1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
|
/* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
* Copyright (C) 2015-2016 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Michael Lentine <mlentine@google.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Chia-I Wu <olv@google.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Ian Elliott <ianelliott@google.com>
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
// Turn on mem_tracker merged code
#define MTMERGESOURCE 1
#include <SPIRV/spirv.hpp>
#include <algorithm>
#include <assert.h>
#include <iostream>
#include <list>
#include <map>
#include <mutex>
#include <set>
//#include <memory>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <tuple>
#include "vk_loader_platform.h"
#include "vk_dispatch_table_helper.h"
#include "vk_struct_string_helper_cpp.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wwrite-strings"
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic warning "-Wwrite-strings"
#endif
#include "vk_struct_size_helper.h"
#include "core_validation.h"
#include "vk_layer_table.h"
#include "vk_layer_data.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
#include "spirv-tools/libspirv.h"
#if defined __ANDROID__
#include <android/log.h>
#define LOGCONSOLE(...) ((void)__android_log_print(ANDROID_LOG_INFO, "DS", __VA_ARGS__))
#else
#define LOGCONSOLE(...) \
{ \
printf(__VA_ARGS__); \
printf("\n"); \
}
#endif
using namespace std;
namespace core_validation {
using std::unordered_map;
using std::unordered_set;
// WSI Image Objects bypass usual Image Object creation methods. A special Memory
// Object value will be used to identify them internally.
static const VkDeviceMemory MEMTRACKER_SWAP_CHAIN_IMAGE_KEY = (VkDeviceMemory)(-1);
struct devExts {
bool wsi_enabled;
bool wsi_display_swapchain_enabled;
unordered_map<VkSwapchainKHR, unique_ptr<SWAPCHAIN_NODE>> swapchainMap;
unordered_map<VkImage, VkSwapchainKHR> imageToSwapchainMap;
};
// fwd decls
struct shader_module;
// TODO : Split this into separate structs for instance and device level data?
struct layer_data {
VkInstance instance;
unique_ptr<INSTANCE_STATE> instance_state;
debug_report_data *report_data;
std::vector<VkDebugReportCallbackEXT> logging_callback;
VkLayerDispatchTable *device_dispatch_table;
VkLayerInstanceDispatchTable *instance_dispatch_table;
devExts device_extensions;
unordered_set<VkQueue> queues; // All queues under given device
// Vector indices correspond to queueFamilyIndex
vector<unique_ptr<VkQueueFamilyProperties>> queue_family_properties;
// Global set of all cmdBuffers that are inFlight on this device
unordered_set<VkCommandBuffer> globalInFlightCmdBuffers;
// Layer specific data
unordered_map<VkSampler, unique_ptr<SAMPLER_NODE>> samplerMap;
unordered_map<VkImageView, unique_ptr<VkImageViewCreateInfo>> imageViewMap;
unordered_map<VkImage, unique_ptr<IMAGE_NODE>> imageMap;
unordered_map<VkBufferView, unique_ptr<VkBufferViewCreateInfo>> bufferViewMap;
unordered_map<VkBuffer, unique_ptr<BUFFER_NODE>> bufferMap;
unordered_map<VkPipeline, PIPELINE_NODE *> pipelineMap;
unordered_map<VkCommandPool, COMMAND_POOL_NODE> commandPoolMap;
unordered_map<VkDescriptorPool, DESCRIPTOR_POOL_NODE *> descriptorPoolMap;
unordered_map<VkDescriptorSet, cvdescriptorset::DescriptorSet *> setMap;
unordered_map<VkDescriptorSetLayout, cvdescriptorset::DescriptorSetLayout *> descriptorSetLayoutMap;
unordered_map<VkPipelineLayout, PIPELINE_LAYOUT_NODE> pipelineLayoutMap;
unordered_map<VkDeviceMemory, unique_ptr<DEVICE_MEM_INFO>> memObjMap;
