summaryrefslogtreecommitdiff
path: root/coregrind/m_scheduler/scheduler.c
blob: e1e0f1ce1ae1bb6dd007559d8a4b9bed0e7b4fbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

/*--------------------------------------------------------------------*/
/*--- Thread scheduling.                               scheduler.c ---*/
/*--------------------------------------------------------------------*/

/*
   This file is part of Valgrind, a dynamic binary instrumentation
   framework.

   Copyright (C) 2000-2009 Julian Seward 
      jseward@acm.org

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307, USA.

   The GNU General Public License is contained in the file COPYING.
*/

/* 
   Overview

   Valgrind tries to emulate the kernel's threading as closely as
   possible.  The client does all threading via the normal syscalls
   (on Linux: clone, etc).  Valgrind emulates this by creating exactly
   the same process structure as would be created without Valgrind.
   There are no extra threads.

   The main difference is that Valgrind only allows one client thread
   to run at once.  This is controlled with the CPU Big Lock,
   "the_BigLock".  Any time a thread wants to run client code or
   manipulate any shared state (which is anything other than its own
   ThreadState entry), it must hold the_BigLock.

   When a thread is about to block in a blocking syscall, it releases
   the_BigLock, and re-takes it when it becomes runnable again (either
   because the syscall finished, or we took a signal).

   VG_(scheduler) therefore runs in each thread.  It returns only when
   the thread is exiting, either because it exited itself, or it was
   told to exit by another thread.

   This file is almost entirely OS-independent.  The details of how
   the OS handles threading and signalling are abstracted away and
   implemented elsewhere.  [Some of the functions have worked their
   way back for the moment, until we do an OS port in earnest...]
 */

#include "pub_core_basics.h"
#include "pub_core_debuglog.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"    // __NR_sched_yield
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_clreq.h"         // for VG_USERREQ__*
#include "pub_core_dispatch.h"
#include "pub_core_errormgr.h"      // For VG_(get_n_errs_found)()
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_machine.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_replacemalloc.h"
#include "pub_core_signals.h"
#include "pub_core_stacks.h"
#include "pub_core_stacktrace.h"    // For VG_(get_and_pp_StackTrace)()
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_translate.h"     // For VG_(translate)()
#include "pub_core_transtab.h"
#include "pub_core_debuginfo.h"     // VG_(di_notify_pdb_debuginfo)
#include "priv_sema.h"
#include "pub_core_scheduler.h"     // self


/* ---------------------------------------------------------------------
   Types and globals for the scheduler.
   ------------------------------------------------------------------ */

/* ThreadId and ThreadState are defined elsewhere*/

/* Defines the thread-scheduling timeslice, in terms of the number of
   basic blocks we attempt to run each thread for.  Smaller values
   give finer interleaving but much increased scheduling overheads. */
#define SCHEDULING_QUANTUM   100000

/* If False, a fault is Valgrind-internal (ie, a bug) */
Bool VG_(in_generated_code) = False;

/* Counts downwards in VG_(run_innerloop). */
UInt VG_(dispatch_ctr);

/* 64-bit counter for the number of basic blocks done. */
static ULong bbs_done = 0;

/* Forwards */
static void do_client_request ( ThreadId tid );
static void scheduler_sanity ( ThreadId tid );
static void mostly_clear_thread_record ( ThreadId tid );

/* Stats. */
static ULong n_scheduling_events_MINOR = 0;
static ULong n_scheduling_events_MAJOR = 0;

/* Sanity checking counts. */
static UInt sanity_fast_count = 0;
static UInt sanity_slow_count = 0;

void VG_(print_scheduler_stats)(void)
{
   VG_(message)(Vg_DebugMsg,
      "scheduler: %'llu jumps (bb entries).", bbs_done );
   VG_(message)(Vg_DebugMsg,
      "scheduler: %'llu/%'llu major/minor sched events.",
      n_scheduling_events_MAJOR, n_scheduling_events_MINOR);
   VG_(message)(Vg_DebugMsg, 
                "   sanity: %d cheap, %d expensive checks.",
                sanity_fast_count, sanity_slow_count );
}

/* CPU semaphore, so that threads can run exclusively */
static vg_sema_t the_BigLock;


/* ---------------------------------------------------------------------
   Helper functions for the scheduler.
   ------------------------------------------------------------------ */

static
void print_sched_event ( ThreadId tid, Char* what )
{
   VG_(message)(Vg_DebugMsg, "  SCHED[%d]: %s", tid, what );
}

static
HChar* name_of_sched_event ( UInt event )
{
   switch (event) {
      case VEX_TRC_JMP_SYS_SYSCALL:   return "SYSCALL";
      case VEX_TRC_JMP_SYS_INT32:     return "INT32";
      case VEX_TRC_JMP_SYS_INT128:    return "INT128";
      case VEX_TRC_JMP_SYS_SYSENTER:  return "SYSENTER";
      case VEX_TRC_JMP_CLIENTREQ:     return "CLIENTREQ";
      case VEX_TRC_JMP_YIELD:         return "YIELD";
      case VEX_TRC_JMP_NODECODE:      return "NODECODE";
      case VEX_TRC_JMP_MAPFAIL:       return "MAPFAIL";
      case VEX_TRC_JMP_NOREDIR:       return "NOREDIR";
      case VEX_TRC_JMP_EMWARN:        return "EMWARN";
      case VEX_TRC_JMP_TINVAL:        return "TINVAL";
      case VG_TRC_INVARIANT_FAILED:   return "INVFAILED";
      case VG_TRC_INNER_COUNTERZERO:  return "COUNTERZERO";
      case VG_TRC_INNER_FASTMISS:     return "FASTMISS";
      case VG_TRC_FAULT_SIGNAL:       return "FAULTSIGNAL";
      default:                        return "??UNKNOWN??";
  }
}

/* Allocate a completely empty ThreadState record. */
ThreadId VG_(alloc_ThreadState) ( void )
{
   Int i;
   for (i = 1; i < VG_N_THREADS; i++) {
      if (VG_(threads)[i].status == VgTs_Empty) {
	 VG_(threads)[i].status = VgTs_Init;
	 VG_(threads)[i].exitreason = VgSrc_None;
         return i;
      }
   }
   VG_(printf)("vg_alloc_ThreadState: no free slots available\n");
   VG_(printf)("Increase VG_N_THREADS, rebuild and try again.\n");
   VG_(core_panic)("VG_N_THREADS is too low");
   /*NOTREACHED*/
}

/* 
   Mark a thread as Runnable.  This will block until the_BigLock is
   available, so that we get exclusive access to all the shared
   structures and the CPU.  Up until we get the_BigLock, we must not
   touch any shared state.

