
auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
ExtInst->insertBefore(SI);
SI->setCondition(ExtInst);
for (SwitchInst::CaseIt Case : SI->cases()) {
APInt NarrowConst = Case.getCaseValue()->getValue();
APInt WideConst = (ExtType == Instruction::ZExt) ?
NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
Case.setValue(ConstantInt::get(Context, WideConst));
}
return true;
}
namespace {
/// \brief Helper class to promote a scalar operation to a vector one.
/// This class is used to move downward extractelement transition.
/// E.g.,
/// a = vector_op <2 x i32>
/// b = extractelement <2 x i32> a, i32 0
/// c = scalar_op b
/// store c
///
/// =>
/// a = vector_op <2 x i32>
/// c = vector_op a (equivalent to scalar_op on the related lane)
/// * d = extractelement <2 x i32> c, i32 0
/// * store d
/// Assuming both extractelement and store can be combine, we get rid of the
/// transition.
class VectorPromoteHelper {
/// DataLayout associated with the current module.
const DataLayout &DL;
/// Used to perform some checks on the legality of vector operations.
const TargetLowering &TLI;
/// Used to estimated the cost of the promoted chain.
const TargetTransformInfo &TTI;
/// The transition being moved downwards.
Instruction *Transition;
/// The sequence of instructions to be promoted.
SmallVector<Instruction *, 4> InstsToBePromoted;
/// Cost of combining a store and an extract.
unsigned StoreExtractCombineCost;
/// Instruction that will be combined with the transition.
Instruction *CombineInst;
/// \brief The instruction that represents the current end of the transition.
/// Since we are faking the promotion until we reach the end of the chain
/// of computation, we need a way to get the current end of the transition.
Instruction *getEndOfTransition() const {
if (InstsToBePromoted.empty())
return Transition;
return InstsToBePromoted.back();
}
/// \brief Return the index of the original value in the transition.
/// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
/// c, is at index 0.
unsigned getTransitionOriginalValueIdx() const {
assert(isa<ExtractElementInst>(Transition) &&
"Other kind of transitions are not supported yet");
return 0;
}
/// \brief Return the index of the index in the transition.
/// E.g., for "extractelement <2 x i32> c, i32 0" the index
/// is at index 1.
unsigned getTransitionIdx() const {
assert(isa<ExtractElementInst>(Transition) &&
"Other kind of transitions are not supported yet");
return 1;
}
/// \brief Get the type of the transition.
/// This is the type of the original value.
/// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
/// transition is <2 x i32>.
Type *getTransitionType() const {
return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
}
/// \brief Promote \p ToBePromoted by moving \p Def downward through.
/// I.e., we have the following sequence:
/// Def = Transition <ty1> a to <ty2>
/// b = ToBePromoted <ty2> Def, ...
/// =>
/// b = ToBePromoted <ty1> a, ...
/// Def = Transition <ty1> ToBePromoted to <ty2>
void promoteImpl(Instruction *ToBePromoted);
/// \brief Check whether or not it is profitable to promote all the
/// instructions enqueued to be promoted.
bool isProfitableToPromote() {
Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
unsigned Index = isa<ConstantInt>(ValIdx)
? cast<ConstantInt>(ValIdx)->getZExtValue()
: -1;
Type *PromotedType = getTransitionType();
StoreInst *ST = cast<StoreInst>(CombineInst);
unsigned AS = ST->getPointerAddressSpace();
unsigned Align = ST->getAlignment();
// Check if this store is supported.
if (!TLI.allowsMisalignedMemoryAccesses(
TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
Align)) {
// If this is not supported, there is no way we can combine
// the extract with the store.
return false;
}
// The scalar chain of computation has to pay for the transition
// scalar to vector.
// The vector chain has to account for the combining cost.
uint64_t ScalarCost =
TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
uint64_t VectorCost = StoreExtractCombineCost;
for (const auto &Inst : InstsToBePromoted) {
// Compute the cost.
