summaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_fs_reg_allocate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/compiler/brw_fs_reg_allocate.cpp')
-rw-r--r--src/intel/compiler/brw_fs_reg_allocate.cpp992
1 files changed, 992 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_reg_allocate.cpp b/src/intel/compiler/brw_fs_reg_allocate.cpp
new file mode 100644
index 00000000000..5c6f3d490f0
--- /dev/null
+++ b/src/intel/compiler/brw_fs_reg_allocate.cpp
@@ -0,0 +1,992 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Eric Anholt <eric@anholt.net>
+ *
+ */
+
+#include "brw_eu.h"
+#include "brw_fs.h"
+#include "brw_cfg.h"
+#include "util/register_allocate.h"
+
+using namespace brw;
+
+static void
+assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
+{
+ if (reg->file == VGRF) {
+ reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
+ reg->offset %= REG_SIZE;
+ }
+}
+
+void
+fs_visitor::assign_regs_trivial()
+{
+ unsigned hw_reg_mapping[this->alloc.count + 1];
+ unsigned i;
+ int reg_width = dispatch_width / 8;
+
+ /* Note that compressed instructions require alignment to 2 registers. */
+ hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
+ for (i = 1; i <= this->alloc.count; i++) {
+ hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
+ this->alloc.sizes[i - 1]);
+ }
+ this->grf_used = hw_reg_mapping[this->alloc.count];
+
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ assign_reg(hw_reg_mapping, &inst->dst);
+ for (i = 0; i < inst->sources; i++) {
+ assign_reg(hw_reg_mapping, &inst->src[i]);
+ }
+ }
+
+ if (this->grf_used >= max_grf) {
+ fail("Ran out of regs on trivial allocator (%d/%d)\n",
+ this->grf_used, max_grf);
+ } else {
+ this->alloc.count = this->grf_used;
+ }
+
+}
+
+static void
+brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
+{
+ const struct gen_device_info *devinfo = compiler->devinfo;
+ int base_reg_count = BRW_MAX_GRF;
+ const int index = _mesa_logbase2(dispatch_width / 8);
+
+ if (dispatch_width > 8 && devinfo->gen >= 7) {
+ /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
+ * SIMD16. Therefore, we can use the exact same register sets for
+ * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
+ */
+ compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
+ return;
+ }
+
+ /* The registers used to make up almost all values handled in the compiler
+ * are a scalar value occupying a single register (or 2 registers in the
+ * case of SIMD16, which is handled by dividing base_reg_count by 2 and
+ * multiplying allocated register numbers by 2). Things that were
+ * aggregates of scalar values at the GLSL level were split to scalar
+ * values by split_virtual_grfs().
+ *
+ * However, texture SEND messages return a series of contiguous registers
+ * to write into. We currently always ask for 4 registers, but we may
+ * convert that to use less some day.
+ *
+ * Additionally, on gen5 we need aligned pairs of registers for the PLN
+ * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
+ * texturing.
+ */
+ const int class_count = MAX_VGRF_SIZE;
+ int class_sizes[MAX_VGRF_SIZE];
+ for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
+ class_sizes[i] = i + 1;
+
+ memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
+ sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
+ int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
+
+ /* Compute the total number of registers across all classes. */
+ int ra_reg_count = 0;
+ for (int i = 0; i < class_count; i++) {
+ if (devinfo->gen <= 5 && dispatch_width >= 16) {
+ /* From the G45 PRM:
+ *
+ * In order to reduce the hardware complexity, the following
+ * rules and restrictions apply to the compressed instruction:
+ * ...