   When this returns, we'll actually be running.
 */
void VG_(acquire_BigLock)(ThreadId tid, HChar* who)
{
   ThreadState *tst;

#if 0
   if (VG_(clo_trace_sched)) {
      HChar buf[100];
      vg_assert(VG_(strlen)(who) <= 100-50);
      VG_(sprintf)(buf, "waiting for lock (%s)", who);
      print_sched_event(tid, buf);
   }
#endif

   /* First, acquire the_BigLock.  We can't do anything else safely
      prior to this point.  Even doing debug printing prior to this
      point is, technically, wrong. */
   ML_(sema_down)(&the_BigLock);

   tst = VG_(get_ThreadState)(tid);

   vg_assert(tst->status != VgTs_Runnable);
   
   tst->status = VgTs_Runnable;

   if (VG_(running_tid) != VG_INVALID_THREADID)
      VG_(printf)("tid %d found %d running\n", tid, VG_(running_tid));
   vg_assert(VG_(running_tid) == VG_INVALID_THREADID);
   VG_(running_tid) = tid;

   { Addr gsp = VG_(get_SP)(tid);
     VG_(unknown_SP_update)(gsp, gsp, 0/*unknown origin*/);
   }

   if (VG_(clo_trace_sched)) {
      HChar buf[150];
      vg_assert(VG_(strlen)(who) <= 150-50);
      VG_(sprintf)(buf, " acquired lock (%s)", who);
      print_sched_event(tid, buf);
   }
}

/* 
   Set a thread into a sleeping state, and give up exclusive access to
   the CPU.  On return, the thread must be prepared to block until it
   is ready to run again (generally this means blocking in a syscall,
   but it may mean that we remain in a Runnable state and we're just
   yielding the CPU to another thread).
 */
void VG_(release_BigLock)(ThreadId tid, ThreadStatus sleepstate, HChar* who)
{
   ThreadState *tst = VG_(get_ThreadState)(tid);

   vg_assert(tst->status == VgTs_Runnable);

   vg_assert(sleepstate == VgTs_WaitSys ||
	     sleepstate == VgTs_Yielding);

   tst->status = sleepstate;

   vg_assert(VG_(running_tid) == tid);
   VG_(running_tid) = VG_INVALID_THREADID;

   if (VG_(clo_trace_sched)) {
      Char buf[200];
      vg_assert(VG_(strlen)(who) <= 200-100);
      VG_(sprintf)(buf, "releasing lock (%s) -> %s",
                        who, VG_(name_of_ThreadStatus)(sleepstate));
      print_sched_event(tid, buf);
   }

   /* Release the_BigLock; this will reschedule any runnable
      thread. */
   ML_(sema_up)(&the_BigLock);
}

/* Clear out the ThreadState and release the semaphore. Leaves the
   ThreadState in VgTs_Zombie state, so that it doesn't get
   reallocated until the caller is really ready. */
void VG_(exit_thread)(ThreadId tid)
{
   vg_assert(VG_(is_valid_tid)(tid));
   vg_assert(VG_(is_running_thread)(tid));
   vg_assert(VG_(is_exiting)(tid));

   mostly_clear_thread_record(tid);
   VG_(running_tid) = VG_INVALID_THREADID;

   /* There should still be a valid exitreason for this thread */
   vg_assert(VG_(threads)[tid].exitreason != VgSrc_None);

   if (VG_(clo_trace_sched))
      print_sched_event(tid, "release lock in VG_(exit_thread)");

   ML_(sema_up)(&the_BigLock);
}

/* If 'tid' is blocked in a syscall, send it SIGVGKILL so as to get it
   out of the syscall and onto doing the next thing, whatever that is.
   If it isn't blocked in a syscall, has no effect on the thread. */
void VG_(get_thread_out_of_syscall)(ThreadId tid)
{
   vg_assert(VG_(is_valid_tid)(tid));
   vg_assert(!VG_(is_running_thread)(tid));

   if (VG_(threads)[tid].status == VgTs_WaitSys) {
      if (VG_(clo_trace_signals))
	 VG_(message)(Vg_DebugMsg, 
                      "get_thread_out_of_syscall zaps tid %d lwp %d",
		      tid, VG_(threads)[tid].os_state.lwpid);
      VG_(tkill)(VG_(threads)[tid].os_state.lwpid, VG_SIGVGKILL);
   }
}

/* 
   Yield the CPU for a short time to let some other thread run.
 */
void VG_(vg_yield)(void)
{
   ThreadId tid = VG_(running_tid);

   vg_assert(tid != VG_INVALID_THREADID);
   vg_assert(VG_(threads)[tid].os_state.lwpid == VG_(gettid)());

   VG_(release_BigLock)(tid, VgTs_Yielding, "VG_(vg_yield)");

   /* 
      Tell the kernel we're yielding.
    */
   VG_(do_syscall0)(__NR_sched_yield);

   VG_(acquire_BigLock)(tid, "VG_(vg_yield)");
}


/* Set the standard set of blocked signals, used whenever we're not
   running a client syscall. */
static void block_signals(void)
{
   vki_sigset_t mask;

   VG_(sigfillset)(&mask);

   /* Don't block these because they're synchronous */
   VG_(sigdelset)(&mask, VKI_SIGSEGV);
   VG_(sigdelset)(&mask, VKI_SIGBUS);
   VG_(sigdelset)(&mask, VKI_SIGFPE);
   VG_(sigdelset)(&mask, VKI_SIGILL);
   VG_(sigdelset)(&mask, VKI_SIGTRAP);

   /* Can't block these anyway */
   VG_(sigdelset)(&mask, VKI_SIGSTOP);
   VG_(sigdelset)(&mask, VKI_SIGKILL);

   VG_(sigprocmask)(VKI_SIG_SETMASK, &mask, NULL);
}

static void os_state_clear(ThreadState *tst)
{
   tst->os_state.lwpid       = 0;
   tst->os_state.threadgroup = 0;
#  if defined(VGO_aix5)
   tst->os_state.cancel_async    = False;
   tst->os_state.cancel_disabled = False;
   tst->os_state.cancel_progress = Canc_NoRequest;
#  endif
}

static void os_state_init(ThreadState *tst)
{
   tst->os_state.valgrind_stack_base    = 0;
   tst->os_state.valgrind_stack_init_SP = 0;
   os_state_clear(tst);
}

static 
void mostly_clear_thread_record ( ThreadId tid )
{
   vki_sigset_t savedmask;

   vg_assert(tid >= 0 && tid < VG_N_THREADS);
   VG_(cleanup_thread)(&VG_(threads)[tid].arch);
   VG_(threads)[tid].tid = tid;

   /* Leave the thread in Zombie, so that it doesn't get reallocated
      until the caller is finally done with the thread stack. */
   VG_(threads)[tid].status               = VgTs_Zombie;

   VG_(sigemptyset)(&VG_(threads)[tid].sig_mask);
   VG_(sigemptyset)(&VG_(threads)[tid].tmp_sig_mask);

   os_state_clear(&VG_(threads)[tid]);

   /* start with no altstack */
   VG_(threads)[tid].altstack.ss_sp = (void *)0xdeadbeef;
   VG_(threads)[tid].altstack.ss_size = 0;
   VG_(threads)[tid].altstack.ss_flags = VKI_SS_DISABLE;

   VG_(clear_out_queued_signals)(tid, &savedmask);

   VG_(threads)[tid].sched_jmpbuf_valid = False;
}

/*                                                                             
   Called in the child after fork.  If the parent has multiple
   threads, then we've inherited a VG_(threads) array describing them,
   but only the thread which called fork() is actually alive in the
   child.  This functions needs to clean up all those other thread
   structures.
                                                                               
   Whichever tid in the parent which called fork() becomes the                 
   master_tid in the child.  That's because the only living slot in            
   VG_(threads) in the child after fork is VG_(threads)[tid], and it           
   would be too hard to try to re-number the thread and relocate the           
   thread state down to VG_(threads)[1].                                       
                                                                               
   This function also needs to reinitialize the_BigLock, since
   otherwise we may end up sharing its state with the parent, which
   would be deeply confusing.
*/                                          
static void sched_fork_cleanup(ThreadId me)
{
   ThreadId tid;
   vg_assert(VG_(running_tid) == me);