// By construction, all instructions being promoted are arithmetic ones.
// Moreover, one argument is a constant that can be viewed as a splat
// constant.
Value *Arg0 = Inst->getOperand(0);
bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
isa<ConstantFP>(Arg0);
TargetTransformInfo::OperandValueKind Arg0OVK =
IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
: TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Arg1OVK =
!IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
: TargetTransformInfo::OK_AnyValue;
ScalarCost += TTI.getArithmeticInstrCost(
Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
Arg0OVK, Arg1OVK);
}
DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
<< ScalarCost << "\nVector: " << VectorCost << '\n');
return ScalarCost > VectorCost;
}
/// \brief Generate a constant vector with \p Val with the same
/// number of elements as the transition.
/// \p UseSplat defines whether or not \p Val should be replicated
/// across the whole vector.
/// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
/// otherwise we generate a vector with as many undef as possible:
/// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
/// used at the index of the extract.
Value *getConstantVector(Constant *Val, bool UseSplat) const {
unsigned ExtractIdx = UINT_MAX;
if (!UseSplat) {
// If we cannot determine where the constant must be, we have to
// use a splat constant.
Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
ExtractIdx = CstVal->getSExtValue();
else
UseSplat = true;
}
unsigned End = getTransitionType()->getVectorNumElements();
if (UseSplat)
return ConstantVector::getSplat(End, Val);
SmallVector<Constant *, 4> ConstVec;
UndefValue *UndefVal = UndefValue::get(Val->getType());
for (unsigned Idx = 0; Idx != End; ++Idx) {
if (Idx == ExtractIdx)
ConstVec.push_back(Val);
else
ConstVec.push_back(UndefVal);
}
return ConstantVector::get(ConstVec);
}
/// \brief Check if promoting to a vector type an operand at \p OperandIdx
/// in \p Use can trigger undefined behavior.
static bool canCauseUndefinedBehavior(const Instruction *Use,
unsigned OperandIdx) {
// This is not safe to introduce undef when the operand is on
// the right hand side of a division-like instruction.
if (OperandIdx != 1)
return false;
switch (Use->getOpcode()) {
default:
return false;
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
return true;
case Instruction::FDiv:
case Instruction::FRem:
return !Use->hasNoNaNs();
}
llvm_unreachable(nullptr);
}
public:
VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
const TargetTransformInfo &TTI, Instruction *Transition,
unsigned CombineCost)
: DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
assert(Transition && "Do not know how to promote null");
}
/// \brief Check if we can promote \p ToBePromoted to \p Type.
bool canPromote(const Instruction *ToBePromoted) const {
// We could support CastInst too.
return isa<BinaryOperator>(ToBePromoted);
}
/// \brief Check if it is profitable to promote \p ToBePromoted
/// by moving downward the transition through.
bool shouldPromote(const Instruction *ToBePromoted) const {
// Promote only if all the operands can be statically expanded.
// Indeed, we do not want to introduce any new kind of transitions.
for (const Use &U : ToBePromoted->operands()) {
const Value *Val = U.get();
if (Val == getEndOfTransition()) {
// If the use is a division and the transition is on the rhs,
// we cannot promote the operation, otherwise we may create a
// division by zero.
if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
return false;
continue;
}
if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
!isa<ConstantFP>(Val))
return false;
}
// Check that the resulting operation is legal.
int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
if (!ISDOpcode)
return false;
return StressStoreExtract ||
TLI.isOperationLegalOrCustom(
ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
}
/// \brief Check whether or not \p Use can be combined
/// with the transition.
/// I.e., is it possible to do Use(Transition) => AnotherUse?
bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
/// \brief Record \p ToBePromoted as part of the chain to be promoted.
void enqueueForPromotion(Instruction *ToBePromoted) {
InstsToBePromoted.push_back(ToBePromoted);
}
/// \brief Set the instruction that will be combined with the transition.
void recordCombineInstruction(Instruction *ToBeCombined) {
assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
CombineInst = ToBeCombined;
}
/// \brief Promote all the instructions enqueued for promotion if it is
/// is profitable.
