1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
|
// Low level ATA disk access
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "types.h" // u8
#include "ioport.h" // inb
#include "util.h" // dprintf
#include "cmos.h" // inb_cmos
#include "pic.h" // enable_hwirq
#include "biosvar.h" // GET_EBDA
#include "pci.h" // pci_find_class
#include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER
#include "pci_regs.h" // PCI_INTERRUPT_LINE
#include "boot.h" // add_bcv_hd
#include "disk.h" // struct ata_s
#include "atabits.h" // ATA_CB_STAT
#define TIMEOUT 0
#define BSY 1
#define NOT_BSY 2
#define NOT_BSY_DRQ 3
#define NOT_BSY_NOT_DRQ 4
#define NOT_BSY_RDY 5
#define IDE_SECTOR_SIZE 512
#define CDROM_SECTOR_SIZE 2048
#define IDE_TIMEOUT 32000 //32 seconds max for IDE ops
struct ata_s ATA VAR16_32;
/****************************************************************
* Helper functions
****************************************************************/
// Wait for the specified ide state
static inline int
await_ide(u8 mask, u8 flags, u16 base, u16 timeout)
{
u64 end = calc_future_tsc(timeout);
for (;;) {
u8 status = inb(base+ATA_CB_STAT);
if ((status & mask) == flags)
return status;
if (rdtscll() > end) {
dprintf(1, "IDE time out\n");
return -1;
}
}
}
// Wait for the device to be not-busy.
static int
await_not_bsy(u16 base)
{
return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT);
}
// Wait for the device to be ready.
static int
await_rdy(u16 base)
{
return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT);
}
// Wait for ide state - pauses for one ata cycle first.
static inline int
pause_await_not_bsy(u16 iobase1, u16 iobase2)
{
// Wait one PIO transfer cycle.
inb(iobase2 + ATA_CB_ASTAT);
return await_not_bsy(iobase1);
}
// Wait for ide state - pause for 400ns first.
static inline int
ndelay_await_not_bsy(u16 iobase1)
{
ndelay(400);
return await_not_bsy(iobase1);
}
// Reset a drive
void
ata_reset(int driveid)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
dprintf(6, "ata_reset driveid=%d\n", driveid);
// Pulse SRST
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC);
udelay(5);
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
mdelay(2);
// wait for device to become not busy.
int status = await_not_bsy(iobase1);
if (status < 0)
goto done;
if (slave) {
// Change device.
u64 end = calc_future_tsc(IDE_TIMEOUT);
for (;;) {
outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
goto done;
if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1)
break;
// Change drive request failed to take effect - retry.
if (rdtscll() > end) {
dprintf(1, "ata_reset slave time out\n");
goto done;
}
}
}
// On a user-reset request, wait for RDY if it is an ATA device.
u8 type=GET_GLOBAL(ATA.devices[driveid].type);
if (type == ATA_TYPE_ATA)
status = await_rdy(iobase1);
done:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
dprintf(6, "ata_reset exit status=%x\n", status);
}
/****************************************************************
* ATA send command
****************************************************************/
struct ata_pio_command {
u8 feature;
u8 sector_count;
u8 lba_low;
u8 lba_mid;
u8 lba_high;
u8 device;
u8 command;
u8 sector_count2;
u8 lba_low2;
u8 lba_mid2;
u8 lba_high2;
};
// Send an ata command to the drive.
static int
send_cmd(int driveid, struct ata_pio_command *cmd)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
// Select device
int status = await_not_bsy(iobase1);
if (status < 0)
return status;
u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1)
| (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0));
u8 olddh = inb(iobase1 + ATA_CB_DH);
outb(newdh, iobase1 + ATA_CB_DH);
if ((olddh ^ newdh) & (1<<4)) {
// Was a device change - wait for device to become not busy.