+ * * Operand Alignment Rule: With the exceptions listed below, a
+ * source/destination operand in general should be aligned to
+ * even 256-bit physical register with a region size equal to
+ * two 256-bit physical register
+ */
+ ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
+ } else {
+ ra_reg_count += base_reg_count - (class_sizes[i] - 1);
+ }
+ /* Mark the last register. We'll fill in the beginnings later. */
+ class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
+ }
+
+ /* Fill out the rest of the range markers */
+ for (int i = 1; i < 17; ++i) {
+ if (class_to_ra_reg_range[i] == 0)
+ class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
+ }
+
+ uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
+ struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
+ if (devinfo->gen >= 6)
+ ra_set_allocate_round_robin(regs);
+ int *classes = ralloc_array(compiler, int, class_count);
+ int aligned_pairs_class = -1;
+
+ /* Allocate space for q values. We allocate class_count + 1 because we
+ * want to leave room for the aligned pairs class if we have it. */
+ unsigned int **q_values = ralloc_array(compiler, unsigned int *,
+ class_count + 1);
+ for (int i = 0; i < class_count + 1; ++i)
+ q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
+
+ /* Now, add the registers to their classes, and add the conflicts
+ * between them and the base GRF registers (and also each other).
+ */
+ int reg = 0;
+ int pairs_base_reg = 0;
+ int pairs_reg_count = 0;
+ for (int i = 0; i < class_count; i++) {
+ int class_reg_count;
+ if (devinfo->gen <= 5 && dispatch_width >= 16) {
+ class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
+
+ /* See comment below. The only difference here is that we are
+ * dealing with pairs of registers instead of single registers.
+ * Registers of odd sizes simply get rounded up. */
+ for (int j = 0; j < class_count; j++)
+ q_values[i][j] = (class_sizes[i] + 1) / 2 +
+ (class_sizes[j] + 1) / 2 - 1;
+ } else {
+ class_reg_count = base_reg_count - (class_sizes[i] - 1);
+
+ /* From register_allocate.c:
+ *
+ * q(B,C) (indexed by C, B is this register class) in
+ * Runeson/Nyström paper. This is "how many registers of B could
+ * the worst choice register from C conflict with".
+ *
+ * If we just let the register allocation algorithm compute these
+ * values, is extremely expensive. However, since all of our
+ * registers are laid out, we can very easily compute them
+ * ourselves. View the register from C as fixed starting at GRF n
+ * somwhere in the middle, and the register from B as sliding back
+ * and forth. Then the first register to conflict from B is the
+ * one starting at n - class_size[B] + 1 and the last register to
+ * conflict will start at n + class_size[B] - 1. Therefore, the
+ * number of conflicts from B is class_size[B] + class_size[C] - 1.
+ *
+ * +-+-+-+-+-+-+ +-+-+-+-+-+-+
+ * B | | | | | |n| --> | | | | | | |
+ * +-+-+-+-+-+-+ +-+-+-+-+-+-+
+ * +-+-+-+-+-+
+ * C |n| | | | |
+ * +-+-+-+-+-+
+ */
+ for (int j = 0; j < class_count; j++)
+ q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
+ }
+ classes[i] = ra_alloc_reg_class(regs);
+
+ /* Save this off for the aligned pair class at the end. */
+ if (class_sizes[i] == 2) {
+ pairs_base_reg = reg;
+ pairs_reg_count = class_reg_count;
+ }
+
+ if (devinfo->gen <= 5 && dispatch_width >= 16) {
+ for (int j = 0; j < class_reg_count; j++) {
+ ra_class_add_reg(regs, classes[i], reg);
+
+ ra_reg_to_grf[reg] = j * 2;
+
+ for (int base_reg = j;
+ base_reg < j + (class_sizes[i] + 1) / 2;
+ base_reg++) {
+ ra_add_reg_conflict(regs, base_reg, reg);
+ }
+
+ reg++;
+ }
+ } else {
+ for (int j = 0; j < class_reg_count; j++) {
+ ra_class_add_reg(regs, classes[i], reg);
+
+ ra_reg_to_grf[reg] = j;
+
+ for (int base_reg = j;
+ base_reg < j + class_sizes[i];
+ base_reg++) {
+ ra_add_reg_conflict(regs, base_reg, reg);
+ }
+
+ reg++;
+ }
+ }
+ }
+ assert(reg == ra_reg_count);
+
+ /* Applying transitivity to all of the base registers gives us the
+ * appropreate register conflict relationships everywhere.