unordered_map<VkFence, FENCE_NODE> fenceMap;
unordered_map<VkQueue, QUEUE_NODE> queueMap;
unordered_map<VkEvent, EVENT_NODE> eventMap;
unordered_map<QueryObject, bool> queryToStateMap;
unordered_map<VkQueryPool, QUERY_POOL_NODE> queryPoolMap;
unordered_map<VkSemaphore, SEMAPHORE_NODE> semaphoreMap;
unordered_map<VkCommandBuffer, GLOBAL_CB_NODE *> commandBufferMap;
unordered_map<VkFramebuffer, unique_ptr<FRAMEBUFFER_NODE>> frameBufferMap;
unordered_map<VkImage, vector<ImageSubresourcePair>> imageSubresourceMap;
unordered_map<ImageSubresourcePair, IMAGE_LAYOUT_NODE> imageLayoutMap;
unordered_map<VkRenderPass, RENDER_PASS_NODE *> renderPassMap;
unordered_map<VkShaderModule, unique_ptr<shader_module>> shaderModuleMap;
VkDevice device;
// Device specific data
PHYS_DEV_PROPERTIES_NODE phys_dev_properties;
VkPhysicalDeviceMemoryProperties phys_dev_mem_props;
VkPhysicalDeviceFeatures physical_device_features;
unique_ptr<PHYSICAL_DEVICE_STATE> physical_device_state;
layer_data()
: instance_state(nullptr), report_data(nullptr), device_dispatch_table(nullptr), instance_dispatch_table(nullptr),
device_extensions(), device(VK_NULL_HANDLE), phys_dev_properties{}, phys_dev_mem_props{}, physical_device_features{},
physical_device_state(nullptr){};
};
// TODO : Do we need to guard access to layer_data_map w/ lock?
static unordered_map<void *, layer_data *> layer_data_map;
static const VkLayerProperties global_layer = {
"VK_LAYER_LUNARG_core_validation", VK_LAYER_API_VERSION, 1, "LunarG Validation Layer",
};
template <class TCreateInfo> void ValidateLayerOrdering(const TCreateInfo &createInfo) {
bool foundLayer = false;
for (uint32_t i = 0; i < createInfo.enabledLayerCount; ++i) {
if (!strcmp(createInfo.ppEnabledLayerNames[i], global_layer.layerName)) {
foundLayer = true;
}
// This has to be logged to console as we don't have a callback at this point.
if (!foundLayer && !strcmp(createInfo.ppEnabledLayerNames[0], "VK_LAYER_GOOGLE_unique_objects")) {
LOGCONSOLE("Cannot activate layer VK_LAYER_GOOGLE_unique_objects prior to activating %s.",
global_layer.layerName);
}
}
}
// Code imported from shader_checker
static void build_def_index(shader_module *);
// A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words
// without the caller needing to care too much about the physical SPIRV module layout.
struct spirv_inst_iter {
std::vector<uint32_t>::const_iterator zero;
std::vector<uint32_t>::const_iterator it;
uint32_t len() {
auto result = *it >> 16;
assert(result > 0);
return result;
}
uint32_t opcode() { return *it & 0x0ffffu; }
uint32_t const &word(unsigned n) {
assert(n < len());
return it[n];
}
uint32_t offset() { return (uint32_t)(it - zero); }
spirv_inst_iter() {}
spirv_inst_iter(std::vector<uint32_t>::const_iterator zero, std::vector<uint32_t>::const_iterator it) : zero(zero), it(it) {}
bool operator==(spirv_inst_iter const &other) { return it == other.it; }
bool operator!=(spirv_inst_iter const &other) { return it != other.it; }
spirv_inst_iter operator++(int) { /* x++ */
spirv_inst_iter ii = *this;
it += len();
return ii;
}
spirv_inst_iter operator++() { /* ++x; */
it += len();
return *this;
}
/* The iterator and the value are the same thing. */
spirv_inst_iter &operator*() { return *this; }
spirv_inst_iter const &operator*() const { return *this; }
};
struct shader_module {
/* the spirv image itself */
vector<uint32_t> words;
/* a mapping of <id> to the first word of its def. this is useful because walking type
* trees, constant expressions, etc requires jumping all over the instruction stream.