/// \return True if the promotion happened, false otherwise.
bool promote() {
// Check if there is something to promote.
// Right now, if we do not have anything to combine with,
// we assume the promotion is not profitable.
if (InstsToBePromoted.empty() || !CombineInst)
return false;
// Check cost.
if (!StressStoreExtract && !isProfitableToPromote())
return false;
// Promote.
for (auto &ToBePromoted : InstsToBePromoted)
promoteImpl(ToBePromoted);
InstsToBePromoted.clear();
return true;
}
};
} // End of anonymous namespace.
void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
// At this point, we know that all the operands of ToBePromoted but Def
// can be statically promoted.
// For Def, we need to use its parameter in ToBePromoted:
// b = ToBePromoted ty1 a
// Def = Transition ty1 b to ty2
// Move the transition down.
// 1. Replace all uses of the promoted operation by the transition.
// = ... b => = ... Def.
assert(ToBePromoted->getType() == Transition->getType() &&
"The type of the result of the transition does not match "
"the final type");
ToBePromoted->replaceAllUsesWith(Transition);
// 2. Update the type of the uses.
// b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
Type *TransitionTy = getTransitionType();
ToBePromoted->mutateType(TransitionTy);
// 3. Update all the operands of the promoted operation with promoted
// operands.
// b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
for (Use &U : ToBePromoted->operands()) {
Value *Val = U.get();
Value *NewVal = nullptr;
if (Val == Transition)
NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
isa<ConstantFP>(Val)) {
// Use a splat constant if it is not safe to use undef.
NewVal = getConstantVector(
cast<Constant>(Val),
isa<UndefValue>(Val) ||
canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
} else
llvm_unreachable("Did you modified shouldPromote and forgot to update "
"this?");
ToBePromoted->setOperand(U.getOperandNo(), NewVal);
}
Transition->removeFromParent();
Transition->insertAfter(ToBePromoted);
Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
}
/// Some targets can do store(extractelement) with one instruction.
/// Try to push the extractelement towards the stores when the target
/// has this feature and this is profitable.
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
unsigned CombineCost = UINT_MAX;
if (DisableStoreExtract || !TLI ||
(!StressStoreExtract &&
!TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
Inst->getOperand(1), CombineCost)))
return false;
// At this point we know that Inst is a vector to scalar transition.
// Try to move it down the def-use chain, until:
// - We can combine the transition with its single use
// => we got rid of the transition.
// - We escape the current basic block
// => we would need to check that we are moving it at a cheaper place and
// we do not do that for now.
BasicBlock *Parent = Inst->getParent();
DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
// If the transition has more than one use, assume this is not going to be
// beneficial.
while (Inst->hasOneUse()) {
Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
if (ToBePromoted->getParent() != Parent) {
DEBUG(dbgs() << "Instruction to promote is in a different block ("
<< ToBePromoted->getParent()->getName()
<< ") than the transition (" << Parent->getName() << ").\n");
return false;
}
if (VPH.canCombine(ToBePromoted)) {
DEBUG(dbgs() << "Assume " << *Inst << '\n'
<< "will be combined with: " << *ToBePromoted << '\n');
VPH.recordCombineInstruction(ToBePromoted);
bool Changed = VPH.promote();
NumStoreExtractExposed += Changed;
return Changed;
}
DEBUG(dbgs() << "Try promoting.\n");
if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
return false;
DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
VPH.enqueueForPromotion(ToBePromoted);
Inst = ToBePromoted;
}
return false;
}
bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
// Bail out if we inserted the instruction to prevent optimizations from
// stepping on each other's toes.
