diff options
Diffstat (limited to 'src/intel/compiler/brw_fs_reg_allocate.cpp')
-rw-r--r-- | src/intel/compiler/brw_fs_reg_allocate.cpp | 992 |
1 files changed, 992 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_reg_allocate.cpp b/src/intel/compiler/brw_fs_reg_allocate.cpp new file mode 100644 index 00000000000..5c6f3d490f0 --- /dev/null +++ b/src/intel/compiler/brw_fs_reg_allocate.cpp @@ -0,0 +1,992 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Eric Anholt <eric@anholt.net> + * + */ + +#include "brw_eu.h" +#include "brw_fs.h" +#include "brw_cfg.h" +#include "util/register_allocate.h" + +using namespace brw; + +static void +assign_reg(unsigned *reg_hw_locations, fs_reg *reg) +{ + if (reg->file == VGRF) { + reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; + reg->offset %= REG_SIZE; + } +} + +void +fs_visitor::assign_regs_trivial() +{ + unsigned hw_reg_mapping[this->alloc.count + 1]; + unsigned i; + int reg_width = dispatch_width / 8; + + /* Note that compressed instructions require alignment to 2 registers. */ + hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); + for (i = 1; i <= this->alloc.count; i++) { + hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + + this->alloc.sizes[i - 1]); + } + this->grf_used = hw_reg_mapping[this->alloc.count]; + + foreach_block_and_inst(block, fs_inst, inst, cfg) { + assign_reg(hw_reg_mapping, &inst->dst); + for (i = 0; i < inst->sources; i++) { + assign_reg(hw_reg_mapping, &inst->src[i]); + } + } + + if (this->grf_used >= max_grf) { + fail("Ran out of regs on trivial allocator (%d/%d)\n", + this->grf_used, max_grf); + } else { + this->alloc.count = this->grf_used; + } + +} + +static void +brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width) +{ + const struct gen_device_info *devinfo = compiler->devinfo; + int base_reg_count = BRW_MAX_GRF; + const int index = _mesa_logbase2(dispatch_width / 8); + + if (dispatch_width > 8 && devinfo->gen >= 7) { + /* For IVB+, we don't need the PLN hacks or the even-reg alignment in + * SIMD16. Therefore, we can use the exact same register sets for + * SIMD16 as we do for SIMD8 and we don't need to recalculate them. + */ + compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0]; + return; + } + + /* The registers used to make up almost all values handled in the compiler + * are a scalar value occupying a single register (or 2 registers in the + * case of SIMD16, which is handled by dividing base_reg_count by 2 and + * multiplying allocated register numbers by 2). Things that were + * aggregates of scalar values at the GLSL level were split to scalar + * values by split_virtual_grfs(). + * + * However, texture SEND messages return a series of contiguous registers + * to write into. We currently always ask for 4 registers, but we may + * convert that to use less some day. + * + * Additionally, on gen5 we need aligned pairs of registers for the PLN + * instruction, and on gen4 we need 8 contiguous regs for workaround simd16 + * texturing. + */ + const int class_count = MAX_VGRF_SIZE; + int class_sizes[MAX_VGRF_SIZE]; + for (unsigned i = 0; i < MAX_VGRF_SIZE; i++) + class_sizes[i] = i + 1; + + memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0, + sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range)); + int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range; + + /* Compute the total number of registers across all classes. */ + int ra_reg_count = 0; + for (int i = 0; i < class_count; i++) { + if (devinfo->gen <= 5 && dispatch_width >= 16) { + /* From the G45 PRM: + * + * In order to reduce the hardware complexity, the following + * rules and restrictions apply to the compressed instruction: + * ... + * * Operand Alignment Rule: With the exceptions listed below, a + * source/destination operand in general should be aligned to + * even 256-bit physical register with a region size equal to + * two 256-bit physical register + */ + ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2; + } else { + ra_reg_count += base_reg_count - (class_sizes[i] - 1); + } + /* Mark the last register. We'll fill in the beginnings later. */ + class_to_ra_reg_range[class_sizes[i]] = ra_reg_count; + } + + /* Fill out the rest of the range markers */ + for (int i = 1; i < 17; ++i) { + if (class_to_ra_reg_range[i] == 0) + class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1]; + } + + uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count); + struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false); + if (devinfo->gen >= 6) + ra_set_allocate_round_robin(regs); + int *classes = ralloc_array(compiler, int, class_count); + int aligned_pairs_class = -1; + + /* Allocate space for q values. We allocate class_count + 1 because we + * want to leave room for the aligned pairs class if we have it. */ + unsigned int **q_values = ralloc_array(compiler, unsigned int *, + class_count + 1); + for (int i = 0; i < class_count + 1; ++i) + q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1); + + /* Now, add the registers to their classes, and add the conflicts + * between them and the base GRF registers (and also each other). + */ + int reg = 0; + int pairs_base_reg = 0; + int pairs_reg_count = 0; + for (int i = 0; i < class_count; i++) { + int class_reg_count; + if (devinfo->gen <= 5 && dispatch_width >= 16) { + class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2; + + /* See comment below. The only difference here is that we are + * dealing with pairs of registers instead of single registers. + * Registers of odd sizes simply get rounded up. */ + for (int j = 0; j < class_count; j++) + q_values[i][j] = (class_sizes[i] + 1) / 2 + + (class_sizes[j] + 1) / 2 - 1; + } else { + class_reg_count = base_reg_count - (class_sizes[i] - 1); + + /* From register_allocate.c: + * + * q(B,C) (indexed by C, B is this register class) in + * Runeson/Nyström paper. This is "how many registers of B could + * the worst choice register from C conflict with". + * + * If we just let the register allocation algorithm compute these + * values, is extremely expensive. However, since all of our + * registers are laid out, we can very easily compute them + * ourselves. View the register from C as fixed starting at GRF n + * somwhere in the middle, and the register from B as sliding back + * and forth. Then the first register to conflict from B is the + * one starting at n - class_size[B] + 1 and the last register to + * conflict will start at n + class_size[B] - 1. Therefore, the + * number of conflicts from B is class_size[B] + class_size[C] - 1. + * + * +-+-+-+-+-+-+ +-+-+-+-+-+-+ + * B | | | | | |n| --> | | | | | | | + * +-+-+-+-+-+-+ +-+-+-+-+-+-+ + * +-+-+-+-+-+ + * C |n| | | | | + * +-+-+-+-+-+ + */ + for (int j = 0; j < class_count; j++) + q_values[i][j] = class_sizes[i] + class_sizes[j] - 1; + } + classes[i] = ra_alloc_reg_class(regs); + + /* Save this off for the aligned pair class at the end. */ + if (class_sizes[i] == 2) { + pairs_base_reg = reg; + pairs_reg_count = class_reg_count; + } + + if (devinfo->gen <= 5 && dispatch_width >= 16) { + for (int j = 0; j < class_reg_count; j++) { + ra_class_add_reg(regs, classes[i], reg); + + ra_reg_to_grf[reg] = j * 2; + + for (int base_reg = j; + base_reg < j + (class_sizes[i] + 1) / 2; + base_reg++) { + ra_add_reg_conflict(regs, base_reg, reg); + } + + reg++; + } + } else { + for (int j = 0; j < class_reg_count; j++) { + ra_class_add_reg(regs, classes[i], reg); + + ra_reg_to_grf[reg] = j; + + for (int base_reg = j; + base_reg < j + class_sizes[i]; + base_reg++) { + ra_add_reg_conflict(regs, base_reg, reg); + } + + reg++; + } + } + } + assert(reg == ra_reg_count); + + /* Applying transitivity to all of the base registers gives us the + * appropreate register conflict relationships everywhere. + */ + for (int reg = 0; reg < base_reg_count; reg++) + ra_make_reg_conflicts_transitive(regs, reg); + + /* Add a special class for aligned pairs, which we'll put delta_xy + * in on Gen <= 6 so that we can do PLN. + */ + if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) { + aligned_pairs_class = ra_alloc_reg_class(regs); + + for (int i = 0; i < pairs_reg_count; i++) { + if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) { + ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i); + } + } + + for (int i = 0; i < class_count; i++) { + /* These are a little counter-intuitive because the pair registers + * are required to be aligned while the register they are + * potentially interferring with are not. In the case where the + * size is even, the worst-case is that the register is + * odd-aligned. In the odd-size case, it doesn't matter. + */ + q_values[class_count][i] = class_sizes[i] / 2 + 1; + q_values[i][class_count] = class_sizes[i] + 1; + } + q_values[class_count][class_count] = 1; + } + + ra_set_finalize(regs, q_values); + + ralloc_free(q_values); + + compiler->fs_reg_sets[index].regs = regs; + for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++) + compiler->fs_reg_sets[index].classes[i] = -1; + for (int i = 0; i < class_count; i++) + compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i]; + compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf; + compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class; +} + +void +brw_fs_alloc_reg_sets(struct brw_compiler *compiler) +{ + brw_alloc_reg_set(compiler, 8); + brw_alloc_reg_set(compiler, 16); + brw_alloc_reg_set(compiler, 32); +} + +static int +count_to_loop_end(const bblock_t *block) +{ + if (block->end()->opcode == BRW_OPCODE_WHILE) + return block->end_ip; + + int depth = 1; + /* Skip the first block, since we don't want to count the do the calling + * function found. + */ + for (block = block->next(); + depth > 0; + block = block->next()) { + if (block->start()->opcode == BRW_OPCODE_DO) + depth++; + if (block->end()->opcode == BRW_OPCODE_WHILE) { + depth--; + if (depth == 0) + return block->end_ip; + } + } + unreachable("not reached"); +} + +void fs_visitor::calculate_payload_ranges(int payload_node_count, + int *payload_last_use_ip) +{ + int loop_depth = 0; + int loop_end_ip = 0; + + for (int i = 0; i < payload_node_count; i++) + payload_last_use_ip[i] = -1; + + int ip = 0; + foreach_block_and_inst(block, fs_inst, inst, cfg) { + switch (inst->opcode) { + case BRW_OPCODE_DO: + loop_depth++; + + /* Since payload regs are deffed only at the start of the shader + * execution, any uses of the payload within a loop mean the live + * interval extends to the end of the outermost loop. Find the ip of + * the end now. + */ + if (loop_depth == 1) + loop_end_ip = count_to_loop_end(block); + break; + case BRW_OPCODE_WHILE: + loop_depth--; + break; + default: + break; + } + + int use_ip; + if (loop_depth > 0) + use_ip = loop_end_ip; + else + use_ip = ip; + + /* Note that UNIFORM args have been turned into FIXED_GRF by + * assign_curbe_setup(), and interpolation uses fixed hardware regs from + * the start (see interp_reg()). + */ + for (int i = 0; i < inst->sources; i++) { + if (inst->src[i].file == FIXED_GRF) { + int node_nr = inst->src[i].nr; + if (node_nr >= payload_node_count) + continue; + + for (unsigned j = 0; j < regs_read(inst, i); j++) { + payload_last_use_ip[node_nr + j] = use_ip; + assert(node_nr + j < unsigned(payload_node_count)); + } + } + } + + /* Special case instructions which have extra implied registers used. */ + switch (inst->opcode) { + case CS_OPCODE_CS_TERMINATE: + payload_last_use_ip[0] = use_ip; + break; + + default: + if (inst->eot) { + /* We could omit this for the !inst->header_present case, except + * that the simulator apparently incorrectly reads from g0/g1 + * instead of sideband. It also really freaks out driver + * developers to see g0 used in unusual places, so just always + * reserve it. + */ + payload_last_use_ip[0] = use_ip; + payload_last_use_ip[1] = use_ip; + } + break; + } + + ip++; + } +} + + +/** + * Sets up interference between thread payload registers and the virtual GRFs + * to be allocated for program temporaries. + * + * We want to be able to reallocate the payload for our virtual GRFs, notably + * because the setup coefficients for a full set of 16 FS inputs takes up 8 of + * our 128 registers. + * + * The layout of the payload registers is: + * + * 0..payload.num_regs-1: fixed function setup (including bary coordinates). + * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data + * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients. + * + * And we have payload_node_count nodes covering these registers in order + * (note that in SIMD16, a node is two registers). + */ +void +fs_visitor::setup_payload_interference(struct ra_graph *g, + int payload_node_count, + int first_payload_node) +{ + int payload_last_use_ip[payload_node_count]; + calculate_payload_ranges(payload_node_count, payload_last_use_ip); + + for (int i = 0; i < payload_node_count; i++) { + if (payload_last_use_ip[i] == -1) + continue; + + /* Mark the payload node as interfering with any virtual grf that is + * live between the start of the program and our last use of the payload + * node. + */ + for (unsigned j = 0; j < this->alloc.count; j++) { + /* Note that we use a <= comparison, unlike virtual_grf_interferes(), + * in order to not have to worry about the uniform issue described in + * calculate_live_intervals(). + */ + if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) { + ra_add_node_interference(g, first_payload_node + i, j); + } + } + } + + for (int i = 0; i < payload_node_count; i++) { + /* Mark each payload node as being allocated to its physical register. + * + * The alternative would be to have per-physical-register classes, which + * would just be silly. + */ + if (devinfo->gen <= 5 && dispatch_width >= 16) { + /* We have to divide by 2 here because we only have even numbered + * registers. Some of the payload registers will be odd, but + * that's ok because their physical register numbers have already + * been assigned. The only thing this is used for is interference. + */ + ra_set_node_reg(g, first_payload_node + i, i / 2); + } else { + ra_set_node_reg(g, first_payload_node + i, i); + } + } +} + +/** + * Sets the mrf_used array to indicate which MRFs are used by the shader IR + * + * This is used in assign_regs() to decide which of the GRFs that we use as + * MRFs on gen7 get normally register allocated, and in register spilling to + * see if we can actually use MRFs to do spills without overwriting normal MRF + * contents. + */ +static void +get_used_mrfs(fs_visitor *v, bool *mrf_used) +{ + int reg_width = v->dispatch_width / 8; + + memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool)); + + foreach_block_and_inst(block, fs_inst, inst, v->cfg) { + if (inst->dst.file == MRF) { + int reg = inst->dst.nr & ~BRW_MRF_COMPR4; + mrf_used[reg] = true; + if (reg_width == 2) { + if (inst->dst.nr & BRW_MRF_COMPR4) { + mrf_used[reg + 4] = true; + } else { + mrf_used[reg + 1] = true; + } + } + } + + if (inst->mlen > 0) { + for (int i = 0; i < v->implied_mrf_writes(inst); i++) { + mrf_used[inst->base_mrf + i] = true; + } + } + } +} + +/** + * Sets interference between virtual GRFs and usage of the high GRFs for SEND + * messages (treated as MRFs in code generation). + */ +static void +setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g, + int first_mrf_node, int *first_used_mrf) +{ + bool mrf_used[BRW_MAX_MRF(v->devinfo->gen)]; + get_used_mrfs(v, mrf_used); + + *first_used_mrf = BRW_MAX_MRF(v->devinfo->gen); + for (int i = 0; i < BRW_MAX_MRF(v->devinfo->gen); i++) { + /* Mark each MRF reg node as being allocated to its physical register. + * + * The alternative would be to have per-physical-register classes, which + * would just be silly. + */ + ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i); + + /* Since we don't have any live/dead analysis on the MRFs, just mark all + * that are used as conflicting with all virtual GRFs. + */ + if (mrf_used[i]) { + if (i < *first_used_mrf) + *first_used_mrf = i; + + for (unsigned j = 0; j < v->alloc.count; j++) { + ra_add_node_interference(g, first_mrf_node + i, j); + } + } + } +} + +bool +fs_visitor::assign_regs(bool allow_spilling, bool spill_all) +{ + /* Most of this allocation was written for a reg_width of 1 + * (dispatch_width == 8). In extending to SIMD16, the code was + * left in place and it was converted to have the hardware + * registers it's allocating be contiguous physical pairs of regs + * for reg_width == 2. + */ + int reg_width = dispatch_width / 8; + unsigned hw_reg_mapping[this->alloc.count]; + int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width); + int rsi = _mesa_logbase2(reg_width); /* Which compiler->fs_reg_sets[] to use */ + calculate_live_intervals(); + + int node_count = this->alloc.count; + int first_payload_node = node_count; + node_count += payload_node_count; + int first_mrf_hack_node = node_count; + if (devinfo->gen >= 7) + node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START; + struct ra_graph *g = + ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count); + + for (unsigned i = 0; i < this->alloc.count; i++) { + unsigned size = this->alloc.sizes[i]; + int c; + + assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) && + "Register allocation relies on split_virtual_grfs()"); + c = compiler->fs_reg_sets[rsi].classes[size - 1]; + + /* Special case: on pre-GEN6 hardware that supports PLN, the + * second operand of a PLN instruction needs to be an + * even-numbered register, so we have a special register class + * wm_aligned_pairs_class to handle this case. pre-GEN6 always + * uses this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] as the + * second operand of a PLN instruction (since it doesn't support + * any other interpolation modes). So all we need to do is find + * that register and set it to the appropriate class. + */ + if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 && + this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].file == VGRF && + this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].nr == i) { + c = compiler->fs_reg_sets[rsi].aligned_pairs_class; + } + + ra_set_node_class(g, i, c); + + for (unsigned j = 0; j < i; j++) { + if (virtual_grf_interferes(i, j)) { + ra_add_node_interference(g, i, j); + } + } + } + + /* Certain instructions can't safely use the same register for their + * sources and destination. Add interference. + */ + foreach_block_and_inst(block, fs_inst, inst, cfg) { + if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { + for (unsigned i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) { + ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); + } + } + } + } + + setup_payload_interference(g, payload_node_count, first_payload_node); + if (devinfo->gen >= 7) { + int first_used_mrf = BRW_MAX_MRF(devinfo->gen); + setup_mrf_hack_interference(this, g, first_mrf_hack_node, + &first_used_mrf); + + foreach_block_and_inst(block, fs_inst, inst, cfg) { + /* When we do send-from-GRF for FB writes, we need to ensure that + * the last write instruction sends from a high register. This is + * because the vertex fetcher wants to start filling the low + * payload registers while the pixel data port is still working on + * writing out the memory. If we don't do this, we get rendering + * artifacts. + * + * We could just do "something high". Instead, we just pick the + * highest register that works. + */ + if (inst->eot) { + int size = alloc.sizes[inst->src[0].nr]; + int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1; + + /* If something happened to spill, we want to push the EOT send + * register early enough in the register file that we don't + * conflict with any used MRF hack registers. + */ + reg -= BRW_MAX_MRF(devinfo->gen) - first_used_mrf; + + ra_set_node_reg(g, inst->src[0].nr, reg); + break; + } + } + } + + if (dispatch_width > 8) { + /* In 16-wide dispatch we have an issue where a compressed + * instruction is actually two instructions executed simultaneiously. + * It's actually ok to have the source and destination registers be + * the same. In this case, each instruction over-writes its own + * source and there's no problem. The real problem here is if the + * source and destination registers are off by one. Then you can end + * up in a scenario where the first instruction over-writes the + * source of the second instruction. Since the compiler doesn't know + * about this level of granularity, we simply make the source and + * destination interfere. + */ + foreach_block_and_inst(block, fs_inst, inst, cfg) { + if (inst->dst.file != VGRF) + continue; + + for (int i = 0; i < inst->sources; ++i) { + if (inst->src[i].file == VGRF) { + ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); + } + } + } + } + + /* Debug of register spilling: Go spill everything. */ + if (unlikely(spill_all)) { + int reg = choose_spill_reg(g); + + if (reg != -1) { + spill_reg(reg); + ralloc_free(g); + return false; + } + } + + if (!ra_allocate(g)) { + /* Failed to allocate registers. Spill a reg, and the caller will + * loop back into here to try again. + */ + int reg = choose_spill_reg(g); + + if (reg == -1) { + fail("no register to spill:\n"); + dump_instructions(NULL); + } else if (allow_spilling) { + spill_reg(reg); + } + + ralloc_free(g); + + return false; + } + + /* Get the chosen virtual registers for each node, and map virtual + * regs in the register classes back down to real hardware reg + * numbers. + */ + this->grf_used = payload_node_count; + for (unsigned i = 0; i < this->alloc.count; i++) { + int reg = ra_get_node_reg(g, i); + + hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg]; + this->grf_used = MAX2(this->grf_used, + hw_reg_mapping[i] + this->alloc.sizes[i]); + } + + foreach_block_and_inst(block, fs_inst, inst, cfg) { + assign_reg(hw_reg_mapping, &inst->dst); + for (int i = 0; i < inst->sources; i++) { + assign_reg(hw_reg_mapping, &inst->src[i]); + } + } + + this->alloc.count = this->grf_used; + + ralloc_free(g); + + return true; +} + +namespace { + /** + * Maximum spill block size we expect to encounter in 32B units. + * + * This is somewhat arbitrary and doesn't necessarily limit the maximum + * variable size that can be spilled -- A higher value will allow a + * variable of a given size to be spilled more efficiently with a smaller + * number of scratch messages, but will increase