+ */
+ for (int reg = 0; reg < base_reg_count; reg++)
+ ra_make_reg_conflicts_transitive(regs, reg);
+
+ /* Add a special class for aligned pairs, which we'll put delta_xy
+ * in on Gen <= 6 so that we can do PLN.
+ */
+ if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) {
+ aligned_pairs_class = ra_alloc_reg_class(regs);
+
+ for (int i = 0; i < pairs_reg_count; i++) {
+ if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
+ ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
+ }
+ }
+
+ for (int i = 0; i < class_count; i++) {
+ /* These are a little counter-intuitive because the pair registers
+ * are required to be aligned while the register they are
+ * potentially interferring with are not. In the case where the
+ * size is even, the worst-case is that the register is
+ * odd-aligned. In the odd-size case, it doesn't matter.
+ */
+ q_values[class_count][i] = class_sizes[i] / 2 + 1;
+ q_values[i][class_count] = class_sizes[i] + 1;
+ }
+ q_values[class_count][class_count] = 1;
+ }
+
+ ra_set_finalize(regs, q_values);
+
+ ralloc_free(q_values);
+
+ compiler->fs_reg_sets[index].regs = regs;
+ for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
+ compiler->fs_reg_sets[index].classes[i] = -1;
+ for (int i = 0; i < class_count; i++)
+ compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
+ compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
+ compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
+}
+
+void
+brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
+{
+ brw_alloc_reg_set(compiler, 8);
+ brw_alloc_reg_set(compiler, 16);
+ brw_alloc_reg_set(compiler, 32);
+}
+
+static int
+count_to_loop_end(const bblock_t *block)
+{
+ if (block->end()->opcode == BRW_OPCODE_WHILE)
+ return block->end_ip;
+
+ int depth = 1;
+ /* Skip the first block, since we don't want to count the do the calling
+ * function found.
+ */
+ for (block = block->next();
+ depth > 0;
+ block = block->next()) {
+ if (block->start()->opcode == BRW_OPCODE_DO)
+ depth++;
+ if (block->end()->opcode == BRW_OPCODE_WHILE) {
+ depth--;
+ if (depth == 0)
+ return block->end_ip;
+ }
+ }
+ unreachable("not reached");
+}
+
+void fs_visitor::calculate_payload_ranges(int payload_node_count,
+ int *payload_last_use_ip)
+{
+ int loop_depth = 0;
+ int loop_end_ip = 0;
+
+ for (int i = 0; i < payload_node_count; i++)
+ payload_last_use_ip[i] = -1;
+
+ int ip = 0;
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ switch (inst->opcode) {
+ case BRW_OPCODE_DO:
+ loop_depth++;
+
+ /* Since payload regs are deffed only at the start of the shader
+ * execution, any uses of the payload within a loop mean the live
+ * interval extends to the end of the outermost loop. Find the ip of
+ * the end now.
+ */
+ if (loop_depth == 1)
+ loop_end_ip = count_to_loop_end(block);
+ break;
+ case BRW_OPCODE_WHILE:
+ loop_depth--;
+ break;
+ default:
+ break;
+ }
+
+ int use_ip;
+ if (loop_depth > 0)
+ use_ip = loop_end_ip;
+ else
+ use_ip = ip;
+
+ /* Note that UNIFORM args have been turned into FIXED_GRF by
+ * assign_curbe_setup(), and interpolation uses fixed hardware regs from
+ * the start (see interp_reg()).