if (InsertedInsts.count(I))
return false;
if (PHINode *P = dyn_cast<PHINode>(I)) {
// It is possible for very late stage optimizations (such as SimplifyCFG)
// to introduce PHI nodes too late to be cleaned up. If we detect such a
// trivial PHI, go ahead and zap it here.
if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
++NumPHIsElim;
return true;
}
return false;
}
if (CastInst *CI = dyn_cast<CastInst>(I)) {
// If the source of the cast is a constant, then this should have
// already been constant folded. The only reason NOT to constant fold
// it is if something (e.g. LSR) was careful to place the constant
// evaluation in a block other than then one that uses it (e.g. to hoist
// the address of globals out of a loop). If this is the case, we don't
// want to forward-subst the cast.
if (isa<Constant>(CI->getOperand(0)))
return false;
if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
return true;
if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
/// Sink a zext or sext into its user blocks if the target type doesn't
/// fit in one register
if (TLI &&
TLI->getTypeAction(CI->getContext(),
TLI->getValueType(*DL, CI->getType())) ==
TargetLowering::TypeExpandInteger) {
return SinkCast(CI);
} else {
bool MadeChange = moveExtToFormExtLoad(I);
return MadeChange | optimizeExtUses(I);
}
}
return false;
}
if (CmpInst *CI = dyn_cast<CmpInst>(I))
if (!TLI || !TLI->hasMultipleConditionRegisters())
return OptimizeCmpExpression(CI);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
stripInvariantGroupMetadata(*LI);
if (TLI) {
unsigned AS = LI->getPointerAddressSpace();
return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
}
return false;
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
stripInvariantGroupMetadata(*SI);
if (TLI) {
unsigned AS = SI->getPointerAddressSpace();
return optimizeMemoryInst(I, SI->getOperand(1),
SI->getOperand(0)->getType(), AS);
}
return false;
}
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
BinOp->getOpcode() == Instruction::LShr)) {
ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
if (TLI && CI && TLI->hasExtractBitsInsn())
return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
return false;
}
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
if (GEPI->hasAllZeroIndices()) {
/// The GEP operand must be a pointer, so must its result -> BitCast
Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
GEPI->getName(), GEPI);
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
++NumGEPsElim;
optimizeInst(NC, ModifiedDT);
return true;
}
return false;
}
if (CallInst *CI = dyn_cast<CallInst>(I))
return optimizeCallInst(CI, ModifiedDT);
if (SelectInst *SI = dyn_cast<SelectInst>(I))
return optimizeSelectInst(SI);
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
return optimizeShuffleVectorInst(SVI);
if (auto *Switch = dyn_cast<SwitchInst>(I))
return optimizeSwitchInst(Switch);
if (isa<ExtractElementInst>(I))
return optimizeExtractElementInst(I);
return false;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
SunkAddrs.clear();
bool MadeChange = false;
CurInstIterator = BB.begin();
while (CurInstIterator != BB.end()) {
MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
if (ModifiedDT)
return true;
}
MadeChange |= dupRetToEnableTailCallOpts(&BB);
return MadeChange;
}
// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
bool CodeGenPrepare::placeDbgValues(Function &F) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
Instruction *PrevNonDbgInst = nullptr;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
Instruction *Insn = &*BI++;
DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
// Leave dbg.values that refer to an alloca alone. These
// instrinsics describe the address of a variable (= the alloca)
// being taken. They should not be moved next to the alloca
// (and to the beginning of the scope), but rather stay close to
// where said address is used.
if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
PrevNonDbgInst = Insn;
continue;
}
Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
DVI->removeFromParent();
if (isa<PHINode>(VI))
DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
else
DVI->insertAfter(VI);
MadeChange = true;
++NumDbgValueMoved;
}
}
}
return MadeChange;
}
// If there is a sequence that branches based on comparing a single bit
// against zero that can be combined into a single instruction, and the
// target supports folding these into a single instruction, sink the
// mask and compare into the branch uses. Do this before OptimizeBlock ->
// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
// searched for.
bool CodeGenPrepare::sinkAndCmp(Function &F) {
if (!EnableAndCmpSinking)
return false;
if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
return false;
bool MadeChange = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
BasicBlock *BB = &*I++;
// Does this BB end with the following?