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
}
if (cmd->command & 0x04) {
outb(0x00, iobase1 + ATA_CB_FR);
outb(cmd->sector_count2, iobase1 + ATA_CB_SC);
outb(cmd->lba_low2, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid2, iobase1 + ATA_CB_CL);
outb(cmd->lba_high2, iobase1 + ATA_CB_CH);
}
outb(cmd->feature, iobase1 + ATA_CB_FR);
outb(cmd->sector_count, iobase1 + ATA_CB_SC);
outb(cmd->lba_low, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid, iobase1 + ATA_CB_CL);
outb(cmd->lba_high, iobase1 + ATA_CB_CH);
outb(cmd->command, iobase1 + ATA_CB_CMD);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n"
, status, inb(iobase1 + ATA_CB_ERR));
return -4;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status);
return -5;
}
return 0;
}
/****************************************************************
* ATA transfers
****************************************************************/
// Read and discard x number of bytes from an io channel.
static void
insx_discard(int iobase1, int bytes)
{
int count, i;
if (CONFIG_ATA_PIO32) {
count = bytes / 4;
for (i=0; i<count; i++)
inl(iobase1);
} else {
count = bytes / 2;
for (i=0; i<count; i++)
inw(iobase1);
}
}
// Transfer 'count' blocks (of 'blocksize' bytes) to/from drive
// 'driveid'. If 'skipfirst' or 'skiplast' is set then the first
// and/or last block may be partially transferred. This function is
// inlined because all the callers use different forms and because the
// large number of parameters would consume a lot of stack space.
static __always_inline int
ata_transfer(int driveid, int iswrite, int count, int blocksize
, int skipfirst, int skiplast, void *buf_fl)
{
dprintf(16, "ata_transfer id=%d write=%d count=%d bs=%d"
" skipf=%d skipl=%d buf=%p\n"
, driveid, iswrite, count, blocksize
, skipfirst, skiplast, buf_fl);
// Reset count of transferred data
SET_EBDA(sector_count, 0);
u8 channel = driveid / 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
int current = 0;
int status;
for (;;) {
int bsize = blocksize;
if (skipfirst && current == 0) {
insx_discard(iobase1, skipfirst);
bsize -= skipfirst;
}
if (skiplast && current == count-1)
bsize -= skiplast;
if (iswrite) {
// Write data to controller
dprintf(16, "Write sector id=%d dest=%p\n", driveid, buf_fl);
if (CONFIG_ATA_PIO32)
outsl_fl(iobase1, buf_fl, bsize / 4);
else
outsw_fl(iobase1, buf_fl, bsize / 2);
} else {
// Read data from controller
dprintf(16, "Read sector id=%d dest=%p\n", driveid, buf_fl);
if (CONFIG_ATA_PIO32)
insl_fl(iobase1, buf_fl, bsize / 4);
else
insw_fl(iobase1, buf_fl, bsize / 2);
}
buf_fl += bsize;
if (skiplast && current == count-1)
insx_discard(iobase1, skiplast);
status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0)
// Error
return status;
current++;
SET_EBDA(sector_count, current);
if (current == count)
break;
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR);
if (status != ATA_CB_STAT_DRQ) {
dprintf(6, "ata_transfer : more sectors left (status %02x)\n"
, status);
return -6;
}
}
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR);
if (!iswrite)
status &= ~ATA_CB_STAT_DF;
if (status != 0) {
dprintf(6, "ata_transfer : no sectors left (status %02x)\n", status);
return -7;
}
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return 0;
}
static noinline int
ata_transfer_disk(const struct disk_op_s *op)
{
return ata_transfer(op->driveid, op->command == ATA_CMD_WRITE_SECTORS
, op->count, IDE_SECTOR_SIZE, 0, 0, op->buf_fl);
}
static noinline int
ata_transfer_cdrom(const struct disk_op_s *op)
{
return ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, 0, 0, op->buf_fl);
}
static noinline int
ata_transfer_cdemu(const struct disk_op_s *op, int before, int after)
{
int vcount = op->count * 4 - before - after;
int ret = ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, before*512, after*512, op->buf_fl);
if (ret) {
SET_EBDA(sector_count, 0);
return ret;
}
SET_EBDA(sector_count, vcount);
return 0;
}
/****************************************************************
* ATA hard drive functions
****************************************************************/
static int
send_cmd_disk(const struct disk_op_s *op)
{
u64 lba = op->lba;
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = op->command;
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
cmd.sector_count2 = op->count >> 8;
cmd.lba_low2 = lba >> 24;
cmd.lba_mid2 = lba >> 32;
cmd.lba_high2 = lba >> 40;
cmd.command |= 0x04;
lba &= 0xffffff;
}
cmd.feature = 0;
cmd.sector_count = op->count;
cmd.lba_low = lba;
cmd.lba_mid = lba >> 8;
cmd.lba_high = lba >> 16;
cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA;
return send_cmd(op->driveid, &cmd);
}
// Read/write count blocks from a harddrive.