*/
unordered_map<unsigned, unsigned> def_index;
shader_module(VkShaderModuleCreateInfo const *pCreateInfo)
: words((uint32_t *)pCreateInfo->pCode, (uint32_t *)pCreateInfo->pCode + pCreateInfo->codeSize / sizeof(uint32_t)),
def_index() {
build_def_index(this);
}
/* expose begin() / end() to enable range-based for */
spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); } /* first insn */
spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); } /* just past last insn */
/* given an offset into the module, produce an iterator there. */
spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); }
/* gets an iterator to the definition of an id */
spirv_inst_iter get_def(unsigned id) const {
auto it = def_index.find(id);
if (it == def_index.end()) {
return end();
}
return at(it->second);
}
};
// TODO : This can be much smarter, using separate locks for separate global data
static std::mutex global_lock;
// Return ImageViewCreateInfo ptr for specified imageView or else NULL
VkImageViewCreateInfo *getImageViewData(const layer_data *dev_data, VkImageView image_view) {
auto iv_it = dev_data->imageViewMap.find(image_view);
if (iv_it == dev_data->imageViewMap.end()) {
return nullptr;
}
return iv_it->second.get();
}
// Return sampler node ptr for specified sampler or else NULL
SAMPLER_NODE *getSamplerNode(const layer_data *dev_data, VkSampler sampler) {
auto sampler_it = dev_data->samplerMap.find(sampler);
if (sampler_it == dev_data->samplerMap.end()) {
return nullptr;
}
return sampler_it->second.get();
}
// Return image node ptr for specified image or else NULL
IMAGE_NODE *getImageNode(const layer_data *dev_data, VkImage image) {
auto img_it = dev_data->imageMap.find(image);
if (img_it == dev_data->imageMap.end()) {
return nullptr;
}
return img_it->second.get();
}
// Return buffer node ptr for specified buffer or else NULL
BUFFER_NODE *getBufferNode(const layer_data *dev_data, VkBuffer buffer) {
auto buff_it = dev_data->bufferMap.find(buffer);
if (buff_it == dev_data->bufferMap.end()) {
return nullptr;
}
return buff_it->second.get();
}
// Return swapchain node for specified swapchain or else NULL
SWAPCHAIN_NODE *getSwapchainNode(const layer_data *dev_data, VkSwapchainKHR swapchain) {
auto swp_it = dev_data->device_extensions.swapchainMap.find(swapchain);
if (swp_it == dev_data->device_extensions.swapchainMap.end()) {
return nullptr;
}
return swp_it->second.get();
}
// Return swapchain for specified image or else NULL
VkSwapchainKHR getSwapchainFromImage(const layer_data *dev_data, VkImage image) {
auto img_it = dev_data->device_extensions.imageToSwapchainMap.find(image);
if (img_it == dev_data->device_extensions.imageToSwapchainMap.end()) {
return VK_NULL_HANDLE;
}
return img_it->second;
}
// Return buffer node ptr for specified buffer or else NULL
VkBufferViewCreateInfo *getBufferViewInfo(const layer_data *my_data, VkBufferView buffer_view) {
auto bv_it = my_data->bufferViewMap.find(buffer_view);
if (bv_it == my_data->bufferViewMap.end()) {
return nullptr;
}
return bv_it->second.get();
}
FENCE_NODE *getFenceNode(layer_data *dev_data, VkFence fence) {
auto it = dev_data->fenceMap.find(fence);
if (it == dev_data->fenceMap.end()) {
return nullptr;
}
return &it->second;
}
EVENT_NODE *getEventNode(layer_data *dev_data, VkEvent event) {
auto it = dev_data->eventMap.find(event);
if (it == dev_data->eventMap.end()) {
return nullptr;
}
return &it->second;
}
QUERY_POOL_NODE *getQueryPoolNode(layer_data *dev_data, VkQueryPool query_pool) {
auto it = dev_data->queryPoolMap.find(query_pool);
if (it == dev_data->queryPoolMap.end()) {
return nullptr;
}
return &it->second;
}
QUEUE_NODE *getQueueNode(layer_data *dev_data, VkQueue queue) {
auto it = dev_data->queueMap.find(queue);
if (it == dev_data->queueMap.end()) {
return nullptr;
}
return &it->second;
}
SEMAPHORE_NODE *getSemaphoreNode(layer_data *dev_data, VkSemaphore semaphore) {
auto it = dev_data->semaphoreMap.find(semaphore);
if (it == dev_data->semaphoreMap.end()) {