+ */
+ for (int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file == FIXED_GRF) {
+ int node_nr = inst->src[i].nr;
+ if (node_nr >= payload_node_count)
+ continue;
+
+ for (unsigned j = 0; j < regs_read(inst, i); j++) {
+ payload_last_use_ip[node_nr + j] = use_ip;
+ assert(node_nr + j < unsigned(payload_node_count));
+ }
+ }
+ }
+
+ /* Special case instructions which have extra implied registers used. */
+ switch (inst->opcode) {
+ case CS_OPCODE_CS_TERMINATE:
+ payload_last_use_ip[0] = use_ip;
+ break;
+
+ default:
+ if (inst->eot) {
+ /* We could omit this for the !inst->header_present case, except
+ * that the simulator apparently incorrectly reads from g0/g1
+ * instead of sideband. It also really freaks out driver
+ * developers to see g0 used in unusual places, so just always
+ * reserve it.
+ */
+ payload_last_use_ip[0] = use_ip;
+ payload_last_use_ip[1] = use_ip;
+ }
+ break;
+ }
+
+ ip++;
+ }
+}
+
+
+/**
+ * Sets up interference between thread payload registers and the virtual GRFs
+ * to be allocated for program temporaries.
+ *
+ * We want to be able to reallocate the payload for our virtual GRFs, notably
+ * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
+ * our 128 registers.
+ *
+ * The layout of the payload registers is:
+ *
+ * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
+ * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
+ * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
+ *
+ * And we have payload_node_count nodes covering these registers in order
+ * (note that in SIMD16, a node is two registers).
+ */
+void
+fs_visitor::setup_payload_interference(struct ra_graph *g,
+ int payload_node_count,
+ int first_payload_node)
+{
+ int payload_last_use_ip[payload_node_count];
+ calculate_payload_ranges(payload_node_count, payload_last_use_ip);
+
+ for (int i = 0; i < payload_node_count; i++) {
+ if (payload_last_use_ip[i] == -1)
+ continue;
+
+ /* Mark the payload node as interfering with any virtual grf that is
+ * live between the start of the program and our last use of the payload
+ * node.
+ */
+ for (unsigned j = 0; j < this->alloc.count; j++) {
+ /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
+ * in order to not have to worry about the uniform issue described in
+ * calculate_live_intervals().
+ */
+ if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
+ ra_add_node_interference(g, first_payload_node + i, j);
+ }
+ }
+ }
+
+ for (int i = 0; i < payload_node_count; i++) {
+ /* Mark each payload node as being allocated to its physical register.
+ *
+ * The alternative would be to have per-physical-register classes, which
+ * would just be silly.
+ */
+ if (devinfo->gen <= 5 && dispatch_width >= 16) {
+ /* We have to divide by 2 here because we only have even numbered
+ * registers. Some of the payload registers will be odd, but
+ * that's ok because their physical register numbers have already
+ * been assigned. The only thing this is used for is interference.
+ */
+ ra_set_node_reg(g, first_payload_node + i, i / 2);
+ } else {
+ ra_set_node_reg(g, first_payload_node + i, i);
+ }
+ }
+}
+
+/**
+ * Sets the mrf_used array to indicate which MRFs are used by the shader IR
+ *
+ * This is used in assign_regs() to decide which of the GRFs that we use as
+ * MRFs on gen7 get normally register allocated, and in register spilling to
+ * see if we can actually use MRFs to do spills without overwriting normal MRF
+ * contents.
+ */
+static void
+get_used_mrfs(fs_visitor *v, bool *mrf_used)
+{
+ int reg_width = v->dispatch_width / 8;
+
+ memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));
+
+ foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
+ if (inst->dst.file == MRF) {
+ int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
+ mrf_used[reg] = true;
+ if (reg_width == 2) {
+ if (inst->dst.nr & BRW_MRF_COMPR4) {
+ mrf_used[reg + 4] = true;
+ } else {
+ mrf_used[reg + 1] = true;
+ }
+ }
+ }
+
+ if (inst->mlen > 0) {
+ for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
+ mrf_used[inst->base_mrf + i] = true;
+ }
+ }
+ }
+}
+
+/**
+ * Sets interference between virtual GRFs and usage of the high GRFs for SEND
+ * messages (treated as MRFs in code generation).