// %andVal = and %val, #single-bit-set
// %icmpVal = icmp %andResult, 0
// br i1 %cmpVal label %dest1, label %dest2"
BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
if (!Brcc || !Brcc->isConditional())
continue;
ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
if (!Cmp || Cmp->getParent() != BB)
continue;
ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
if (!Zero || !Zero->isZero())
continue;
Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
continue;
ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
continue;
DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
// Push the "and; icmp" for any users that are conditional branches.
// Since there can only be one branch use per BB, we don't need to keep
// track of which BBs we insert into.
for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
UI != E; ) {
Use &TheUse = *UI;
// Find brcc use.
BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
++UI;
if (!BrccUser || !BrccUser->isConditional())
continue;
BasicBlock *UserBB = BrccUser->getParent();
if (UserBB == BB) continue;
DEBUG(dbgs() << "found Brcc use\n");
// Sink the "and; icmp" to use.
MadeChange = true;
BinaryOperator *NewAnd =
BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
BrccUser);
CmpInst *NewCmp =
CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
"", BrccUser);
TheUse = NewCmp;
++NumAndCmpsMoved;
DEBUG(BrccUser->getParent()->dump());
}
}
return MadeChange;
}
/// \brief Retrieve the probabilities of a conditional branch. Returns true on
/// success, or returns false if no or invalid metadata was found.
static bool extractBranchMetadata(BranchInst *BI,
uint64_t &ProbTrue, uint64_t &ProbFalse) {
assert(BI->isConditional() &&
"Looking for probabilities on unconditional branch?");
auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
if (!ProfileData || ProfileData->getNumOperands() != 3)
return false;
const auto *CITrue =
mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
const auto *CIFalse =
mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
if (!CITrue || !CIFalse)
return false;
ProbTrue = CITrue->getValue().getZExtValue();
ProbFalse = CIFalse->getValue().getZExtValue();
return true;
}
/// \brief Scale down both weights to fit into uint32_t.
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
uint32_t Scale = (NewMax / UINT32_MAX) + 1;
NewTrue = NewTrue / Scale;
NewFalse = NewFalse / Scale;
}
/// \brief Some targets prefer to split a conditional branch like:
/// \code
/// %0 = icmp ne i32 %a, 0
/// %1 = icmp ne i32 %b, 0
/// %or.cond = or i1 %0, %1
/// br i1 %or.cond, label %TrueBB, label %FalseBB
/// \endcode
/// into multiple branch instructions like:
/// \code
/// bb1:
/// %0 = icmp ne i32 %a, 0
/// br i1 %0, label %TrueBB, label %bb2
/// bb2:
/// %1 = icmp ne i32 %b, 0
/// br i1 %1, label %TrueBB, label %FalseBB
/// \endcode
/// This usually allows instruction selection to do even further optimizations
/// and combine the compare with the branch instruction. Currently this is
/// applied for targets which have "cheap" jump instructions.
///
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
///
bool CodeGenPrepare::splitBranchCondition(Function &F) {
if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
return false;
bool MadeChange = false;
for (auto &BB : F) {
// Does this BB end with the following?
// %cond1 = icmp|fcmp|binary instruction ...
// %cond2 = icmp|fcmp|binary instruction ...