return nullptr;
}
return &it->second;
}
COMMAND_POOL_NODE *getCommandPoolNode(layer_data *dev_data, VkCommandPool pool) {
auto it = dev_data->commandPoolMap.find(pool);
if (it == dev_data->commandPoolMap.end()) {
return nullptr;
}
return &it->second;
}
static VkDeviceMemory *get_object_mem_binding(layer_data *my_data, uint64_t handle, VkDebugReportObjectTypeEXT type) {
switch (type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT: {
auto img_node = getImageNode(my_data, VkImage(handle));
if (img_node)
return &img_node->mem;
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT: {
auto buff_node = getBufferNode(my_data, VkBuffer(handle));
if (buff_node)
return &buff_node->mem;
break;
}
default:
break;
}
return nullptr;
}
// prototype
static GLOBAL_CB_NODE *getCBNode(layer_data const *, const VkCommandBuffer);
// Helper function to validate correct usage bits set for buffers or images
// Verify that (actual & desired) flags != 0 or,
// if strict is true, verify that (actual & desired) flags == desired
// In case of error, report it via dbg callbacks
static bool validate_usage_flags(layer_data *my_data, VkFlags actual, VkFlags desired, VkBool32 strict,
uint64_t obj_handle, VkDebugReportObjectTypeEXT obj_type, char const *ty_str,
char const *func_name, char const *usage_str) {
bool correct_usage = false;
bool skip_call = false;
if (strict)
correct_usage = ((actual & desired) == desired);
else
correct_usage = ((actual & desired) != 0);
if (!correct_usage) {
skip_call = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, obj_type, obj_handle, __LINE__,
MEMTRACK_INVALID_USAGE_FLAG, "MEM", "Invalid usage flag for %s 0x%" PRIxLEAST64
" used by %s. In this case, %s should have %s set during creation.",
ty_str, obj_handle, func_name, ty_str, usage_str);
}
return skip_call;
}
// Helper function to validate usage flags for buffers
// For given buffer_node send actual vs. desired usage off to helper above where
// an error will be flagged if usage is not correct
static bool ValidateImageUsageFlags(layer_data *dev_data, IMAGE_NODE const *image_node, VkFlags desired, VkBool32 strict,
char const *func_name, char const *usage_string) {
return validate_usage_flags(dev_data, image_node->createInfo.usage, desired, strict,
reinterpret_cast<const uint64_t &>(image_node->image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
"image", func_name, usage_string);
}
// Helper function to validate usage flags for buffers
// For given buffer_node send actual vs. desired usage off to helper above where
// an error will be flagged if usage is not correct
static bool ValidateBufferUsageFlags(layer_data *dev_data, BUFFER_NODE const *buffer_node, VkFlags desired, VkBool32 strict,
char const *func_name, char const *usage_string) {
return validate_usage_flags(dev_data, buffer_node->createInfo.usage, desired, strict,
reinterpret_cast<const uint64_t &>(buffer_node->buffer), VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
"buffer", func_name, usage_string);
}
// Return ptr to info in map container containing mem, or NULL if not found
// Calls to this function should be wrapped in mutex
DEVICE_MEM_INFO *getMemObjInfo(const layer_data *dev_data, const VkDeviceMemory mem) {
auto mem_it = dev_data->memObjMap.find(mem);
if (mem_it == dev_data->memObjMap.end()) {
return NULL;
}
return mem_it->second.get();
}
static void add_mem_obj_info(layer_data *my_data, void *object, const VkDeviceMemory mem,
const VkMemoryAllocateInfo *pAllocateInfo) {
assert(object != NULL);
my_data->memObjMap[mem] = unique_ptr<DEVICE_MEM_INFO>(new DEVICE_MEM_INFO(object, mem, pAllocateInfo));
}
// Helper function to print lowercase string of object type
// TODO: Unify string helper functions, this should really come out of a string helper if not there already
static const char *object_type_to_string(VkDebugReportObjectTypeEXT type) {
switch (type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT:
return "image";