int
ata_cmd_data(struct disk_op_s *op)
{
int ret = send_cmd_disk(op);
if (ret)
return ret;
return ata_transfer_disk(op);
}
/****************************************************************
* ATAPI functions
****************************************************************/
// Low-level atapi command transmit function.
static int
send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize)
{
u8 channel = driveid / 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
struct ata_pio_command cmd;
cmd.sector_count = 0;
cmd.feature = 0;
cmd.lba_low = 0;
cmd.lba_mid = blocksize;
cmd.lba_high = blocksize >> 8;
cmd.device = 0;
cmd.command = ATA_CMD_PACKET;
int ret = send_cmd(driveid, &cmd);
if (ret)
return ret;
// Send command to device
outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cmdbuf), cmdlen / 2);
int status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
u8 err = inb(iobase1 + ATA_CB_ERR);
// skip "Not Ready"
if (err != 0x20)
dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n"
, status, err);
return -2;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status);
return -3;
}
return 0;
}
// Low-level cdrom read atapi command transmit function.
static int
send_cmd_cdrom(const struct disk_op_s *op)
{
u8 atacmd[12];
memset(atacmd, 0, sizeof(atacmd));
atacmd[0]=0x28; // READ command
atacmd[7]=(op->count & 0xff00) >> 8; // Sectors
atacmd[8]=(op->count & 0x00ff);
atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA
atacmd[3]=(op->lba & 0x00ff0000) >> 16;
atacmd[4]=(op->lba & 0x0000ff00) >> 8;
atacmd[5]=(op->lba & 0x000000ff);
return send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd)
, CDROM_SECTOR_SIZE);
}
// Read sectors from the cdrom.
int
cdrom_read(struct disk_op_s *op)
{
int ret = send_cmd_cdrom(op);
if (ret)
return ret;
return ata_transfer_cdrom(op);
}
// Pretend the cdrom has 512 byte sectors (instead of 2048) and read
// sectors.
int
cdrom_read_512(struct disk_op_s *op)
{
u32 vlba = op->lba;
u32 vcount = op->count;
u32 lba = op->lba = vlba / 4;
u32 velba = vlba + vcount - 1;
u32 elba = velba / 4;
op->count = elba - lba + 1;
int before = vlba % 4;
int after = 3 - (velba % 4);
dprintf(16, "cdrom_read_512: id=%d vlba=%d vcount=%d buf=%p lba=%d elba=%d"
" count=%d before=%d after=%d\n"
, op->driveid, vlba, vcount, op->buf_fl, lba, elba
, op->count, before, after);
int ret = send_cmd_cdrom(op);
if (ret)
return ret;
return ata_transfer_cdemu(op, before, after);
}
// Send a simple atapi command to a drive.
int
ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen
, u32 length, void *buf_fl)
{
int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length);
if (ret)
return ret;
return ata_transfer(driveid, 0, 1, length, 0, 0, buf_fl);
}
/****************************************************************
* Disk geometry translation
****************************************************************/
static u8
get_translation(int driveid)
{
if (! CONFIG_COREBOOT) {
// Emulators pass in the translation info via nvram.
u8 channel = driveid / 2;
u8 translation = inb_cmos(CMOS_BIOS_DISKTRANSFLAG + channel/2);
translation >>= 2 * (driveid % 4);
translation &= 0x03;
return translation;
}
// On COREBOOT, use a heuristic to determine translation type.