+ */
+static void
+setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g,
+ int first_mrf_node, int *first_used_mrf)
+{
+ bool mrf_used[BRW_MAX_MRF(v->devinfo->gen)];
+ get_used_mrfs(v, mrf_used);
+
+ *first_used_mrf = BRW_MAX_MRF(v->devinfo->gen);
+ for (int i = 0; i < BRW_MAX_MRF(v->devinfo->gen); i++) {
+ /* Mark each MRF reg node as being allocated to its physical register.
+ *
+ * The alternative would be to have per-physical-register classes, which
+ * would just be silly.
+ */
+ ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i);
+
+ /* Since we don't have any live/dead analysis on the MRFs, just mark all
+ * that are used as conflicting with all virtual GRFs.
+ */
+ if (mrf_used[i]) {
+ if (i < *first_used_mrf)
+ *first_used_mrf = i;
+
+ for (unsigned j = 0; j < v->alloc.count; j++) {
+ ra_add_node_interference(g, first_mrf_node + i, j);
+ }
+ }
+ }
+}
+
+bool
+fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
+{
+ /* Most of this allocation was written for a reg_width of 1
+ * (dispatch_width == 8). In extending to SIMD16, the code was
+ * left in place and it was converted to have the hardware
+ * registers it's allocating be contiguous physical pairs of regs
+ * for reg_width == 2.
+ */
+ int reg_width = dispatch_width / 8;
+ unsigned hw_reg_mapping[this->alloc.count];
+ int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width);
+ int rsi = _mesa_logbase2(reg_width); /* Which compiler->fs_reg_sets[] to use */
+ calculate_live_intervals();
+
+ int node_count = this->alloc.count;
+ int first_payload_node = node_count;
+ node_count += payload_node_count;
+ int first_mrf_hack_node = node_count;
+ if (devinfo->gen >= 7)
+ node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
+ struct ra_graph *g =
+ ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
+
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ unsigned size = this->alloc.sizes[i];
+ int c;
+
+ assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
+ "Register allocation relies on split_virtual_grfs()");
+ c = compiler->fs_reg_sets[rsi].classes[size - 1];
+
+ /* Special case: on pre-GEN6 hardware that supports PLN, the
+ * second operand of a PLN instruction needs to be an
+ * even-numbered register, so we have a special register class
+ * wm_aligned_pairs_class to handle this case. pre-GEN6 always
+ * uses this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] as the
+ * second operand of a PLN instruction (since it doesn't support
+ * any other interpolation modes). So all we need to do is find
+ * that register and set it to the appropriate class.
+ */
+ if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
+ this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].file == VGRF &&
+ this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].nr == i) {
+ c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
+ }
+
+ ra_set_node_class(g, i, c);
+
+ for (unsigned j = 0; j < i; j++) {
+ if (virtual_grf_interferes(i, j)) {
+ ra_add_node_interference(g, i, j);
+ }
+ }
+ }
+
+ /* Certain instructions can't safely use the same register for their
+ * sources and destination. Add interference.
+ */
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
+ for (unsigned i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF) {
+ ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
+ }
+ }
+ }
+ }
+
+ setup_payload_interference(g, payload_node_count, first_payload_node);
+ if (devinfo->gen >= 7) {
+ int first_used_mrf = BRW_MAX_MRF(devinfo->gen);
+ setup_mrf_hack_interference(this, g, first_mrf_hack_node,
+ &first_used_mrf);
+
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ /* When we do send-from-GRF for FB writes, we need to ensure that
+ * the last write instruction sends from a high register. This is
+ * because the vertex fetcher wants to start filling the low
+ * payload registers while the pixel data port is still working on
+ * writing out the memory. If we don't do this, we get rendering
+ * artifacts.
+ *
+ * We could just do "something high". Instead, we just pick the
+ * highest register that works.
+ */
+ if (inst->eot) {
+ int size = alloc.sizes[inst->src[0].nr];
+ int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
+
+ /* If something happened to spill, we want to push the EOT send
+ * register early enough in the register file that we don't
+ * conflict with any used MRF hack registers.