   VG_(threads)[me].os_state.lwpid = VG_(gettid)();
   VG_(threads)[me].os_state.threadgroup = VG_(getpid)();

   /* clear out all the unused thread slots */
   for (tid = 1; tid < VG_N_THREADS; tid++) {
      if (tid != me) {
         mostly_clear_thread_record(tid);
	 VG_(threads)[tid].status = VgTs_Empty;
         VG_(clear_syscallInfo)(tid);
      }
   }

   /* re-init and take the sema */
   ML_(sema_deinit)(&the_BigLock);
   ML_(sema_init)(&the_BigLock);
   ML_(sema_down)(&the_BigLock);
}


/* First phase of initialisation of the scheduler.  Initialise the
   bigLock, zeroise the VG_(threads) structure and decide on the
   ThreadId of the root thread.
*/
ThreadId VG_(scheduler_init_phase1) ( void )
{
   Int i;
   ThreadId tid_main;

   VG_(debugLog)(1,"sched","sched_init_phase1\n");

   ML_(sema_init)(&the_BigLock);

   for (i = 0 /* NB; not 1 */; i < VG_N_THREADS; i++) {
      /* Paranoia .. completely zero it out. */
      VG_(memset)( & VG_(threads)[i], 0, sizeof( VG_(threads)[i] ) );

      VG_(threads)[i].sig_queue = NULL;

      os_state_init(&VG_(threads)[i]);
      mostly_clear_thread_record(i);

      VG_(threads)[i].status                    = VgTs_Empty;
      VG_(threads)[i].client_stack_szB          = 0;
      VG_(threads)[i].client_stack_highest_word = (Addr)NULL;
   }

   tid_main = VG_(alloc_ThreadState)();

   /* Bleh.  Unfortunately there are various places in the system that
      assume that the main thread has a ThreadId of 1.
      - Helgrind (possibly)
      - stack overflow message in default_action() in m_signals.c
      - definitely a lot more places
   */
   vg_assert(tid_main == 1);

   return tid_main;
}


/* Second phase of initialisation of the scheduler.  Given the root
   ThreadId computed by first phase of initialisation, fill in stack
   details and acquire bigLock.  Initialise the scheduler.  This is
   called at startup.  The caller subsequently initialises the guest
   state components of this main thread.
*/
void VG_(scheduler_init_phase2) ( ThreadId tid_main,
                                  Addr     clstack_end, 
                                  SizeT    clstack_size )
{
   VG_(debugLog)(1,"sched","sched_init_phase2: tid_main=%d, "
                   "cls_end=0x%lx, cls_sz=%ld\n",
                   tid_main, clstack_end, clstack_size);

   vg_assert(VG_IS_PAGE_ALIGNED(clstack_end+1));
   vg_assert(VG_IS_PAGE_ALIGNED(clstack_size));

   VG_(threads)[tid_main].client_stack_highest_word 
      = clstack_end + 1 - sizeof(UWord);
   VG_(threads)[tid_main].client_stack_szB 
      = clstack_size;

   VG_(atfork)(NULL, NULL, sched_fork_cleanup);
}


/* ---------------------------------------------------------------------
   Helpers for running translations.
   ------------------------------------------------------------------ */

/* Use gcc's built-in setjmp/longjmp.  longjmp must not restore signal
   mask state, but does need to pass "val" through. */
#define SCHEDSETJMP(tid, jumped, stmt)					\
   do {									\
      ThreadState * volatile _qq_tst = VG_(get_ThreadState)(tid);	\
									\
      (jumped) = __builtin_setjmp(_qq_tst->sched_jmpbuf);               \
      if ((jumped) == 0) {						\
	 vg_assert(!_qq_tst->sched_jmpbuf_valid);			\
	 _qq_tst->sched_jmpbuf_valid = True;				\
	 stmt;								\
      }	else if (VG_(clo_trace_sched))					\
	 VG_(printf)("SCHEDSETJMP(line %d) tid %d, jumped=%d\n",        \
                     __LINE__, tid, jumped);                            \
      vg_assert(_qq_tst->sched_jmpbuf_valid);				\
      _qq_tst->sched_jmpbuf_valid = False;				\
   } while(0)


/* Do various guest state alignment checks prior to running a thread.
   Specifically, check that what we have matches Vex's guest state
   layout requirements.  See libvex.h for details, but in short the
   requirements are: There must be no holes in between the primary
   guest state, its two copies, and the spill area.  In short, all 4
   areas must have a 16-aligned size and be 16-aligned, and placed
   back-to-back. */
static void do_pre_run_checks ( ThreadState* tst )
{
   Addr a_vex     = (Addr) & tst->arch.vex;
   Addr a_vexsh1  = (Addr) & tst->arch.vex_shadow1;
   Addr a_vexsh2  = (Addr) & tst->arch.vex_shadow2;
   Addr a_spill   = (Addr) & tst->arch.vex_spill;
   UInt sz_vex    = (UInt) sizeof tst->arch.vex;
   UInt sz_vexsh1 = (UInt) sizeof tst->arch.vex_shadow1;
   UInt sz_vexsh2 = (UInt) sizeof tst->arch.vex_shadow2;
   UInt sz_spill  = (UInt) sizeof tst->arch.vex_spill;

   if (0)
   VG_(printf)("gst %p %d, sh1 %p %d, "
               "sh2 %p %d, spill %p %d\n",
               (void*)a_vex, sz_vex,
               (void*)a_vexsh1, sz_vexsh1,
               (void*)a_vexsh2, sz_vexsh2,
               (void*)a_spill, sz_spill );

   vg_assert(VG_IS_16_ALIGNED(sz_vex));
   vg_assert(VG_IS_16_ALIGNED(sz_vexsh1));
   vg_assert(VG_IS_16_ALIGNED(sz_vexsh2));
   vg_assert(VG_IS_16_ALIGNED(sz_spill));

   vg_assert(VG_IS_16_ALIGNED(a_vex));
   vg_assert(VG_IS_16_ALIGNED(a_vexsh1));
   vg_assert(VG_IS_16_ALIGNED(a_vexsh2));
   vg_assert(VG_IS_16_ALIGNED(a_spill));

   /* Check that the guest state and its two shadows have the same
      size, and that there are no holes in between.  The latter is
      important because Memcheck assumes that it can reliably access
      the shadows by indexing off a pointer to the start of the
      primary guest state area. */
   vg_assert(sz_vex == sz_vexsh1);
   vg_assert(sz_vex == sz_vexsh2);
   vg_assert(a_vex + 1 * sz_vex == a_vexsh1);
   vg_assert(a_vex + 2 * sz_vex == a_vexsh2);
   /* Also check there's no hole between the second shadow area and
      the spill area. */
   vg_assert(sz_spill == LibVEX_N_SPILL_BYTES);
   vg_assert(a_vex + 3 * sz_vex == a_spill);

#  if defined(VGA_ppc32) || defined(VGA_ppc64)
   /* ppc guest_state vector regs must be 16 byte aligned for
      loads/stores.  This is important! */
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex.guest_VR0));
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex_shadow1.guest_VR0));
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex_shadow2.guest_VR0));
   /* be extra paranoid .. */
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex.guest_VR1));
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex_shadow1.guest_VR1));
   vg_assert(VG_IS_16_ALIGNED(& tst->arch.vex_shadow2.guest_VR1));
#  endif   
}