u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
if (cylinders <= 1024 && heads <= 16 && spt <= 63)
return ATA_TRANSLATION_NONE;
if (cylinders * heads <= 131072)
return ATA_TRANSLATION_LARGE;
return ATA_TRANSLATION_LBA;
}
static void
setup_translation(int driveid)
{
u8 translation = get_translation(driveid);
SET_GLOBAL(ATA.devices[driveid].translation, translation);
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
u64 sectors = GET_GLOBAL(ATA.devices[driveid].sectors);
dprintf(1, "ata%d-%d: PCHS=%u/%d/%d translation="
, channel, slave, cylinders, heads, spt);
switch (translation) {
case ATA_TRANSLATION_NONE:
dprintf(1, "none");
break;
case ATA_TRANSLATION_LBA:
dprintf(1, "lba");
spt = 63;
if (sectors > 63*255*1024) {
heads = 255;
cylinders = 1024;
break;
}
u32 sect = (u32)sectors / 63;
heads = sect / 1024;
if (heads>128)
heads = 255;
else if (heads>64)
heads = 128;
else if (heads>32)
heads = 64;
else if (heads>16)
heads = 32;
else
heads = 16;
cylinders = sect / heads;
break;
case ATA_TRANSLATION_RECHS:
dprintf(1, "r-echs");
// Take care not to overflow
if (heads==16) {
if (cylinders>61439)
cylinders=61439;
heads=15;
cylinders = (u16)((u32)(cylinders)*16/15);
}
// then go through the large bitshift process
case ATA_TRANSLATION_LARGE:
if (translation == ATA_TRANSLATION_LARGE)
dprintf(1, "large");
while (cylinders > 1024) {
cylinders >>= 1;
heads <<= 1;
// If we max out the head count
if (heads > 127)
break;
}
break;
}
// clip to 1024 cylinders in lchs
if (cylinders > 1024)
cylinders = 1024;
dprintf(1, " LCHS=%d/%d/%d\n", cylinders, heads, spt);
SET_GLOBAL(ATA.devices[driveid].lchs.heads, heads);
SET_GLOBAL(ATA.devices[driveid].lchs.cylinders, cylinders);
SET_GLOBAL(ATA.devices[driveid].lchs.spt, spt);
}
/****************************************************************
* ATA detect and init
****************************************************************/
// Extract common information from IDENTIFY commands.
static void
extract_identify(int driveid, u16 *buffer)
{
dprintf(3, "Identify w0=%x w2=%x\n", buffer[0], buffer[2]);
// Read model name
char *model = ATA.devices[driveid].model;
int maxsize = ARRAY_SIZE(ATA.devices[driveid].model);
int i;
for (i=0; i<maxsize/2; i++) {
u16 v = buffer[27+i];
model[i*2] = v >> 8;
model[i*2+1] = v & 0xff;
}
model[maxsize-1] = 0x00;
// Trim trailing spaces from model name.
for (i=maxsize-2; i>0 && model[i] == 0x20; i--)
model[i] = 0x00;
// Extract ATA/ATAPI version.
u16 ataversion = buffer[80];
u8 version;
for (version=15; version>0; version--)
if (ataversion & (1<<version))
break;
ATA.devices[driveid].version = version;
// Common flags.
SET_GLOBAL(ATA.devices[driveid].removable, (buffer[0] & 0x80) ? 1 : 0);
}
static int
init_drive_atapi(int driveid)
{
// Send an IDENTIFY_DEVICE_PACKET command to device
u16 buffer[256];
memset(buffer, 0, sizeof(buffer));
struct disk_op_s dop;
dop.driveid = driveid;
dop.command = ATA_CMD_IDENTIFY_DEVICE_PACKET;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop);
if (ret)
return ret;
// Success - setup as ATAPI.
extract_identify(driveid, buffer);
SET_GLOBAL(ATA.devices[driveid].type, ATA_TYPE_ATAPI);
SET_GLOBAL(ATA.devices[driveid].device, (buffer[0] >> 8) & 0x1f);
SET_GLOBAL(ATA.devices[driveid].blksize, CDROM_SECTOR_SIZE);
// fill cdidmap
u8 cdcount = GET_GLOBAL(ATA.cdcount);
SET_GLOBAL(ATA.idmap[1][cdcount], driveid);
SET_GLOBAL(ATA.cdcount, cdcount+1);
// Report drive info to user.