+ */
+ reg -= BRW_MAX_MRF(devinfo->gen) - first_used_mrf;
+
+ ra_set_node_reg(g, inst->src[0].nr, reg);
+ break;
+ }
+ }
+ }
+
+ if (dispatch_width > 8) {
+ /* In 16-wide dispatch we have an issue where a compressed
+ * instruction is actually two instructions executed simultaneiously.
+ * It's actually ok to have the source and destination registers be
+ * the same. In this case, each instruction over-writes its own
+ * source and there's no problem. The real problem here is if the
+ * source and destination registers are off by one. Then you can end
+ * up in a scenario where the first instruction over-writes the
+ * source of the second instruction. Since the compiler doesn't know
+ * about this level of granularity, we simply make the source and
+ * destination interfere.
+ */
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ if (inst->dst.file != VGRF)
+ continue;
+
+ for (int i = 0; i < inst->sources; ++i) {
+ if (inst->src[i].file == VGRF) {
+ ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
+ }
+ }
+ }
+ }
+
+ /* Debug of register spilling: Go spill everything. */
+ if (unlikely(spill_all)) {
+ int reg = choose_spill_reg(g);
+
+ if (reg != -1) {
+ spill_reg(reg);
+ ralloc_free(g);
+ return false;
+ }
+ }
+
+ if (!ra_allocate(g)) {
+ /* Failed to allocate registers. Spill a reg, and the caller will
+ * loop back into here to try again.
+ */
+ int reg = choose_spill_reg(g);
+
+ if (reg == -1) {
+ fail("no register to spill:\n");
+ dump_instructions(NULL);
+ } else if (allow_spilling) {
+ spill_reg(reg);
+ }
+
+ ralloc_free(g);
+
+ return false;
+ }
+
+ /* Get the chosen virtual registers for each node, and map virtual
+ * regs in the register classes back down to real hardware reg
+ * numbers.
+ */
+ this->grf_used = payload_node_count;
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ int reg = ra_get_node_reg(g, i);
+
+ hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
+ this->grf_used = MAX2(this->grf_used,
+ hw_reg_mapping[i] + this->alloc.sizes[i]);
+ }
+
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ assign_reg(hw_reg_mapping, &inst->dst);
+ for (int i = 0; i < inst->sources; i++) {
+ assign_reg(hw_reg_mapping, &inst->src[i]);
+ }
+ }
+
+ this->alloc.count = this->grf_used;
+
+ ralloc_free(g);
+
+ return true;
+}
+
+namespace {
+ /**
+ * Maximum spill block size we expect to encounter in 32B units.
+ *
+ * This is somewhat arbitrary and doesn't necessarily limit the maximum
+ * variable size that can be spilled -- A higher value will allow a
+ * variable of a given size to be spilled more efficiently with a smaller
+ * number of scratch messages, but will increase the likelihood of a
+ * collision between the MRFs reserved for spilling and other MRFs used by
+ * the program (and possibly increase GRF register pressure on platforms
+ * without hardware MRFs), what could cause register allocation to fail.
+ *
+ * For the moment reserve just enough space so a register of 32 bit
+ * component type and natural region width can be spilled without splitting
+ * into multiple (force_writemask_all) scratch messages.
+ */
+ unsigned
+ spill_max_size(const backend_shader *s)
+ {
+ /* FINISHME - On Gen7+ it should be possible to avoid this limit
+ * altogether by spilling directly from the temporary GRF
+ * allocated to hold the result of the instruction (and the
+ * scratch write header).
+ */
+ /* FINISHME - The shader's dispatch width probably belongs in
+ * backend_shader (or some nonexistent fs_shader class?)
+ * rather than in the visitor class.
+ */
+ return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
+ }
+
+ /**
+ * First MRF register available for spilling.