the likelihood of a + * collision between the MRFs reserved for spilling and other MRFs used by + * the program (and possibly increase GRF register pressure on platforms + * without hardware MRFs), what could cause register allocation to fail. + * + * For the moment reserve just enough space so a register of 32 bit + * component type and natural region width can be spilled without splitting + * into multiple (force_writemask_all) scratch messages. + */ + unsigned + spill_max_size(const backend_shader *s) + { + /* FINISHME - On Gen7+ it should be possible to avoid this limit + * altogether by spilling directly from the temporary GRF + * allocated to hold the result of the instruction (and the + * scratch write header). + */ + /* FINISHME - The shader's dispatch width probably belongs in + * backend_shader (or some nonexistent fs_shader class?) + * rather than in the visitor class. + */ + return static_cast<const fs_visitor *>(s)->dispatch_width / 8; + } + + /** + * First MRF register available for spilling. + */ + unsigned + spill_base_mrf(const backend_shader *s) + { + return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1; + } +} + +static void +emit_unspill(const fs_builder &bld, fs_reg dst, + uint32_t spill_offset, unsigned count) +{ + const gen_device_info *devinfo = bld.shader->devinfo; + const unsigned reg_size = dst.component_size(bld.dispatch_width()) / + REG_SIZE; + assert(count % reg_size == 0); + + for (unsigned i = 0; i < count / reg_size; i++) { + /* The Gen7 descriptor-based offset is 12 bits of HWORD units. Because + * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+ + * it would cause the DC to do an IA-coherent read, what largely + * outweighs the slight advantage from not having to provide the address + * as part of the message header, so we're better off using plain old + * oword block reads. + */ + bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 && + spill_offset < (1 << 12) * REG_SIZE); + fs_inst *unspill_inst = bld.emit(gen7_read ? + SHADER_OPCODE_GEN7_SCRATCH_READ : + SHADER_OPCODE_GEN4_SCRATCH_READ, + dst); + unspill_inst->offset = spill_offset; + + if (!gen7_read) { + unspill_inst->base_mrf = spill_base_mrf(bld.shader); + unspill_inst->mlen = 1; /* header contains offset */ + } + + dst.offset += reg_size * REG_SIZE; + spill_offset += reg_size * REG_SIZE; + } +} + +static void +emit_spill(const fs_builder &bld, fs_reg src, + uint32_t spill_offset, unsigned count) +{ + const unsigned reg_size = src.component_size(bld.dispatch_width()) / + REG_SIZE; + assert(count % reg_size == 0); + + for (unsigned i = 0; i < count / reg_size; i++) { + fs_inst *spill_inst = + bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src); + src.offset += reg_size * REG_SIZE; + spill_inst->offset = spill_offset + i * reg_size * REG_SIZE; + spill_inst->mlen = 1 + reg_size; /* header, value */ + spill_inst->base_mrf = spill_base_mrf(bld.shader); + } +} + +int +fs_visitor::choose_spill_reg(struct ra_graph *g) +{ + float loop_scale = 1.0; + float spill_costs[this->alloc.count]; + bool no_spill[this->alloc.count]; + + for (unsigned i = 0; i < this->alloc.count; i++) { + spill_costs[i] = 0.0; + no_spill[i] = false; + } + + /* Calculate costs for spilling nodes. Call it a cost of 1 per + * spill/unspill we'll have to do, and guess that the insides of + * loops run 10 times. + */ + foreach_block_and_inst(block, fs_inst, inst, cfg) { + for (unsigned int i = 0; i < inst->sources; i++) { + if (inst->src[i].file == VGRF) + spill_costs[inst->src[i].nr] += loop_scale; + } + + if (inst->dst.file == VGRF) + spill_costs[inst->dst.nr] += DIV_ROUND_UP(inst->size_written, REG_SIZE) + * loop_scale; + + switch (inst->opcode) { + + case BRW_OPCODE_DO: + loop_scale *= 10; + break; + + case BRW_OPCODE_WHILE: + loop_scale /= 10; + break; + + case SHADER_OPCODE_GEN4_SCRATCH_WRITE: + if (inst->src[0].file == VGRF) + no_spill[inst->src[0].nr] = true; + break; + + case SHADER_OPCODE_GEN4_SCRATCH_READ: + case SHADER_OPCODE_GEN7_SCRATCH_READ: + if (inst->dst.file == VGRF) + no_spill[inst->dst.nr] = true; + break; + + default: + break; + } + } + + for (unsigned i = 0; i < this->alloc.count; i++) { + if (!no_spill[i]) + ra_set_node_spill_cost(g, i, spill_costs[i]); + } + + return ra_get_best_spill_node(g); +} + +void +fs_visitor::spill_reg(int spill_reg) +{ + int size = alloc.sizes[spill_reg]; + unsigned int spill_offset = last_scratch; + assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ + + /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done + * using up to 11 MRFs starting from either m1 or m2, and fb writes can use + * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or + * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst + * depth), starting from m1. In summary: We may not be able to spill in + * SIMD16 mode, because we'd stomp the FB writes. + */ + if (!spilled_any_registers) { + bool mrf_used[BRW_MAX_MRF(devinfo->gen)]; + get_used_mrfs(this, mrf_used); + + for (int i = spill_base_mrf(this); i < BRW_MAX_MRF(devinfo->gen); i++) { + if (mrf_used[i]) { + fail("Register spilling not supported with m%d used", i); + return; + } + } + + spilled_any_registers = true; + } + + last_scratch += size * REG_SIZE; + + /* Generate spill/unspill instructions for the objects being + * spilled. Right now, we spill or unspill the whole thing to a + * virtual grf of the same size. For most instructions, though, we + * could just spill/unspill the GRF being accessed. + */ + foreach_block_and_inst (block, fs_inst, inst, cfg) { + const fs_builder ibld = fs_builder(this, block, inst); + + for (unsigned int i = 0; i < inst->sources; i++) { + if (inst->src[i].file == VGRF && + inst->src[i].nr == spill_reg) { + int count = regs_read(inst, i); + int subset_spill_offset = spill_offset + + ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE); + fs_reg unspill_dst(VGRF, alloc.allocate(count)); + + inst->src[i].nr = unspill_dst.nr; + inst->src[i].offset %= REG_SIZE; + + /* We read the largest power-of-two divisor of the register count + * (because only POT scratch read blocks are allowed by the + * hardware) up to the maximum supported block size. + */ + const unsigned width = + MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); + + /* Set exec_all() on unspill messages under the (rather + * pessimistic) assumption that there is no one-to-one + * correspondence between channels of the spilled variable in + * scratch space and the scratch read message, which operates on + * 32 bit channels. It shouldn't hurt in any case because the + * unspill destination is a block-local temporary. + */ + emit_unspill(ibld.exec_all().group(width, 0), + unspill_dst, subset_spill_offset, count); + } + } + + if (inst->dst.file == VGRF && + inst->dst.nr == spill_reg) { + int subset_spill_offset = spill_offset + + ROUND_DOWN_TO(inst->dst.offset, REG_SIZE); + fs_reg spill_src(VGRF, alloc.allocate(regs_written(inst))); + + inst->dst.nr = spill_src.nr; + inst->dst.offset %= REG_SIZE; + + /* If we're immediately spilling the register, we should not use + * destination dependency hints. Doing so will cause the GPU do + * try to read and write the register at the same time and may + * hang the GPU. + */ + inst->no_dd_clear = false; + inst->no_dd_check = false; + + /* Calculate the execution width of the scratch messages (which work + * in terms of 32 bit components so we have a fixed number of eight + * channels per spilled register). We attempt to write one + * exec_size-wide component of the variable at a time without + * exceeding the maximum number of (fake) MRF registers reserved for + * spills. + */ + const unsigned width = 8 * MIN2( + DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE), + spill_max_size(this)); + + /* Spills should only write data initialized by the instruction for + * whichever channels are enabled in the excution mask. If that's + * not possible we'll have to emit a matching unspill before the + * instruction and set force_writemask_all on the spill. + */ + const bool per_channel = + inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 && + inst->exec_size == width; + + /* Builder used to emit the scratch messages. */ + const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0); + + /* If our write is going to affect just part of the + * regs_written(inst), then we need to unspill the destination since + * we write back out all of the regs_written(). If the original + * instruction had force_writemask_all set and is not a partial + * write, there should be no need for the unspill since the + * instruction will be overwriting the whole destination in any case. + */ + if (inst->is_partial_write() || + (!inst->force_writemask_all && !per_channel)) + emit_unspill(ubld, spill_src, subset_spill_offset, + regs_written(inst)); + + emit_spill(ubld.at(block, inst->next), spill_src, + subset_spill_offset, regs_written(inst)); + } + } + + invalidate_live_intervals(); +} |