1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
/*--------------------------------------------------------------------*/
/*--- An sparse array (of words) implementation. ---*/
/*--- m_sparsewa.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2008-2009 OpenWorks Ltd
info@open-works.co.uk
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_core_basics.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcbase.h"
#include "pub_core_sparsewa.h" /* self */
/////////////////////////////////////////////////////////
// //
// SparseWA: Implementation //
// //
/////////////////////////////////////////////////////////
//////// SWA data structures
// (UInt) `echo "Level Zero Byte Map" | md5sum`
#define Level0_MAGIC 0x458ec222
// (UInt) `echo "Level N Byte Map" | md5sum`
#define LevelN_MAGIC 0x0a280a1a
/* It's important that the .magic field appears at offset zero in both
structs, so that we can reliably distinguish between them. */
typedef
struct {
UWord magic;
UWord words[256];
Int nInUse;
UChar inUse[256/8];
}
Level0;
typedef
struct {
UWord magic;
void* child[256]; /* either LevelN* or Level0* */
Int nInUse;
Int level; /* 3 .. 1 on 32-bit, 7 .. 1 on 64-bit */
}
LevelN;
typedef
struct {
UWord partial_key;
Int curr_ix;
void* curr_nd; /* LevelN* or Level0* */
Int resume_point; /* 1, 2 or 3 */
}
SWAStackElem;
struct _SparseWA {
void* (*alloc_nofail)(HChar*,SizeT);
HChar* cc;
void (*dealloc)(void*);
LevelN* root;
SWAStackElem iterStack[8];
Int isUsed;
};
//////// SWA helper functions (bitarray)
static inline UWord swa_bitarray_read ( UChar* arr, UWord ix ) {
UWord bix = ix >> 3;
UWord off = ix & 7;
return (arr[bix] >> off) & 1;
}
static inline UWord swa_bitarray_read_then_set ( UChar* arr, UWord ix ) {
UWord bix = ix >> 3;
UWord off = ix & 7;
UChar old = arr[bix];
UChar nyu = old | (1 << off);
arr[bix] = nyu;
return (old >> off) & 1;
}
static inline UWord swa_bitarray_read_then_clear ( UChar* arr, UWord ix ) {
UWord bix = ix >> 3;
UWord off = ix & 7;
UChar old = arr[bix];
UChar nyu = old & ~(1 << off);
arr[bix] = nyu;
return (old >> off) & 1;
}
//////// SWA helper functions (iteration)
static void swa_PUSH ( SparseWA* swa, UWord partial_key, Int curr_ix,
void* curr_nd, Int resume_point )
{
Int sp = swa->isUsed;
const Int _3_or_7 = sizeof(void*) - 1;
// if (0) VG_(printf)("PUSH, old sp = %d\n", sp);
vg_assert(sp >= 0 && sp <= _3_or_7);
swa->iterStack[sp].partial_key = partial_key;
swa->iterStack[sp].curr_ix = curr_ix;
swa->iterStack[sp].curr_nd = curr_nd;
swa->iterStack[sp].resume_point = resume_point;
swa->isUsed = sp+1;
}
static void swa_POP ( SparseWA* swa,
UWord* partial_key, Int* curr_ix,
void** curr_nd, Int* resume_point )
{
Int sp = swa->isUsed - 1;
const Int _3_or_7 = sizeof(void*) - 1;
// if (0) VG_(printf)("POP, old sp = %d\n", sp+1);
vg_assert(sp >= 0 && sp <= _3_or_7);
*partial_key = swa->iterStack[sp].partial_key;
*curr_ix = swa->iterStack[sp].curr_ix;
*curr_nd = swa->iterStack[sp].curr_nd;
*resume_point = swa->iterStack[sp].resume_point;
swa->isUsed = sp;
}
//////// SWA helper functions (allocation)
static LevelN* swa_new_LevelN ( SparseWA* swa, Int level )
{
LevelN* levelN = swa->alloc_nofail( swa->cc, sizeof(LevelN) );
VG_(memset)(levelN, 0, sizeof(*levelN));
levelN->magic = LevelN_MAGIC;
levelN->level = level;
return levelN;
}
static Level0* swa_new_Level0 ( SparseWA* swa )
{
Level0* level0 = swa->alloc_nofail( swa->cc, sizeof(Level0) );
VG_(memset)(level0, 0, sizeof(*level0));