u8 channel = driveid / 2;
u8 slave = driveid % 2;
printf("ata%d-%d: %s ATAPI-%d %s\n", channel, slave
, ATA.devices[driveid].model, ATA.devices[driveid].version
, (ATA.devices[driveid].device == ATA_DEVICE_CDROM
? "CD-Rom/DVD-Rom" : "Device"));
return 0;
}
static int
init_drive_ata(int driveid)
{
// Send an IDENTIFY_DEVICE command to device
u16 buffer[256];
memset(buffer, 0, sizeof(buffer));
struct disk_op_s dop;
dop.driveid = driveid;
dop.command = ATA_CMD_IDENTIFY_DEVICE;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop);
if (ret)
return ret;
// Success - setup as ATA.
extract_identify(driveid, buffer);
SET_GLOBAL(ATA.devices[driveid].type, ATA_TYPE_ATA);
SET_GLOBAL(ATA.devices[driveid].device, ATA_DEVICE_HD);
SET_GLOBAL(ATA.devices[driveid].blksize, IDE_SECTOR_SIZE);
SET_GLOBAL(ATA.devices[driveid].pchs.cylinders, buffer[1]);
SET_GLOBAL(ATA.devices[driveid].pchs.heads, buffer[3]);
SET_GLOBAL(ATA.devices[driveid].pchs.spt, buffer[6]);
u64 sectors;
if (buffer[83] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100]; // word 100-103
else
sectors = *(u32*)&buffer[60]; // word 60 and word 61
SET_GLOBAL(ATA.devices[driveid].sectors, sectors);
// Setup disk geometry translation.
setup_translation(driveid);
// Report drive info to user.
u8 channel = driveid / 2;
u8 slave = driveid % 2;
char *model = ATA.devices[driveid].model;
printf("ata%d-%d: %s ATA-%d Hard-Disk ", channel, slave, model
, ATA.devices[driveid].version);
u64 sizeinmb = sectors >> 11;
if (sizeinmb < (1 << 16))
printf("(%u MiBytes)\n", (u32)sizeinmb);
else
printf("(%u GiBytes)\n", (u32)(sizeinmb >> 10));
// Register with bcv system.
add_bcv_hd(driveid, model);
return 0;
}
static int
powerup_await_non_bsy(u16 base, u64 end)
{
u8 orstatus = 0;
u8 status;
for (;;) {
status = inb(base+ATA_CB_STAT);
if (!(status & ATA_CB_STAT_BSY))
break;
orstatus |= status;
if (orstatus == 0xff) {
dprintf(1, "powerup IDE floating\n");
return orstatus;
}
if (rdtscll() > end) {
dprintf(1, "powerup IDE time out\n");
return -1;
}
}
dprintf(6, "powerup iobase=%x st=%x\n", base, status);
return status;
}
static void
ata_detect()
{
// Device detection
u64 end = calc_future_tsc(IDE_TIMEOUT);
int driveid, last_reset_driveid=-1;
for(driveid=0; driveid<CONFIG_MAX_ATA_DEVICES; driveid++) {
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
if (!iobase1)
break;
// Wait for not-bsy.
int status = powerup_await_non_bsy(iobase1, end);
if (status < 0)
continue;
u8 newdh = slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0;
outb(newdh, iobase1+ATA_CB_DH);
ndelay(400);
status = powerup_await_non_bsy(iobase1, end);
if (status < 0)
continue;
// Check if ioport registers look valid.
outb(newdh, iobase1+ATA_CB_DH);
u8 dh = inb(iobase1+ATA_CB_DH);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect drive=%d sc=%x sn=%x dh=%x\n"
, driveid, sc, sn, dh);
if (sc != 0x55 || sn != 0xaa || dh != newdh)
continue;
// reset the channel
if (slave && driveid == last_reset_driveid + 1) {
// The drive was just reset - no need to reset it again.