/* Run the thread tid for a while, and return a VG_TRC_* value
   indicating why VG_(run_innerloop) stopped. */
static UInt run_thread_for_a_while ( ThreadId tid )
{
   volatile Int          jumped;
   volatile ThreadState* tst = NULL; /* stop gcc complaining */
   volatile UInt         trc;
   volatile Int          dispatch_ctr_SAVED;
   volatile Int          done_this_time;

   /* Paranoia */
   vg_assert(VG_(is_valid_tid)(tid));
   vg_assert(VG_(is_running_thread)(tid));
   vg_assert(!VG_(is_exiting)(tid));

   tst = VG_(get_ThreadState)(tid);
   do_pre_run_checks( (ThreadState*)tst );
   /* end Paranoia */

   trc = 0;
   dispatch_ctr_SAVED = VG_(dispatch_ctr);

#  if defined(VGA_ppc32) || defined(VGA_ppc64)
   /* This is necessary due to the hacky way vex models reservations
      on ppc.  It's really quite incorrect for each thread to have its
      own reservation flag/address, since it's really something that
      all threads share (that's the whole point).  But having shared
      guest state is something we can't model with Vex.  However, as
      per PaulM's 2.4.0ppc, the reservation is modelled using a
      reservation flag which is cleared at each context switch.  So it
      is indeed possible to get away with a per thread-reservation if
      the thread's reservation is cleared before running it.
   */
   /* Clear any existing reservation that this thread might have made
      last time it was running. */
   VG_(threads)[tid].arch.vex.guest_RESVN = 0;
#  endif   

#  if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
   /* On AIX, we need to get a plausible value for SPRG3 for this
      thread, since it's used I think as a thread-state pointer.  It
      is presumably set by the kernel for each dispatched thread and
      cannot be changed by user space.  It therefore seems safe enough
      to copy the host's value of it into the guest state at the point
      the thread is dispatched.
      (Later): Hmm, looks like SPRG3 is only used in 32-bit mode.
      Oh well. */
   { UWord host_sprg3;
     __asm__ __volatile__( "mfspr %0,259\n" : "=b"(host_sprg3) );
    VG_(threads)[tid].arch.vex.guest_SPRG3_RO = host_sprg3;
    vg_assert(sizeof(VG_(threads)[tid].arch.vex.guest_SPRG3_RO) == sizeof(void*));
   }
#  endif

   /* there should be no undealt-with signals */
   //vg_assert(VG_(threads)[tid].siginfo.si_signo == 0);

   if (0) {
      vki_sigset_t m;
      Int i, err = VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &m);
      vg_assert(err == 0);
      VG_(printf)("tid %d: entering code with unblocked signals: ", tid);
      for (i = 1; i <= _VKI_NSIG; i++)
         if (!VG_(sigismember)(&m, i))
            VG_(printf)("%d ", i);
      VG_(printf)("\n");
   }

   // Tell the tool this thread is about to run client code
   VG_TRACK( start_client_code, tid, bbs_done );

   vg_assert(VG_(in_generated_code) == False);
   VG_(in_generated_code) = True;

   SCHEDSETJMP(
      tid, 
      jumped, 
      trc = (UInt)VG_(run_innerloop)( (void*)&tst->arch.vex,
                                      VG_(clo_profile_flags) > 0 ? 1 : 0 )
   );

   vg_assert(VG_(in_generated_code) == True);
   VG_(in_generated_code) = False;

   if (jumped) {
      /* We get here if the client took a fault that caused our signal
         handler to longjmp. */
      vg_assert(trc == 0);
      trc = VG_TRC_FAULT_SIGNAL;
      block_signals();
   } 

   done_this_time = (Int)dispatch_ctr_SAVED - (Int)VG_(dispatch_ctr) - 0;

   vg_assert(done_this_time >= 0);
   bbs_done += (ULong)done_this_time;

   // Tell the tool this thread has stopped running client code
   VG_TRACK( stop_client_code, tid, bbs_done );

   return trc;
}


/* Run a no-redir translation just once, and return the resulting
   VG_TRC_* value. */
static UInt run_noredir_translation ( Addr hcode, ThreadId tid )
{
   volatile Int          jumped;
   volatile ThreadState* tst; 
   volatile UWord        argblock[4];
   volatile UInt         retval;

   /* Paranoia */
   vg_assert(VG_(is_valid_tid)(tid));
   vg_assert(VG_(is_running_thread)(tid));
   vg_assert(!VG_(is_exiting)(tid));

   tst = VG_(get_ThreadState)(tid);
   do_pre_run_checks( (ThreadState*)tst );
   /* end Paranoia */

#  if defined(VGA_ppc32) || defined(VGA_ppc64)
   /* I don't think we need to clear this thread's guest_RESVN here,
      because we can only get here if run_thread_for_a_while() has
      been used immediately before, on this same thread. */
#  endif

   /* There can be 3 outcomes from VG_(run_a_noredir_translation):

      - a signal occurred and the sighandler longjmp'd.  Then both [2]
        and [3] are unchanged - hence zero.

      - translation ran normally, set [2] (next guest IP) and set [3]
        to whatever [1] was beforehand, indicating a normal (boring)
        jump to the next block.

      - translation ran normally, set [2] (next guest IP) and set [3]
        to something different from [1] beforehand, which indicates a
        TRC_ value.
   */
   argblock[0] = (UWord)hcode;
   argblock[1] = (UWord)&VG_(threads)[tid].arch.vex;
   argblock[2] = 0; /* next guest IP is written here */
   argblock[3] = 0; /* guest state ptr afterwards is written here */

   // Tell the tool this thread is about to run client code
   VG_TRACK( start_client_code, tid, bbs_done );

   vg_assert(VG_(in_generated_code) == False);
   VG_(in_generated_code) = True;

   SCHEDSETJMP(
      tid, 
      jumped, 
      VG_(run_a_noredir_translation)( &argblock[0] )
   );

   VG_(in_generated_code) = False;

   if (jumped) {
      /* We get here if the client took a fault that caused our signal
         handler to longjmp. */
      vg_assert(argblock[2] == 0); /* next guest IP was not written */
      vg_assert(argblock[3] == 0); /* trc was not written */
      block_signals();
      retval = VG_TRC_FAULT_SIGNAL;
   } else {
      /* store away the guest program counter */
      VG_(set_IP)( tid, argblock[2] );
      if (argblock[3] == argblock[1])
         /* the guest state pointer afterwards was unchanged */
         retval = VG_TRC_BORING;
      else
         retval = (UInt)argblock[3];
   }

   bbs_done++;

   // Tell the tool this thread has stopped running client code
   VG_TRACK( stop_client_code, tid, bbs_done );

   return retval;
}


/* ---------------------------------------------------------------------
   The scheduler proper.
   ------------------------------------------------------------------ */

static void handle_tt_miss ( ThreadId tid )
{
   Bool found;
   Addr ip = VG_(get_IP)(tid);

   /* Trivial event.  Miss in the fast-cache.  Do a full
      lookup for it. */
   found = VG_(search_transtab)( NULL, ip, True/*upd_fast_cache*/ );
   if (!found) {
      /* Not found; we need to request a translation. */
      if (VG_(translate)( tid, ip, /*debug*/False, 0/*not verbose*/, 
                          bbs_done, True/*allow redirection*/ )) {
	 found = VG_(search_transtab)( NULL, ip, True ); 
         vg_assert2(found, "VG_TRC_INNER_FASTMISS: missing tt_fast entry");
      
