1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file clipping-transforms.c
*
* This test verifies that clip planes are transformed using the
* correct matrices, at the correct times.
*
* The transformations affecting clipping in fixed functionality mode
* (with no vertex shader) are described in the OpenGL 2.1 spec,
* section 2.12 ("Clipping"):
*
* "A client-defined clip plane is specified with
*
* void ClipPlane( enum p, double eqn[4] );
*
* ... eqn is an array of four double-precision floating-point
* values. These are the coefficients of a plane equation in
* object coordinates: p1 , p2 , p3 , and p4 (in that order). The
* inverse of the current model-view matrix is applied to these
* coefficients, at the time they are specified, yielding
*
* (p1' p2' p3' p4') = (p1 p2 p3 p4) M^-1
*
* (where M is the current model-view matrix; the resulting plane
* equation is undefined if M is singular and may be inaccurate if
* M is poorly-conditioned) to obtain the plane equation
* coefficients in eye coordinates. All points with eye
* coordinates (xe ye ze we)^T that satisfy
*
* (p1' p2' p3' p4') (xe ye ze we)^T >= 0
*
* lie in the half-space defined by the plane; points that do not
* satisfy this condition do not lie in the half-space."
*
* Thus, the clip planes should be modified by the value of the
* model-view matrix at the time clip planes are specified; the value
* of the model-view transformation at drawing time should have no
* effect on which part of the scene is clipped.
*
* The projection matrix, on the other hand, should be the opposite:
* its value at the time clip planes are specified should have no
* effect, but its value at drawing time should determine where on the
* screen clipping takes place (since clipping is performed on eye
* coordinates, before the perspective matrix is applied).
*
* The transformations affecting clipping when a vertex shader is
* present can be inferred from the text that follows:
*
* "When a vertex shader is active, the vector (xe ye ze we)^T is
* no longer computed. Instead, the value of the gl_ClipVertex
* built-in variable is used in its place."
*
* So, as before, the model-view matrix affects clip planes at the
* time they are specified, but not at draw time. However, the
* projection matrix no longer necessarily has an effect; instead, the
* place on the screen where clipping takes place is determined by the
* relationship between the values of gl_Position and gl_ClipVertex
* that are output by the vertex shader.
*
* It's also possible that the vertex shader might not store a value
* in gl_ClipVertex at all; what happens in this case is less clear.
* According to the GL 2.1 spec (from the same section):
*
* "If gl ClipVertex is not written by the vertex shader, its
* value is undefined, which implies that the results of clipping
* to any client-defined clip planes are also undefined."
*
* The GL 3.0 spec says the same thing, and the GLSL 1.10 and 1.20
* specs have compatible language (from section 7.1: Vertex Shader
* Special Variables):
*
* "If gl_PointSize or gl_ClipVertex are not written to, their
* values are undefined."
*
* However, the GLSL 1.30 spec says:
*
* "If a linked set of shaders forming the vertex stage contains
* no static write to gl_ClipVertex or gl_ClipDistance, but the
* application has requested clipping against user clip planes
* through the API, then the coordinate written to gl_Position is
* used for comparison against the user clip planes."
*
* So, if GLSL 1.30 is to be believed, if the vertex shader does not
* write to gl_Position, then the place on the screen where clipping
* takes place is determined exclusively by the plane equation (p1'
* p2' p3' p4'). No further transformation is applied.
*
* Note that strictly speaking, this doesn't contradict any of the
* other specs, since a conformant implementation may do anything it
* desires when behavior is "undefined", including clipping based on
* gl_Position. Since this behavior is only specified in GLSL 1.30,
* we include a "#version 130" directive in the shader when testing
* it.
*
*
* The test operates by constructing four clip plane equations which
* are only satisfied by points within a small square region near (1,
* 0). Setting all matrices to the identity matrix, and setting
* gl_Position == gl_ClipVertex == gl_Vertex, it draws a large square,
* large enough to cover the entire window, and then probes the
* resulting image to determine where pixels were actually drawn; due
* to clipping, they should be drawn only near (1, 0).
*
* Then it performs a 20 degree rotation in each of the following ways
* in turn, leaving all other transformations as the identity
* transformation:
* - Using the model-view matrix at the time clip planes are specified
* - Using the projection matrix at the time clip planes are specified
* - Using the model-view matrix at the time of drawing
* - Using the projection matrix at the time of drawing
* - Using the vertex shader to rotate gl_Position with respect to gl_Vertex
* - Using the vertex shader to rotate gl_ClipVertex with respect to gl_Vertex
*
* In each case it probes the resulting image to determine where
* pixels were actually drawn, and compares the result to the expected
* behavior from the spec.
*
*
* The test may be run in one of four modes, chosen with a single
* command line argument:
* - "fixed": test using fixed functionality (no vertex shader)
* - "arb": test using GL_ARB_vertex_program extension (see below)
* - "pos": test using a vertex shader that sets gl_Position only
* - "pos_clipvert": test using a vertex shader that sets gl_Position first,
* then gl_ClipVertex
* - "clipvert_pos": test using a vertex shader that sets gl_ClipVertex first,
* then gl_Position
*
* The reason for distinguishing between "pos_clipvert" and
* "clipvert_pos" is that in the present Mesa implementation, the
* variables gl_Position and gl_ClipVertex are aliases of each other,
* so the order in which values are stored into these two variables
* may affect shader behavior.