} else {
ata_reset(driveid);
last_reset_driveid = driveid;
}
// check for ATAPI
int ret = init_drive_atapi(driveid);
if (!ret)
// Found an ATAPI drive.
continue;
u8 st = inb(iobase1+ATA_CB_STAT);
if (!st)
// Status not set - can't be a valid drive.
continue;
// Wait for RDY.
ret = await_rdy(iobase1);
if (ret < 0)
continue;
// check for ATA.
init_drive_ata(driveid);
}
printf("\n");
}
static void
ata_init()
{
memset(&ATA, 0, sizeof(ATA));
// hdidmap and cdidmap init.
u8 device;
for (device=0; device < CONFIG_MAX_ATA_DEVICES; device++) {
SET_GLOBAL(ATA.idmap[0][device], CONFIG_MAX_ATA_DEVICES);
SET_GLOBAL(ATA.idmap[1][device], CONFIG_MAX_ATA_DEVICES);
}
// Scan PCI bus for ATA adapters
int count=0;
int bdf, max;
foreachpci(bdf, max) {
if (pci_config_readw(bdf, PCI_CLASS_DEVICE) != PCI_CLASS_STORAGE_IDE)
continue;
if (count >= ARRAY_SIZE(ATA.channels))
break;
u8 irq = pci_config_readb(bdf, PCI_INTERRUPT_LINE);
SET_GLOBAL(ATA.channels[count].irq, irq);
SET_GLOBAL(ATA.channels[count].pci_bdf, bdf);
u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG);
u32 port1, port2;
if (prog_if & 1) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3;
} else {
port1 = 0x1f0;
port2 = 0x3f0;
}
SET_GLOBAL(ATA.channels[count].iobase1, port1);
SET_GLOBAL(ATA.channels[count].iobase2, port2);
dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n"
, count, port1, port2, bdf, prog_if);
count++;
if (prog_if & 4) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3;
} else {
port1 = 0x170;
port2 = 0x370;
}
dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n"
, count, port1, port2, bdf, prog_if);
SET_GLOBAL(ATA.channels[count].iobase1, port1);
SET_GLOBAL(ATA.channels[count].iobase2, port2);
count++;
}
}
void
hard_drive_setup()
{
if (!CONFIG_ATA)
return;
dprintf(3, "init hard drives\n");
ata_init();
ata_detect();
SET_BDA(disk_control_byte, 0xc0);
enable_hwirq(14, entry_76);
}
/****************************************************************
* Drive mapping
****************************************************************/
// Fill in Fixed Disk Parameter Table (located in ebda).
static void
fill_fdpt(int driveid)
{
if (driveid > 1)
return;
u16 nlc = GET_GLOBAL(ATA.devices[driveid].lchs.cylinders);
u16 nlh = GET_GLOBAL(ATA.devices[driveid].lchs.heads);
u16 nlspt = GET_GLOBAL(ATA.devices[driveid].lchs.spt);
u16 npc = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 nph = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 npspt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
struct fdpt_s *fdpt = &get_ebda_ptr()->fdpt[driveid];
fdpt->precompensation = 0xffff;
fdpt->drive_control_byte = 0xc0 | ((nph > 8) << 3);
fdpt->landing_zone = npc;
fdpt->cylinders = nlc;
fdpt->heads = nlh;
fdpt->sectors = nlspt;
if (nlc == npc && nlh == nph && nlspt == npspt)
// no logical CHS mapping used, just physical CHS
// use Standard Fixed Disk Parameter Table (FDPT)
return;
// complies with Phoenix style Translated Fixed Disk Parameter
// Table (FDPT)
fdpt->phys_cylinders = npc;
fdpt->phys_heads = nph;
fdpt->phys_sectors = npspt;
fdpt->a0h_signature = 0xa0;
// Checksum structure.
u8 sum = checksum(fdpt, sizeof(*fdpt)-1);
fdpt->checksum = -sum;
}
// Map a drive (that was registered via add_bcv_hd)
void
map_drive(int driveid)
{
// fill hdidmap
u8 hdcount = GET_BDA(hdcount);
dprintf(3, "Mapping driveid %d to %d\n", driveid, hdcount);
SET_GLOBAL(ATA.idmap[0][hdcount], driveid);
SET_BDA(hdcount, hdcount + 1);
// Fill "fdpt" structure.
fill_fdpt(hdcount);
}
|