      } else {
	 // If VG_(translate)() fails, it's because it had to throw a
	 // signal because the client jumped to a bad address.  That
	 // means that either a signal has been set up for delivery,
	 // or the thread has been marked for termination.  Either
	 // way, we just need to go back into the scheduler loop.
      }
   }
}

static void handle_syscall(ThreadId tid)
{
   ThreadState * volatile tst = VG_(get_ThreadState)(tid);
   Bool jumped; 

   /* Syscall may or may not block; either way, it will be
      complete by the time this call returns, and we'll be
      runnable again.  We could take a signal while the
      syscall runs. */

   if (VG_(clo_sanity_level >= 3))
      VG_(am_do_sync_check)("(BEFORE SYSCALL)",__FILE__,__LINE__);

   SCHEDSETJMP(tid, jumped, VG_(client_syscall)(tid));

   if (VG_(clo_sanity_level >= 3))
      VG_(am_do_sync_check)("(AFTER SYSCALL)",__FILE__,__LINE__);

   if (!VG_(is_running_thread)(tid))
      VG_(printf)("tid %d not running; VG_(running_tid)=%d, tid %d status %d\n",
		  tid, VG_(running_tid), tid, tst->status);
   vg_assert(VG_(is_running_thread)(tid));
   
   if (jumped) {
      block_signals();
      VG_(poll_signals)(tid);
   }
}

/* tid just requested a jump to the noredir version of its current
   program counter.  So make up that translation if needed, run it,
   and return the resulting thread return code. */
static UInt/*trc*/ handle_noredir_jump ( ThreadId tid )
{
   AddrH hcode = 0;
   Addr  ip    = VG_(get_IP)(tid);

   Bool  found = VG_(search_unredir_transtab)( &hcode, ip );
   if (!found) {
      /* Not found; we need to request a translation. */
      if (VG_(translate)( tid, ip, /*debug*/False, 0/*not verbose*/, bbs_done,
                          False/*NO REDIRECTION*/ )) {

         found = VG_(search_unredir_transtab)( &hcode, ip );
         vg_assert2(found, "unredir translation missing after creation?!");
      
      } else {
	 // If VG_(translate)() fails, it's because it had to throw a
	 // signal because the client jumped to a bad address.  That
	 // means that either a signal has been set up for delivery,
	 // or the thread has been marked for termination.  Either
	 // way, we just need to go back into the scheduler loop.
         return VG_TRC_BORING;
      }

   }

   vg_assert(found);
   vg_assert(hcode != 0);

   /* Otherwise run it and return the resulting VG_TRC_* value. */ 
   return run_noredir_translation( hcode, tid );
}


/* 
   Run a thread until it wants to exit.
   
   We assume that the caller has already called VG_(acquire_BigLock) for
   us, so we own the VCPU.  Also, all signals are blocked.
 */
VgSchedReturnCode VG_(scheduler) ( ThreadId tid )
{
   UInt     trc;
   ThreadState *tst = VG_(get_ThreadState)(tid);

   if (VG_(clo_trace_sched))
      print_sched_event(tid, "entering VG_(scheduler)");      

   /* set the proper running signal mask */
   block_signals();
   
   vg_assert(VG_(is_running_thread)(tid));

   VG_(dispatch_ctr) = SCHEDULING_QUANTUM + 1;

   while (!VG_(is_exiting)(tid)) {

      if (VG_(dispatch_ctr) == 1) {

#        if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
         /* Note: count runnable threads before dropping The Lock. */
         Int rt = VG_(count_runnable_threads)();
#        endif

	 /* Our slice is done, so yield the CPU to another thread.  On
            Linux, this doesn't sleep between sleeping and running,
            since that would take too much time.  On AIX, we have to
            prod the scheduler to get it consider other threads; not
            doing so appears to cause very long delays before other
            runnable threads get rescheduled. */

	 /* 4 July 06: it seems that a zero-length nsleep is needed to
            cause async thread cancellation (canceller.c) to terminate
            in finite time; else it is in some kind of race/starvation
            situation and completion is arbitrarily delayed (although
            this is not a deadlock).

            Unfortunately these sleeps cause MPI jobs not to terminate
            sometimes (some kind of livelock).  So sleeping once
            every N opportunities appears to work. */

	 /* 3 Aug 06: doing sys__nsleep works but crashes some apps.
            sys_yield also helps the problem, whilst not crashing apps. */

	 VG_(release_BigLock)(tid, VgTs_Yielding, 
                                   "VG_(scheduler):timeslice");
	 /* ------------ now we don't have The Lock ------------ */

#        if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
         { static Int ctr=0;
           vg_assert(__NR_AIX5__nsleep != __NR_AIX5_UNKNOWN);
           vg_assert(__NR_AIX5_yield   != __NR_AIX5_UNKNOWN);
           if (1 && rt > 0 && ((++ctr % 3) == 0)) { 
              //struct vki_timespec ts;
              //ts.tv_sec = 0;
              //ts.tv_nsec = 0*1000*1000;
              //VG_(do_syscall2)(__NR_AIX5__nsleep, (UWord)&ts, (UWord)NULL);
	      VG_(do_syscall0)(__NR_AIX5_yield);
           }
         }
#        endif

	 VG_(acquire_BigLock)(tid, "VG_(scheduler):timeslice");
	 /* ------------ now we do have The Lock ------------ */

	 /* OK, do some relatively expensive housekeeping stuff */
	 scheduler_sanity(tid);
	 VG_(sanity_check_general)(False);

	 /* Look for any pending signals for this thread, and set them up
	    for delivery */
	 VG_(poll_signals)(tid);

	 if (VG_(is_exiting)(tid))
	    break;		/* poll_signals picked up a fatal signal */

	 /* For stats purposes only. */
	 n_scheduling_events_MAJOR++;

	 /* Figure out how many bbs to ask vg_run_innerloop to do.  Note
	    that it decrements the counter before testing it for zero, so
	    that if tst->dispatch_ctr is set to N you get at most N-1
	    iterations.  Also this means that tst->dispatch_ctr must
	    exceed zero before entering the innerloop.  Also also, the
	    decrement is done before the bb is actually run, so you
	    always get at least one decrement even if nothing happens. */
         VG_(dispatch_ctr) = SCHEDULING_QUANTUM + 1;

	 /* paranoia ... */
	 vg_assert(tst->tid == tid);
	 vg_assert(tst->os_state.lwpid == VG_(gettid)());
      }