*
* Note: "arb" mode tests using an ARB vertex program, as defined in
* the GL_ARB_vertex_program extension. From the extension spec:
*
* "User-defined clipping is not supported in standard vertex
* program mode. User-defined clipping support will be provided
* for programs that use the "position invariant" option, where
* all vertex transformation operations are performed by the
* fixed-function pipeline."
*
* The strong implication seems to be that for ARB vertex programs
* that use the "position invariant" option, clipping should behave as
* it does in fixed function mode.
*/
#include "piglit-util-gl-common.h"
PIGLIT_GL_TEST_MAIN(
100 /*window_width*/,
100 /*window_height*/,
GLUT_RGB | GLUT_DOUBLE)
GLint position_angle_loc;
GLint clipVertex_angle_loc;
bool use_ff = false;
bool use_arb = false;
bool use_glsl = false;
bool use_clip_vertex = false;
bool use_glsl_130 = false;
/**
* GLSL code used to set gl_Position and/or gl_ClipVertex in the
* vertex shader.
*/
char *setters;
void
setup_glsl_programs()
{
GLuint vs;
GLuint fs;
GLuint prog;
char vert[4096];
char frag[4096];
char *version_directive;
if (use_glsl_130) {
version_directive = "#version 130";
} else {
version_directive = "";
}
sprintf(vert,
"%s\n"
"uniform float position_angle;\n"
"uniform float clipVertex_angle;\n"
"mat4 rotate(float angle)\n"
"{\n"
" angle = radians(angle);\n"
" return mat4( cos(angle), sin(angle), 0.0, 0.0,\n"
" -sin(angle), cos(angle), 0.0, 0.0,\n"
" 0.0, 0.0, 1.0, 0.0,\n"
" 0.0, 0.0, 0.0, 1.0);\n"
"}\n"
"void main()\n"
"{\n"
"%s\n"
"}",
version_directive, setters);
sprintf(frag,
"%s\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(1.0);\n"
"}",
version_directive);
vs = piglit_compile_shader_text(GL_VERTEX_SHADER, vert);
fs = piglit_compile_shader_text(GL_FRAGMENT_SHADER, frag);
prog = piglit_CreateProgram();
piglit_AttachShader(prog, vs);
piglit_AttachShader(prog, fs);
piglit_LinkProgram(prog);
piglit_DeleteShader(vs);
piglit_DeleteShader(fs);
piglit_UseProgram(prog);
position_angle_loc = piglit_GetUniformLocation(prog, "position_angle");
if (use_clip_vertex) {
clipVertex_angle_loc =
piglit_GetUniformLocation(prog, "clipVertex_angle");
}
}
void
setup_arb_program()
{
char vert[] =
"!!ARBvp1.0\n"
"OPTION ARB_position_invariant;\n"
"MOV result.color, { 1.0, 1.0, 1.0, 1.0 };"
"END";
GLuint vert_prog;
glGenProgramsARB(1, &vert_prog);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vert_prog);
glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(vert), vert);
glEnable(GL_VERTEX_PROGRAM_ARB);
}
void
print_usage_and_exit(char *prog_name)
{
printf("Usage: %s <mode>\n"
" where <mode> is one of:\n"
" fixed\n"
" arb\n"
" pos\n"
" pos_clipvert\n"
" clipvert_pos\n", prog_name);
exit(1);
}
void
piglit_init(int argc, char **argv)
{
if (argc != 2)
print_usage_and_exit(argv[0]);
if (strcmp(argv[1], "fixed") == 0) {
use_ff = true;
} else if (strcmp(argv[1], "arb") == 0) {
use_arb = true;
} else if (strcmp(argv[1], "pos") == 0) {
use_glsl = true;
setters = " gl_Position = rotate(position_angle) * gl_Vertex;\n";
use_glsl_130 = true;
} else if (strcmp(argv[1], "pos_clipvert") == 0) {
use_glsl = true;
setters =
" gl_Position = rotate(position_angle) * gl_Vertex;\n"
" gl_ClipVertex = rotate(clipVertex_angle) * gl_Vertex;\n";
use_clip_vertex = true;
} else if (strcmp(argv[1], "clipvert_pos") == 0) {
use_glsl = true;
setters =
" gl_ClipVertex = rotate(clipVertex_angle) * gl_Vertex;\n"
" gl_Position = rotate(position_angle) * gl_Vertex;\n";
use_clip_vertex = true;
} else {
print_usage_and_exit(argv[0]);
}
if (use_arb) {
piglit_require_extension("GL_ARB_vertex_program");
setup_arb_program();
} else if (use_glsl) {
piglit_require_GLSL();
piglit_require_GLSL_version(use_glsl_130 ? 130 : 110);
setup_glsl_programs();
}
}
void
setup_clip_plane(int plane, float p1, float p2, float p3, float p4)
{
double eqn[4] = { p1, p2, p3, p4 };
glClipPlane(GL_CLIP_PLANE0 + plane, eqn);
}
bool
measure_effects(char *desc, int mc, int pc, int md, int pd, int expected)
{
float size = 0.1;
float dist = 1.0 - size/2;
int angle;