level0->magic = Level0_MAGIC;
return level0;
}
//////// SWA public interface
void VG_(initIterSWA) ( SparseWA* swa )
{
swa->isUsed = 0;
if (swa->root) swa_PUSH(swa, 0, 0, swa->root, 1/*start_new_node*/);
}
Bool VG_(nextIterSWA)( SparseWA* swa,
/*OUT*/UWord* keyP, /*OUT*/UWord* valP )
{
UWord p_key;
Int curr_ix;
void* curr_nd;
Int resume_point;
/* dispatch whatever's on top of the stack; what that actually
means is to return to some previously-saved context. */
dispatch:
if (swa->isUsed == 0)
return False;
swa_POP(swa, &p_key, &curr_ix, &curr_nd, &resume_point);
switch (resume_point) {
case 1: goto start_new_node;
case 2: goto resume_leaf_node;
case 3: goto resume_nonleaf_node;
default: vg_assert(0);
}
start_new_node:
if (*(UWord*)curr_nd == Level0_MAGIC) {
/* curr_nd is a leaf node */
Level0* level0 = (Level0*)curr_nd;
for (curr_ix = 0; curr_ix < 256; curr_ix++) {
if (swa_bitarray_read(level0->inUse, curr_ix) == 1) {
swa_PUSH(swa, p_key, curr_ix, curr_nd, 2/*resume_leaf_node*/);
*keyP = (p_key << 8) + (UWord)curr_ix;
*valP = level0->words[curr_ix];
return True;
resume_leaf_node:
level0 = (Level0*)curr_nd;
}
}
} else {
/* curr_nd is a non-leaf node */
LevelN* levelN;
vg_assert(*(UWord*)curr_nd == LevelN_MAGIC);
levelN = (LevelN*)curr_nd;
for (curr_ix = 0; curr_ix < 256; curr_ix++) {
if (levelN->child[curr_ix]) {
swa_PUSH(swa, p_key, curr_ix, curr_nd, 3/*resume_nonleaf_node*/);
p_key = (p_key << 8) + (UWord)curr_ix;
curr_nd = levelN->child[curr_ix];
goto start_new_node;
resume_nonleaf_node:
levelN = (LevelN*)curr_nd;
}
}
}
goto dispatch;
}
SparseWA* VG_(newSWA) ( void*(*alloc_nofail)(HChar* cc, SizeT),
HChar* cc,
void(*dealloc)(void*) )
{
SparseWA* swa;
vg_assert(alloc_nofail);
vg_assert(cc);
vg_assert(dealloc);
swa = alloc_nofail( cc, sizeof(SparseWA) );
VG_(memset)(swa, 0, sizeof(*swa));
swa->alloc_nofail = alloc_nofail;
swa->cc = cc;
swa->dealloc = dealloc;
swa->root = NULL;
return swa;
}
static void swa_deleteSWA_wrk ( void(*dealloc)(void*), void* nd )
{
Int i;
vg_assert(nd);
if (*(UWord*)nd == LevelN_MAGIC) {
LevelN* levelN = (LevelN*)nd;
for (i = 0; i < 256; i++) {
if (levelN->child[i]) {
swa_deleteSWA_wrk( dealloc, levelN->child[i] );
}
}
} else {
vg_assert(*(UWord*)nd == Level0_MAGIC);
}
dealloc(nd);
}
void VG_(deleteSWA) ( SparseWA* swa )
{
if (swa->root)
swa_deleteSWA_wrk( swa->dealloc, swa->root );
swa->dealloc(swa);
}
Bool VG_(lookupSWA) ( SparseWA* swa,
/*OUT*/UWord* keyP, /*OUT*/UWord* valP,
UWord key )
{
Int i;
UWord ix;
Level0* level0;
LevelN* levelN;
const Int _3_or_7 = sizeof(void*) - 1;
vg_assert(swa);
levelN = swa->root;
/* levels 3/7 .. 1 */
for (i = _3_or_7; i >= 1; i--) {
if (!levelN) return False;
vg_assert(levelN->level == i);
vg_assert(levelN->nInUse > 0);
ix = (key >> (i*8)) & 0xFF;
levelN = levelN->child[ix];
}
/* level0 */
level0 = (Level0*)levelN;
if (!level0) return False;
vg_assert(level0->magic == Level0_MAGIC);
vg_assert(level0->nInUse > 0);
ix = key & 0xFF;
if (swa_bitarray_read(level0->inUse, ix) == 0) return False;
*keyP = key; /* this is stupid. only here to make it look like WordFM */
*valP = level0->words[ix];
return True;
}
Bool VG_(addToSWA) ( SparseWA* swa, UWord key, UWord val )
{
Int i;
UWord ix;
Level0* level0;
LevelN* levelN;
Bool already_present;
const Int _3_or_7 = sizeof(void*) - 1;
vg_assert(swa);
if (!swa->root)
swa->root = swa_new_LevelN(swa, _3_or_7);
levelN = swa->root;
/* levels 3/7 .. 2 */