      /* For stats purposes only. */
      n_scheduling_events_MINOR++;

      if (0)
	 VG_(message)(Vg_DebugMsg, "thread %d: running for %d bbs", 
		      tid, VG_(dispatch_ctr) - 1 );

      trc = run_thread_for_a_while ( tid );

      if (VG_(clo_trace_sched) && VG_(clo_verbosity) > 2) {
	 Char buf[50];
	 VG_(sprintf)(buf, "TRC: %s", name_of_sched_event(trc));
	 print_sched_event(tid, buf);
      }

      if (trc == VEX_TRC_JMP_NOREDIR) {
         /* If we got a request to run a no-redir version of
            something, do so now -- handle_noredir_jump just (creates
            and) runs that one translation.  The flip side is that the
            noredir translation can't itself return another noredir
            request -- that would be nonsensical.  It can, however,
            return VG_TRC_BORING, which just means keep going as
            normal. */
         trc = handle_noredir_jump(tid);
         vg_assert(trc != VEX_TRC_JMP_NOREDIR);
      }

      switch (trc) {
      case VG_TRC_BORING:
         /* no special event, just keep going. */
         break;

      case VG_TRC_INNER_FASTMISS:
	 vg_assert(VG_(dispatch_ctr) > 1);
	 handle_tt_miss(tid);
	 break;
	    
      case VEX_TRC_JMP_CLIENTREQ:
	 do_client_request(tid);
	 break;

      case VEX_TRC_JMP_SYS_INT128:  /* x86-linux */
      case VEX_TRC_JMP_SYS_SYSCALL: /* amd64-linux, ppc32-linux */
	 handle_syscall(tid);
	 if (VG_(clo_sanity_level) > 2)
	    VG_(sanity_check_general)(True); /* sanity-check every syscall */
	 break;

      case VEX_TRC_JMP_YIELD:
	 /* Explicit yield, because this thread is in a spin-lock
	    or something.  Only let the thread run for a short while
            longer.  Because swapping to another thread is expensive,
            we're prepared to let this thread eat a little more CPU
            before swapping to another.  That means that short term
            spins waiting for hardware to poke memory won't cause a
            thread swap. */
	 if (VG_(dispatch_ctr) > 2000) 
            VG_(dispatch_ctr) = 2000;
	 break;

      case VG_TRC_INNER_COUNTERZERO:
	 /* Timeslice is out.  Let a new thread be scheduled. */
	 vg_assert(VG_(dispatch_ctr) == 1);
	 break;

      case VG_TRC_FAULT_SIGNAL:
	 /* Everything should be set up (either we're exiting, or
	    about to start in a signal handler). */
	 break;

      case VEX_TRC_JMP_MAPFAIL:
         /* Failure of arch-specific address translation (x86/amd64
            segment override use) */
         /* jrs 2005 03 11: is this correct? */
         VG_(synth_fault)(tid);
         break;

      case VEX_TRC_JMP_EMWARN: {
         static Int  counts[EmWarn_NUMBER];
         static Bool counts_initted = False;
         VexEmWarn ew;
         HChar*    what;
         Bool      show;
         Int       q;
         if (!counts_initted) {
            counts_initted = True;
            for (q = 0; q < EmWarn_NUMBER; q++)
               counts[q] = 0;
         }
         ew   = (VexEmWarn)VG_(threads)[tid].arch.vex.guest_EMWARN;
         what = (ew < 0 || ew >= EmWarn_NUMBER)
                   ? "unknown (?!)"
                   : LibVEX_EmWarn_string(ew);
         show = (ew < 0 || ew >= EmWarn_NUMBER)
                   ? True
                   : counts[ew]++ < 3;
         if (show && VG_(clo_show_emwarns) && !VG_(clo_xml)) {
            VG_(message)( Vg_UserMsg,
                          "Emulation warning: unsupported action:");
            VG_(message)( Vg_UserMsg, "  %s", what);
            VG_(get_and_pp_StackTrace)( tid, VG_(clo_backtrace_size) );
         }
         break;
      }

      case VEX_TRC_JMP_EMFAIL: {
         VexEmWarn ew;
         HChar*    what;
         ew   = (VexEmWarn)VG_(threads)[tid].arch.vex.guest_EMWARN;
         what = (ew < 0 || ew >= EmWarn_NUMBER)
                   ? "unknown (?!)"
                   : LibVEX_EmWarn_string(ew);
         VG_(message)( Vg_UserMsg,
                       "Emulation fatal error -- Valgrind cannot continue:");
         VG_(message)( Vg_UserMsg, "  %s", what);
         VG_(get_and_pp_StackTrace)( tid, VG_(clo_backtrace_size) );
         VG_(message)(Vg_UserMsg, "");
         VG_(message)(Vg_UserMsg, "Valgrind has to exit now.  Sorry.");
         VG_(message)(Vg_UserMsg, "");
         VG_(exit)(1);
         break;
      }

      case VEX_TRC_JMP_SIGTRAP:
         VG_(synth_sigtrap)(tid);
         break;

      case VEX_TRC_JMP_SIGSEGV:
         VG_(synth_fault)(tid);
         break;

      case VEX_TRC_JMP_NODECODE:
   VG_(message)(Vg_UserMsg,
      "valgrind: Unrecognised instruction at address %#lx.", VG_(get_IP)(tid));
#define M(a) VG_(message)(Vg_UserMsg, a);
   M("Your program just tried to execute an instruction that Valgrind" );
   M("did not recognise.  There are two possible reasons for this."    );
   M("1. Your program has a bug and erroneously jumped to a non-code"  );
   M("   location.  If you are running Memcheck and you just saw a"    );
   M("   warning about a bad jump, it's probably your program's fault.");
   M("2. The instruction is legitimate but Valgrind doesn't handle it,");
   M("   i.e. it's Valgrind's fault.  If you think this is the case or");
   M("   you are not sure, please let us know and we'll try to fix it.");
   M("Either way, Valgrind will now raise a SIGILL signal which will"  );
   M("probably kill your program."                                     );
#undef M
         VG_(synth_sigill)(tid, VG_(get_IP)(tid));
         break;

      case VEX_TRC_JMP_TINVAL:
         VG_(discard_translations)(
            (Addr64)VG_(threads)[tid].arch.vex.guest_TISTART,
            VG_(threads)[tid].arch.vex.guest_TILEN,
            "scheduler(VEX_TRC_JMP_TINVAL)"
         );
         if (0)
            VG_(printf)("dump translations done.\n");
         break;

      case VG_TRC_INVARIANT_FAILED:
         /* This typically happens if, after running generated code,
            it is detected that host CPU settings (eg, FPU/Vector
            control words) are not as they should be.  Vex's code
            generation specifies the state such control words should
            be in on entry to Vex-generated code, and they should be
            unchanged on exit from it.  Failure of this assertion
            usually means a bug in Vex's code generation. */
         vg_assert2(0, "VG_(scheduler), phase 3: "
                       "run_innerloop detected host "
                       "state invariant failure", trc);

      case VEX_TRC_JMP_SYS_SYSENTER:
         /* Do whatever simulation is appropriate for an x86 sysenter
            instruction.  Note that it is critical to set this thread's
            guest_EIP to point at the code to execute after the
            sysenter, since Vex-generated code will not have set it --
            vex does not know what it should be.  Vex sets the next
            address to zero, so if you don't guest_EIP, the thread will
            jump to zero afterwards and probably die as a result. */
#        if defined(VGA_x86)
         //FIXME: VG_(threads)[tid].arch.vex.guest_EIP = ....
         //handle_sysenter_x86(tid);
         vg_assert2(0, "VG_(scheduler), phase 3: "
                       "sysenter_x86 on not yet implemented");
#        else
         vg_assert2(0, "VG_(scheduler), phase 3: "
                       "sysenter_x86 on non-x86 platform?!?!");
#        endif

      default: 
	 vg_assert2(0, "VG_(scheduler), phase 3: "
                       "unexpected thread return code (%u)", trc);
	 /* NOTREACHED */
	 break;