// %cond.or = or|and i1 %cond1, cond2
// br i1 %cond.or label %dest1, label %dest2"
BinaryOperator *LogicOp;
BasicBlock *TBB, *FBB;
if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
continue;
auto *Br1 = cast<BranchInst>(BB.getTerminator());
if (Br1->getMetadata(LLVMContext::MD_unpredictable))
continue;
unsigned Opc;
Value *Cond1, *Cond2;
if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
m_OneUse(m_Value(Cond2)))))
Opc = Instruction::And;
else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
m_OneUse(m_Value(Cond2)))))
Opc = Instruction::Or;
else
continue;
if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
!match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
continue;
DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
// Create a new BB.
auto *InsertBefore = std::next(Function::iterator(BB))
.getNodePtrUnchecked();
auto TmpBB = BasicBlock::Create(BB.getContext(),
BB.getName() + ".cond.split",
BB.getParent(), InsertBefore);
// Update original basic block by using the first condition directly by the
// branch instruction and removing the no longer needed and/or instruction.
Br1->setCondition(Cond1);
LogicOp->eraseFromParent();
// Depending on the conditon we have to either replace the true or the false
// successor of the original branch instruction.
if (Opc == Instruction::And)
Br1->setSuccessor(0, TmpBB);
else
Br1->setSuccessor(1, TmpBB);
// Fill in the new basic block.
auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
if (auto *I = dyn_cast<Instruction>(Cond2)) {
I->removeFromParent();
I->insertBefore(Br2);
}
// Update PHI nodes in both successors. The original BB needs to be
// replaced in one succesor's PHI nodes, because the branch comes now from
// the newly generated BB (NewBB). In the other successor we need to add one
// incoming edge to the PHI nodes, because both branch instructions target
// now the same successor. Depending on the original branch condition
// (and/or) we have to swap the successors (TrueDest, FalseDest), so that
// we perfrom the correct update for the PHI nodes.
// This doesn't change the successor order of the just created branch
// instruction (or any other instruction).
if (Opc == Instruction::Or)
std::swap(TBB, FBB);
// Replace the old BB with the new BB.
for (auto &I : *TBB) {
PHINode *PN = dyn_cast<PHINode>(&I);
if (!PN)
break;
int i;
while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
PN->setIncomingBlock(i, TmpBB);
}
// Add another incoming edge form the new BB.
for (auto &I : *FBB) {
PHINode *PN = dyn_cast<PHINode>(&I);
if (!PN)
break;
auto *Val = PN->getIncomingValueForBlock(&BB);
PN->addIncoming(Val, TmpBB);
}
// Update the branch weights (from SelectionDAGBuilder::
// FindMergedConditions).
if (Opc == Instruction::Or) {
// Codegen X | Y as:
// BB1:
// jmp_if_X TBB
// jmp TmpBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// We have flexibility in setting Prob for BB1 and Prob for NewBB.
// The requirement is that
// TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
// = TrueProb for orignal BB.
// Assuming the orignal weights are A and B, one choice is to set BB1's
// weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
// assumes that
// TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
// Another choice is to assume TrueProb for BB1 equals to TrueProb for
// TmpBB, but the math is more complicated.
uint64_t TrueWeight, FalseWeight;
if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
uint64_t NewTrueWeight = TrueWeight;
uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
NewTrueWeight = TrueWeight;
NewFalseWeight = 2 * FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
}
} else {
// Codegen X & Y as:
// BB1:
// jmp_if_X TmpBB
// jmp FBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// This requires creation of TmpBB after CurBB.
// We have flexibility in setting Prob for BB1 and Prob for TmpBB.
// The requirement is that
// FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
// = FalseProb for orignal BB.
// Assuming the orignal weights are A and B, one choice is to set BB1's
// weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
// assumes that
// FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
uint64_t TrueWeight, FalseWeight;
if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
uint64_t NewFalseWeight = FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
NewTrueWeight = 2 * TrueWeight;
NewFalseWeight = FalseWeight;
scaleWeights(NewTrueWeight, NewFalseWeight);
Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
.createBranchWeights(TrueWeight, FalseWeight));
}
}
// Note: No point in getting fancy here, since the DT info is never
// available to CodeGenPrepare.
ModifiedDT = true;
MadeChange = true;
DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
TmpBB->dump());
}
return MadeChange;
}
void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
}
|