for (i = _3_or_7; i >= 2; i--) {
/* levelN is the level-i map */
vg_assert(levelN);
vg_assert(levelN->level == i);
ix = (key >> (i*8)) & 0xFF;
if (levelN->child[ix] == NULL) {
levelN->child[ix] = swa_new_LevelN(swa, i-1);
levelN->nInUse++;
}
vg_assert(levelN->nInUse >= 1 && levelN->nInUse <= 256);
levelN = levelN->child[ix];
}
/* levelN is the level-1 map */
vg_assert(levelN);
vg_assert(levelN->level == 1);
ix = (key >> (1*8)) & 0xFF;
if (levelN->child[ix] == NULL) {
levelN->child[ix] = swa_new_Level0(swa);
levelN->nInUse++;
}
vg_assert(levelN->nInUse >= 1 && levelN->nInUse <= 256);
level0 = levelN->child[ix];
/* level0 is the level-0 map */
vg_assert(level0);
vg_assert(level0->magic == Level0_MAGIC);
ix = key & 0xFF;
if (swa_bitarray_read_then_set(level0->inUse, ix) == 0) {
level0->nInUse++;
already_present = False;
} else {
already_present = True;
}
vg_assert(level0->nInUse >= 1 && level0->nInUse <= 256);
level0->words[ix] = val;
return already_present;
}
Bool VG_(delFromSWA) ( SparseWA* swa,
/*OUT*/UWord* oldK, /*OUT*/UWord* oldV, UWord key )
{
Int i;
UWord ix;
Level0* level0;
LevelN* levelN;
const Int _3_or_7 = sizeof(void*) - 1;
LevelN* visited[_3_or_7];
UWord visitedIx[_3_or_7];
Int nVisited = 0;
vg_assert(swa);
levelN = swa->root;
/* levels 3/7 .. 1 */
for (i = _3_or_7; i >= 1; i--) {
/* level i */
if (!levelN) return False;
vg_assert(levelN->level == i);
vg_assert(levelN->nInUse > 0);
ix = (key >> (i*8)) & 0xFF;
visited[nVisited] = levelN;
visitedIx[nVisited++] = ix;
levelN = levelN->child[ix];
}
/* level 0 */
level0 = (Level0*)levelN;
if (!level0) return False;
vg_assert(level0->magic == Level0_MAGIC);
vg_assert(level0->nInUse > 0);
ix = key & 0xFF;
if (swa_bitarray_read_then_clear(level0->inUse, ix) == 0)
return False;
*oldK = key; /* this is silly */
*oldV = level0->words[ix];
level0->nInUse--;
if (level0->nInUse > 0)
return True;
vg_assert(nVisited == _3_or_7);
swa->dealloc( level0 );
/* levels 1 .. 3/7 */
for (i = 1; i <= _3_or_7; i++) {
/* level i */
nVisited--;
vg_assert(visited[nVisited]->child[ visitedIx[nVisited] ]);
visited[nVisited]->child[ visitedIx[nVisited] ] = NULL;
visited[nVisited]->nInUse--;
vg_assert(visited[nVisited]->nInUse >= 0);
if (visited[nVisited]->nInUse > 0)
return True;
swa->dealloc(visited[nVisited]);
}
vg_assert(nVisited == 0);
swa->root = NULL;
return True;
}
static UWord swa_sizeSWA_wrk ( void* nd )
{
Int i;
UWord sum = 0;
if (*(UWord*)nd == LevelN_MAGIC) {
LevelN* levelN = (LevelN*)nd;
for (i = 0; i < 256; i++) {
if (levelN->child[i]) {
sum += swa_sizeSWA_wrk( levelN->child[i] );
}
}
} else {
Level0* level0;
vg_assert(*(UWord*)nd == Level0_MAGIC);
level0 = (Level0*)nd;
for (i = 0; i < 256/8; i += 2) {
UWord x = level0->inUse[i+0]; /* assume zero-extend */
UWord y = level0->inUse[i+1]; /* assume zero-extend */
/* do 'sum += popcount(x) + popcount(y)' for byte-sized x, y */
/* unroll the loop twice so as to expose more ILP */
x = (x & 0x55) + ((x >> 1) & 0x55);
y = (y & 0x55) + ((y >> 1) & 0x55);
x = (x & 0x33) + ((x >> 2) & 0x33);
y = (y & 0x33) + ((y >> 2) & 0x33);
x = (x & 0x0F) + ((x >> 4) & 0x0F);
y = (y & 0x0F) + ((y >> 4) & 0x0F);
sum += x + y;
}
}
return sum;
}
UWord VG_(sizeSWA) ( SparseWA* swa )
{
if (swa->root)
return swa_sizeSWA_wrk ( swa->root );
else
return 0;
}
/*--------------------------------------------------------------------*/
/*--- end m_sparsewa.c ---*/
/*--------------------------------------------------------------------*/
|