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT:
return "buffer";
case VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT:
return "swapchain";
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT:
return "descriptor set";
case VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT:
return "buffer";
case VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT:
return "event";
case VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT:
return "query pool";
case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT:
return "pipeline";
case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT:
return "sampler";
default:
return "unknown";
}
}
// For given bound_object_handle, bound to given mem allocation, verify that the range for the bound object is valid
static bool ValidateMemoryIsValid(layer_data *dev_data, VkDeviceMemory mem, uint64_t bound_object_handle,
VkDebugReportObjectTypeEXT type, const char *functionName) {
DEVICE_MEM_INFO *mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
if (!mem_info->bound_ranges[bound_object_handle].valid) {
return log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
reinterpret_cast<uint64_t &>(mem), __LINE__, MEMTRACK_INVALID_USAGE_FLAG, "MEM",
"%s: Cannot read invalid region of memory allocation 0x%" PRIx64 " for bound %s object 0x%" PRIx64
", please fill the memory before using.",
functionName, reinterpret_cast<uint64_t &>(mem), object_type_to_string(type), bound_object_handle);
}
}
return false;
}
// For given image_node
// If mem is special swapchain key, then verify that image_node valid member is true
// Else verify that the image's bound memory range is valid
static bool ValidateImageMemoryIsValid(layer_data *dev_data, IMAGE_NODE *image_node, const char *functionName) {
if (image_node->mem == MEMTRACKER_SWAP_CHAIN_IMAGE_KEY) {
if (!image_node->valid) {
return log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
reinterpret_cast<uint64_t &>(image_node->mem), __LINE__, MEMTRACK_INVALID_USAGE_FLAG, "MEM",
"%s: Cannot read invalid swapchain image 0x%" PRIx64 ", please fill the memory before using.",
functionName, reinterpret_cast<uint64_t &>(image_node->image));
}
} else {
return ValidateMemoryIsValid(dev_data, image_node->mem, reinterpret_cast<uint64_t &>(image_node->image),
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, functionName);
}
return false;
}
// For given buffer_node, verify that the range it's bound to is valid
static bool ValidateBufferMemoryIsValid(layer_data *dev_data, BUFFER_NODE *buffer_node, const char *functionName) {
return ValidateMemoryIsValid(dev_data, buffer_node->mem, reinterpret_cast<uint64_t &>(buffer_node->buffer),
VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, functionName);
}
// For the given memory allocation, set the range bound by the given handle object to the valid param value
static void SetMemoryValid(layer_data *dev_data, VkDeviceMemory mem, uint64_t handle, bool valid) {
DEVICE_MEM_INFO *mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
mem_info->bound_ranges[handle].valid = valid;
}
}
// For given image node
// If mem is special swapchain key, then set entire image_node to valid param value
// Else set the image's bound memory range to valid param value
static void SetImageMemoryValid(layer_data *dev_data, IMAGE_NODE *image_node, bool valid) {
if (image_node->mem == MEMTRACKER_SWAP_CHAIN_IMAGE_KEY) {
image_node->valid = valid;
} else {
SetMemoryValid(dev_data, image_node->mem, reinterpret_cast<uint64_t &>(image_node->image), valid);
}
}
// For given buffer node set the buffer's bound memory range to valid param value
static void SetBufferMemoryValid(layer_data *dev_data, BUFFER_NODE *buffer_node, bool valid) {
SetMemoryValid(dev_data, buffer_node->mem, reinterpret_cast<uint64_t &>(buffer_node->buffer), valid);
}
// Find CB Info and add mem reference to list container
// Find Mem Obj Info and add CB reference to list container
static bool update_cmd_buf_and_mem_references(layer_data *dev_data, const VkCommandBuffer cb, const VkDeviceMemory mem,