+ */
+ unsigned
+ spill_base_mrf(const backend_shader *s)
+ {
+ return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1;
+ }
+}
+
+static void
+emit_unspill(const fs_builder &bld, fs_reg dst,
+ uint32_t spill_offset, unsigned count)
+{
+ const gen_device_info *devinfo = bld.shader->devinfo;
+ const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
+ REG_SIZE;
+ assert(count % reg_size == 0);
+
+ for (unsigned i = 0; i < count / reg_size; i++) {
+ /* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because
+ * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
+ * it would cause the DC to do an IA-coherent read, what largely
+ * outweighs the slight advantage from not having to provide the address
+ * as part of the message header, so we're better off using plain old
+ * oword block reads.
+ */
+ bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
+ spill_offset < (1 << 12) * REG_SIZE);
+ fs_inst *unspill_inst = bld.emit(gen7_read ?
+ SHADER_OPCODE_GEN7_SCRATCH_READ :
+ SHADER_OPCODE_GEN4_SCRATCH_READ,
+ dst);
+ unspill_inst->offset = spill_offset;
+
+ if (!gen7_read) {
+ unspill_inst->base_mrf = spill_base_mrf(bld.shader);
+ unspill_inst->mlen = 1; /* header contains offset */
+ }
+
+ dst.offset += reg_size * REG_SIZE;
+ spill_offset += reg_size * REG_SIZE;
+ }
+}
+
+static void
+emit_spill(const fs_builder &bld, fs_reg src,
+ uint32_t spill_offset, unsigned count)
+{
+ const unsigned reg_size = src.component_size(bld.dispatch_width()) /
+ REG_SIZE;
+ assert(count % reg_size == 0);
+
+ for (unsigned i = 0; i < count / reg_size; i++) {
+ fs_inst *spill_inst =
+ bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
+ src.offset += reg_size * REG_SIZE;
+ spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
+ spill_inst->mlen = 1 + reg_size; /* header, value */
+ spill_inst->base_mrf = spill_base_mrf(bld.shader);
+ }
+}
+
+int
+fs_visitor::choose_spill_reg(struct ra_graph *g)
+{
+ float loop_scale = 1.0;
+ float spill_costs[this->alloc.count];
+ bool no_spill[this->alloc.count];
+
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ spill_costs[i] = 0.0;
+ no_spill[i] = false;
+ }
+
+ /* Calculate costs for spilling nodes. Call it a cost of 1 per
+ * spill/unspill we'll have to do, and guess that the insides of
+ * loops run 10 times.
+ */
+ foreach_block_and_inst(block, fs_inst, inst, cfg) {
+ for (unsigned int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file == VGRF)
+ spill_costs[inst->src[i].nr] += loop_scale;
+ }
+
+ if (inst->dst.file == VGRF)
+ spill_costs[inst->dst.nr] += DIV_ROUND_UP(inst->size_written, REG_SIZE)
+ * loop_scale;
+
+ switch (inst->opcode) {
+
+ case BRW_OPCODE_DO:
+ loop_scale *= 10;
+ break;
+
+ case BRW_OPCODE_WHILE:
+ loop_scale /= 10;
+ break;
+
+ case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
+ if (inst->src[0].file == VGRF)
+ no_spill[inst->src[0].nr] = true;
+ break;
+
+ case SHADER_OPCODE_GEN4_SCRATCH_READ:
+ case SHADER_OPCODE_GEN7_SCRATCH_READ:
+ if (inst->dst.file == VGRF)
+ no_spill[inst->dst.nr] = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ if (!no_spill[i])
+ ra_set_node_spill_cost(g, i, spill_costs[i]);
+ }
+
+ return ra_get_best_spill_node(g);
+}
+
+void
+fs_visitor::spill_reg(int spill_reg)
+{
+ int size = alloc.sizes[spill_reg];
+ unsigned int spill_offset = last_scratch;
+ assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
+
+ /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
+ * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
+ * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
+ * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
+ * depth), starting from m1. In summary: We may not be able to spill in
+ * SIMD16 mode, because we'd stomp the FB writes.