      } /* switch (trc) */
   }

   if (VG_(clo_trace_sched))
      print_sched_event(tid, "exiting VG_(scheduler)");

   vg_assert(VG_(is_exiting)(tid));

   return tst->exitreason;
}


/* 
   This causes all threads to forceably exit.  They aren't actually
   dead by the time this returns; you need to call
   VG_(reap_threads)() to wait for them.
 */
void VG_(nuke_all_threads_except) ( ThreadId me, VgSchedReturnCode src )
{
   ThreadId tid;

   vg_assert(VG_(is_running_thread)(me));

   for (tid = 1; tid < VG_N_THREADS; tid++) {
      if (tid == me
          || VG_(threads)[tid].status == VgTs_Empty)
         continue;
      if (0)
         VG_(printf)(
            "VG_(nuke_all_threads_except): nuking tid %d\n", tid);

      VG_(threads)[tid].exitreason = src;
      if (src == VgSrc_FatalSig)
         VG_(threads)[tid].os_state.fatalsig = VKI_SIGKILL;
      VG_(get_thread_out_of_syscall)(tid);
   }
}


/* ---------------------------------------------------------------------
   Specifying shadow register values
   ------------------------------------------------------------------ */

#if defined(VGA_x86)
#  define VG_CLREQ_ARGS       guest_EAX
#  define VG_CLREQ_RET        guest_EDX
#elif defined(VGA_amd64)
#  define VG_CLREQ_ARGS       guest_RAX
#  define VG_CLREQ_RET        guest_RDX
#elif defined(VGA_ppc32) || defined(VGA_ppc64)
#  define VG_CLREQ_ARGS       guest_GPR4
#  define VG_CLREQ_RET        guest_GPR3
#else
#  error Unknown arch
#endif

#define CLREQ_ARGS(regs)   ((regs).vex.VG_CLREQ_ARGS)
#define CLREQ_RET(regs)    ((regs).vex.VG_CLREQ_RET)
#define O_CLREQ_RET        (offsetof(VexGuestArchState, VG_CLREQ_RET))

// These macros write a value to a client's thread register, and tell the
// tool that it's happened (if necessary).

#define SET_CLREQ_RETVAL(zztid, zzval) \
   do { CLREQ_RET(VG_(threads)[zztid].arch) = (zzval); \
        VG_TRACK( post_reg_write, \
                  Vg_CoreClientReq, zztid, O_CLREQ_RET, sizeof(UWord)); \
   } while (0)

#define SET_CLCALL_RETVAL(zztid, zzval, f) \
   do { CLREQ_RET(VG_(threads)[zztid].arch) = (zzval); \
        VG_TRACK( post_reg_write_clientcall_return, \
                  zztid, O_CLREQ_RET, sizeof(UWord), f); \
   } while (0)


/* ---------------------------------------------------------------------
   Handle client requests.
   ------------------------------------------------------------------ */

// OS-specific(?) client requests
static Bool os_client_request(ThreadId tid, UWord *args)
{
   Bool handled = True;

   vg_assert(VG_(is_running_thread)(tid));

   switch(args[0]) {
   case VG_USERREQ__LIBC_FREERES_DONE:
      /* This is equivalent to an exit() syscall, but we don't set the
	 exitcode (since it might already be set) */
      if (0 || VG_(clo_trace_syscalls) || VG_(clo_trace_sched))
	 VG_(message)(Vg_DebugMsg, 
		      "__libc_freeres() done; really quitting!");
      VG_(threads)[tid].exitreason = VgSrc_ExitThread;
      break;

   default:
      handled = False;
      break;
   }

   return handled;
}


/* Do a client request for the thread tid.  After the request, tid may
   or may not still be runnable; if not, the scheduler will have to
   choose a new thread to run.  
*/
static
void do_client_request ( ThreadId tid )
{
   UWord* arg = (UWord*)(CLREQ_ARGS(VG_(threads)[tid].arch));
   UWord req_no = arg[0];

   if (0)
      VG_(printf)("req no = 0x%llx, arg = %p\n", (ULong)req_no, arg);
   switch (req_no) {

      case VG_USERREQ__CLIENT_CALL0: {
         UWord (*f)(ThreadId) = (void*)arg[1];
	 if (f == NULL)
	    VG_(message)(Vg_DebugMsg, "VG_USERREQ__CLIENT_CALL0: func=%p", f);
	 else
	    SET_CLCALL_RETVAL(tid, f ( tid ), (Addr)f);
         break;
      }
      case VG_USERREQ__CLIENT_CALL1: {
         UWord (*f)(ThreadId, UWord) = (void*)arg[1];
	 if (f == NULL)
	    VG_(message)(Vg_DebugMsg, "VG_USERREQ__CLIENT_CALL1: func=%p", f);
	 else
	    SET_CLCALL_RETVAL(tid, f ( tid, arg[2] ), (Addr)f );
         break;
      }
      case VG_USERREQ__CLIENT_CALL2: {
         UWord (*f)(ThreadId, UWord, UWord) = (void*)arg[1];
	 if (f == NULL)
	    VG_(message)(Vg_DebugMsg, "VG_USERREQ__CLIENT_CALL2: func=%p", f);
	 else
	    SET_CLCALL_RETVAL(tid, f ( tid, arg[2], arg[3] ), (Addr)f );
         break;
      }
      case VG_USERREQ__CLIENT_CALL3: {
         UWord (*f)(ThreadId, UWord, UWord, UWord) = (void*)arg[1];
	 if (f == NULL)
	    VG_(message)(Vg_DebugMsg, "VG_USERREQ__CLIENT_CALL3: func=%p", f);
	 else
	    SET_CLCALL_RETVAL(tid, f ( tid, arg[2], arg[3], arg[4] ), (Addr)f );
         break;
      }

      // Nb: this looks like a circular definition, because it kind of is.
      // See comment in valgrind.h to understand what's going on.
      case VG_USERREQ__RUNNING_ON_VALGRIND:
         SET_CLREQ_RETVAL(tid, RUNNING_ON_VALGRIND+1);
         break;

      case VG_USERREQ__PRINTF: {
         Int count = 
            VG_(vmessage)( Vg_ClientMsg, (char *)arg[1], (void*)arg[2] );
            SET_CLREQ_RETVAL( tid, count );
         break; }

      case VG_USERREQ__INTERNAL_PRINTF: {
         Int count = 
            VG_(vmessage)( Vg_DebugMsg, (char *)arg[1], (void*)arg[2] );
            SET_CLREQ_RETVAL( tid, count );
         break; }

      case VG_USERREQ__PRINTF_BACKTRACE: {
         Int count =
            VG_(vmessage)( Vg_ClientMsg, (char *)arg[1], (void*)arg[2] );
            VG_(get_and_pp_StackTrace)( tid, VG_(clo_backtrace_size) );
            SET_CLREQ_RETVAL( tid, count );
         break; }

      case VG_USERREQ__STACK_REGISTER: {
         UWord sid = VG_(register_stack)((Addr)arg[1], (Addr)arg[2]);
         SET_CLREQ_RETVAL( tid, sid );
         break; }

      case VG_USERREQ__STACK_DEREGISTER: {
         VG_(deregister_stack)(arg[1]);
         SET_CLREQ_RETVAL( tid, 0 );     /* return value is meaningless */
         break; }

      case VG_USERREQ__STACK_CHANGE: {
         VG_(change_stack)(arg[1], (Addr)arg[2], (Addr)arg[3]);
         SET_CLREQ_RETVAL( tid, 0 );     /* return value is meaningless */
         break; }

      case VG_USERREQ__GET_MALLOCFUNCS: {
	 struct vg_mallocfunc_info *info = (struct vg_mallocfunc_info *)arg[1];

	 info->tl_malloc               = VG_(tdict).tool_malloc;
	 info->tl_calloc               = VG_(tdict).tool_calloc;
	 info->tl_realloc              = VG_(tdict).tool_realloc;
	 info->tl_memalign             = VG_(tdict).tool_memalign;
	 info->tl___builtin_new        = VG_(tdict).tool___builtin_new;
	 info->tl___builtin_vec_new    = VG_(tdict).tool___builtin_vec_new;
	 info->tl_free                 = VG_(tdict).tool_free;
	 info->tl___builtin_delete     = VG_(tdict).tool___builtin_delete;
	 info->tl___builtin_vec_delete = VG_(tdict).tool___builtin_vec_delete;
         info->tl_malloc_usable_size   = VG_(tdict).tool_malloc_usable_size;

	 info->mallinfo                = VG_(mallinfo);
	 info->clo_trace_malloc        = VG_(clo_trace_malloc);