printf("Measuring %s: ", desc);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(mc, 0, 0, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(pc, 0, 0, 1);
setup_clip_plane(0, 1.0, 0.0, 0.0, size-1.0); /* x > 1.0-size */
setup_clip_plane(1, -1.0, 0.0, 0.0, 1.0); /* x < 1.0 */
setup_clip_plane(2, 0.0, 1.0, 0.0, size/2); /* y > -size/2 */
setup_clip_plane(3, 0.0, -1.0, 0.0, size/2); /* y < size/2 */
glEnable(GL_CLIP_PLANE0);
glEnable(GL_CLIP_PLANE1);
glEnable(GL_CLIP_PLANE2);
glEnable(GL_CLIP_PLANE3);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(md, 0, 0, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(pd, 0, 0, 1);
piglit_draw_rect(-2, -2, 4, 4);
for (angle = -180; angle < 180; angle += 10) {
float angle_rad = angle * M_PI / 180.0;
float xf = dist * cos(angle_rad);
float yf = dist * sin(angle_rad);
int x = (int) (0.5 + piglit_width * (xf + 1.0)/2.0);
int y = (int) (0.5 + piglit_width * (yf + 1.0)/2.0);
float found_color[4];
glReadPixels(x, y, 1, 1, GL_RGBA, GL_FLOAT, found_color);
if (found_color[0] > 0.5) {
if (angle == expected) {
printf("OK (angle=%d)\n", angle);
return true;
} else {
printf("FAIL (angle=%d, expected=%d)\n", angle,
expected);
return false;
}
}
}
printf("FAIL (test rect not found, expected=%d)\n", expected);
return false;
}
enum piglit_result
piglit_display()
{
bool pass = true;
if (use_glsl) {
piglit_Uniform1f(position_angle_loc, 0.0);
piglit_Uniform1f(clipVertex_angle_loc, 0.0);
}
/* Base behavior: no rotations, so the clipping planes should
* show up on screen at the coordinates where they were
* defined
*/
pass = measure_effects("base behavior", 0, 0, 0, 0, 0) && pass;
/* A 20 degree rotation in the model-view matrix at the time
* clip planes are specified should result in a 20 degree
* rotation of where clipping takes effect.
*/
pass = measure_effects(
"effect of 20deg ModelView rotation while setting clip plane",
20, 0, 0, 0, 20) && pass;
/* A 20 degree rotation in the projection matrix at the time
* clip planes are specified should have no effect.
*/
pass = measure_effects(
"effect of 20deg Projection rotation while setting clip plane",
0, 20, 0, 0, 0) && pass;
/* A 20 degree rotation in the model-view matrix at the time
* of drawing should have no effect.
*/
pass = measure_effects(
"effect of 20deg ModelView rotation while drawing",
0, 0, 20, 0, 0) && pass;
/* When using fixed functionality or an ARB position invariant
* program, a 20 degree rotation in the projection matrix at
* the time of drawing should result in a 20 degree rotation
* of where clipping takes effect when using fixed
* functionality. When using a vertex shader, it should have
* no effect.
*/
pass = measure_effects(
"effect of 20deg Projection rotation while drawing",
0, 0, 0, 20, use_ff || use_arb ? 20 : 0) && pass;
if (use_glsl) {
/* When a vertex shader sets gl_Position to be 20
* degrees rotated compared to gl_Vertex, and sets
* gl_ClipVertex to be equal to gl_Vertex, this should
* result in a 20 degree rotation of where clipping
* takes effect, because it causes gl_Position to be
* rotated 20 degrees with respect to gl_ClipVertex.
* However, when a vertex shader sets gl_Position and
* does not set gl_ClipVertex, there should be no
* effect, because the shader should behave as though
* it set gl_ClipVertex equal to gl_Position.
*/
piglit_Uniform1f(position_angle_loc, 20.0);
pass = measure_effects(
"effect of 20deg rotation on gl_Position",
0, 0, 0, 0, use_clip_vertex ? 20 : 0) && pass;
piglit_Uniform1f(position_angle_loc, 0.0);
}
if (use_clip_vertex) {
/* When a vertex shader sets gl_Position to be equal
* to gl_Vertex, and sets gl_ClipVertex to be 20
* degrees rotated compared to gl_Vertex, this should
* result in a negative 20 degree rotation of where
* clipping takes effect, because it causes
* gl_Position to be rotated negative 20 degrees with
* respect to gl_ClipVertex.
*/
piglit_Uniform1f(clipVertex_angle_loc, 20.0);
pass = measure_effects(
"effect of 20deg rotation on gl_ClipVertex",
0, 0, 0, 0, -20) && pass;
piglit_Uniform1f(clipVertex_angle_loc, 0.0);
}
piglit_present_results();
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
|