+ */
+ if (!spilled_any_registers) {
+ bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
+ get_used_mrfs(this, mrf_used);
+
+ for (int i = spill_base_mrf(this); i < BRW_MAX_MRF(devinfo->gen); i++) {
+ if (mrf_used[i]) {
+ fail("Register spilling not supported with m%d used", i);
+ return;
+ }
+ }
+
+ spilled_any_registers = true;
+ }
+
+ last_scratch += size * REG_SIZE;
+
+ /* Generate spill/unspill instructions for the objects being
+ * spilled. Right now, we spill or unspill the whole thing to a
+ * virtual grf of the same size. For most instructions, though, we
+ * could just spill/unspill the GRF being accessed.
+ */
+ foreach_block_and_inst (block, fs_inst, inst, cfg) {
+ const fs_builder ibld = fs_builder(this, block, inst);
+
+ for (unsigned int i = 0; i < inst->sources; i++) {
+ if (inst->src[i].file == VGRF &&
+ inst->src[i].nr == spill_reg) {
+ int count = regs_read(inst, i);
+ int subset_spill_offset = spill_offset +
+ ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
+ fs_reg unspill_dst(VGRF, alloc.allocate(count));
+
+ inst->src[i].nr = unspill_dst.nr;
+ inst->src[i].offset %= REG_SIZE;
+
+ /* We read the largest power-of-two divisor of the register count
+ * (because only POT scratch read blocks are allowed by the
+ * hardware) up to the maximum supported block size.
+ */
+ const unsigned width =
+ MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
+
+ /* Set exec_all() on unspill messages under the (rather
+ * pessimistic) assumption that there is no one-to-one
+ * correspondence between channels of the spilled variable in
+ * scratch space and the scratch read message, which operates on
+ * 32 bit channels. It shouldn't hurt in any case because the
+ * unspill destination is a block-local temporary.
+ */
+ emit_unspill(ibld.exec_all().group(width, 0),
+ unspill_dst, subset_spill_offset, count);
+ }
+ }
+
+ if (inst->dst.file == VGRF &&
+ inst->dst.nr == spill_reg) {
+ int subset_spill_offset = spill_offset +
+ ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
+ fs_reg spill_src(VGRF, alloc.allocate(regs_written(inst)));
+
+ inst->dst.nr = spill_src.nr;
+ inst->dst.offset %= REG_SIZE;
+
+ /* If we're immediately spilling the register, we should not use
+ * destination dependency hints. Doing so will cause the GPU do
+ * try to read and write the register at the same time and may
+ * hang the GPU.
+ */
+ inst->no_dd_clear = false;
+ inst->no_dd_check = false;
+
+ /* Calculate the execution width of the scratch messages (which work
+ * in terms of 32 bit components so we have a fixed number of eight
+ * channels per spilled register). We attempt to write one
+ * exec_size-wide component of the variable at a time without
+ * exceeding the maximum number of (fake) MRF registers reserved for
+ * spills.
+ */
+ const unsigned width = 8 * MIN2(
+ DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
+ spill_max_size(this));
+
+ /* Spills should only write data initialized by the instruction for
+ * whichever channels are enabled in the excution mask. If that's
+ * not possible we'll have to emit a matching unspill before the
+ * instruction and set force_writemask_all on the spill.
+ */
+ const bool per_channel =
+ inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
+ inst->exec_size == width;
+
+ /* Builder used to emit the scratch messages. */
+ const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
+
+ /* If our write is going to affect just part of the
+ * regs_written(inst), then we need to unspill the destination since
+ * we write back out all of the regs_written(). If the original
+ * instruction had force_writemask_all set and is not a partial
+ * write, there should be no need for the unspill since the
+ * instruction will be overwriting the whole destination in any case.
+ */
+ if (inst->is_partial_write() ||
+ (!inst->force_writemask_all && !per_channel))
+ emit_unspill(ubld, spill_src, subset_spill_offset,
+ regs_written(inst));
+
+ emit_spill(ubld.at(block, inst->next), spill_src,
+ subset_spill_offset, regs_written(inst));
+ }
+ }
+
+ invalidate_live_intervals();
+}