         SET_CLREQ_RETVAL( tid, 0 );     /* return value is meaningless */

	 break;
      }

      /* Requests from the client program */

      case VG_USERREQ__DISCARD_TRANSLATIONS:
         if (VG_(clo_verbosity) > 2)
            VG_(printf)( "client request: DISCARD_TRANSLATIONS,"
                         " addr %p,  len %lu\n",
                         (void*)arg[1], arg[2] );

         VG_(discard_translations)( 
            arg[1], arg[2], "scheduler(VG_USERREQ__DISCARD_TRANSLATIONS)" 
         );

         SET_CLREQ_RETVAL( tid, 0 );     /* return value is meaningless */
	 break;

      case VG_USERREQ__COUNT_ERRORS:  
         SET_CLREQ_RETVAL( tid, VG_(get_n_errs_found)() );
         break;

      case VG_USERREQ__LOAD_PDB_DEBUGINFO:
         VG_(di_notify_pdb_debuginfo)( arg[1], arg[2], arg[3], arg[4] );
         SET_CLREQ_RETVAL( tid, 0 );     /* return value is meaningless */
         break;

      default:
	 if (os_client_request(tid, arg)) {
	    // do nothing, os_client_request() handled it
         } else if (VG_(needs).client_requests) {
	    UWord ret;

            if (VG_(clo_verbosity) > 2)
               VG_(printf)("client request: code %lx,  addr %p,  len %lu\n",
                           arg[0], (void*)arg[1], arg[2] );

	    if ( VG_TDICT_CALL(tool_handle_client_request, tid, arg, &ret) )
	       SET_CLREQ_RETVAL(tid, ret);
         } else {
	    static Bool whined = False;

	    if (!whined && VG_(clo_verbosity) > 2) {
               // Allow for requests in core, but defined by tools, which
               // have 0 and 0 in their two high bytes.
               Char c1 = (arg[0] >> 24) & 0xff;
               Char c2 = (arg[0] >> 16) & 0xff;
               if (c1 == 0) c1 = '_';
               if (c2 == 0) c2 = '_';
	       VG_(message)(Vg_UserMsg, "Warning:\n"
                   "  unhandled client request: 0x%lx (%c%c+0x%lx).  Perhaps\n"
		   "  VG_(needs).client_requests should be set?",
			    arg[0], c1, c2, arg[0] & 0xffff);
	       whined = True;
	    }
         }
         break;
   }
}


/* ---------------------------------------------------------------------
   Sanity checking (permanently engaged)
   ------------------------------------------------------------------ */

/* Internal consistency checks on the sched structures. */
static
void scheduler_sanity ( ThreadId tid )
{
   Bool bad = False;
   static UInt lasttime = 0;
   UInt now;
   Int lwpid = VG_(gettid)();

   if (!VG_(is_running_thread)(tid)) {
      VG_(message)(Vg_DebugMsg,
		   "Thread %d is supposed to be running, "
                   "but doesn't own the_BigLock (owned by %d)\n", 
		   tid, VG_(running_tid));
      bad = True;
   }

   if (lwpid != VG_(threads)[tid].os_state.lwpid) {
      VG_(message)(Vg_DebugMsg,
                   "Thread %d supposed to be in LWP %d, but we're actually %d\n",
                   tid, VG_(threads)[tid].os_state.lwpid, VG_(gettid)());
      bad = True;
   }

   if (lwpid != the_BigLock.owner_lwpid) {
      VG_(message)(Vg_DebugMsg,
                   "Thread (LWPID) %d doesn't own the_BigLock\n",
                   tid);
      bad = True;
   }

   /* Periodically show the state of all threads, for debugging
      purposes. */
   now = VG_(read_millisecond_timer)();
   if (0 && (!bad) && (lasttime + 4000/*ms*/ <= now)) {
      lasttime = now;
      VG_(printf)("\n------------ Sched State at %d ms ------------\n",
                  (Int)now);
      VG_(show_sched_status)();
   }

   /* core_panic also shows the sched status, which is why we don't
      show it above if bad==True. */
   if (bad)
      VG_(core_panic)("scheduler_sanity: failed");
}

void VG_(sanity_check_general) ( Bool force_expensive )
{
   ThreadId tid;

   static UInt next_slow_check_at = 1;
   static UInt slow_check_interval = 25;

   if (VG_(clo_sanity_level) < 1) return;

   /* --- First do all the tests that we can do quickly. ---*/

   sanity_fast_count++;

   /* Check stuff pertaining to the memory check system. */

   /* Check that nobody has spuriously claimed that the first or
      last 16 pages of memory have become accessible [...] */
   if (VG_(needs).sanity_checks) {
      vg_assert(VG_TDICT_CALL(tool_cheap_sanity_check));
   }

   /* --- Now some more expensive checks. ---*/

   /* Once every now and again, check some more expensive stuff.
      Gradually increase the interval between such checks so as not to
      burden long-running programs too much. */
   if ( force_expensive
        || VG_(clo_sanity_level) > 1
        || (VG_(clo_sanity_level) == 1 
            && sanity_fast_count == next_slow_check_at)) {

      if (0) VG_(printf)("SLOW at %d\n", sanity_fast_count-1);

      next_slow_check_at = sanity_fast_count - 1 + slow_check_interval;
      slow_check_interval++;
      sanity_slow_count++;

      if (VG_(needs).sanity_checks) {
          vg_assert(VG_TDICT_CALL(tool_expensive_sanity_check));
      }

      /* Look for stack overruns.  Visit all threads. */
      for (tid = 1; tid < VG_N_THREADS; tid++) {
	 SizeT    remains;
         VgStack* stack;

	 if (VG_(threads)[tid].status == VgTs_Empty ||
	     VG_(threads)[tid].status == VgTs_Zombie)
	    continue;

         stack 
            = (VgStack*)
              VG_(get_ThreadState)(tid)->os_state.valgrind_stack_base;
	 remains 
            = VG_(am_get_VgStack_unused_szB)(stack);
	 if (remains < VKI_PAGE_SIZE)
	    VG_(message)(Vg_DebugMsg, 
                         "WARNING: Thread %d is within %ld bytes "
                         "of running out of stack!",
		         tid, remains);
      }
   }

   if (VG_(clo_sanity_level) > 1) {
      /* Check sanity of the low-level memory manager.  Note that bugs
         in the client's code can cause this to fail, so we don't do
         this check unless specially asked for.  And because it's
         potentially very expensive. */
      VG_(sanity_check_malloc_all)();
   }
}

/*--------------------------------------------------------------------*/
/*--- end                                                          ---*/
/*--------------------------------------------------------------------*/