const char *apiName) {
bool skip_call = false;
// Skip validation if this image was created through WSI
if (mem != MEMTRACKER_SWAP_CHAIN_IMAGE_KEY) {
// First update CB binding in MemObj mini CB list
DEVICE_MEM_INFO *pMemInfo = getMemObjInfo(dev_data, mem);
if (pMemInfo) {
pMemInfo->command_buffer_bindings.insert(cb);
// Now update CBInfo's Mem reference list
GLOBAL_CB_NODE *pCBNode = getCBNode(dev_data, cb);
// TODO: keep track of all destroyed CBs so we know if this is a stale or simply invalid object
if (pCBNode) {
pCBNode->memObjs.insert(mem);
}
}
}
return skip_call;
}
// Create binding link between given sampler and command buffer node
void AddCommandBufferBindingSampler(GLOBAL_CB_NODE *cb_node, SAMPLER_NODE *sampler_node) {
sampler_node->cb_bindings.insert(cb_node);
cb_node->object_bindings.insert({reinterpret_cast<uint64_t &>(sampler_node->sampler), VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT});
}
// Create binding link between given image node and command buffer node
void AddCommandBufferBindingImage(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, IMAGE_NODE *img_node) {
// Skip validation if this image was created through WSI
if (img_node->mem != MEMTRACKER_SWAP_CHAIN_IMAGE_KEY) {
// First update CB binding in MemObj mini CB list
DEVICE_MEM_INFO *pMemInfo = getMemObjInfo(dev_data, img_node->mem);
if (pMemInfo) {
pMemInfo->command_buffer_bindings.insert(cb_node->commandBuffer);
// Now update CBInfo's Mem reference list
cb_node->memObjs.insert(img_node->mem);
}
cb_node->object_bindings.insert({reinterpret_cast<uint64_t &>(img_node->image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT});
}
// Now update cb binding for image
img_node->cb_bindings.insert(cb_node);
}
// Create binding link between given buffer node and command buffer node
void AddCommandBufferBindingBuffer(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, BUFFER_NODE *buff_node) {
// First update CB binding in MemObj mini CB list
DEVICE_MEM_INFO *pMemInfo = getMemObjInfo(dev_data, buff_node->mem);
if (pMemInfo) {
pMemInfo->command_buffer_bindings.insert(cb_node->commandBuffer);
// Now update CBInfo's Mem reference list
cb_node->memObjs.insert(buff_node->mem);
cb_node->object_bindings.insert({reinterpret_cast<uint64_t &>(buff_node->buffer), VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT});
}
// Now update cb binding for buffer
buff_node->cb_bindings.insert(cb_node);
}
// For every mem obj bound to particular CB, free bindings related to that CB
static void clear_cmd_buf_and_mem_references(layer_data *dev_data, GLOBAL_CB_NODE *pCBNode) {
if (pCBNode) {
if (pCBNode->memObjs.size() > 0) {
for (auto mem : pCBNode->memObjs) {
DEVICE_MEM_INFO *pInfo = getMemObjInfo(dev_data, mem);
if (pInfo) {
pInfo->command_buffer_bindings.erase(pCBNode->commandBuffer);
}
}
pCBNode->memObjs.clear();
}
pCBNode->validate_functions.clear();
}
}
// Overloaded call to above function when GLOBAL_CB_NODE has not already been looked-up
static void clear_cmd_buf_and_mem_references(layer_data *dev_data, const VkCommandBuffer cb) {
clear_cmd_buf_and_mem_references(dev_data, getCBNode(dev_data, cb));
}
// For given MemObjInfo, report Obj & CB bindings
static bool reportMemReferencesAndCleanUp(layer_data *dev_data, DEVICE_MEM_INFO *pMemObjInfo) {
bool skip_call = false;
size_t cmdBufRefCount = pMemObjInfo->command_buffer_bindings.size();
size_t objRefCount = pMemObjInfo->obj_bindings.size();
if ((pMemObjInfo->command_buffer_bindings.size()) != 0) {
skip_call = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pMemObjInfo->mem, __LINE__, MEMTRACK_FREED_MEM_REF, "MEM",
"Attempting to free memory object 0x%" PRIxLEAST64 " which still contains " PRINTF_SIZE_T_SPECIFIER
" references",
(uint64_t)pMemObjInfo->mem, (cmdBufRefCount + objRefCount));
}
if (cmdBufRefCount > 0 && pMemObjInfo->command_buffer_bindings.size() > 0) {
for (auto cb : pMemObjInfo->command_buffer_bindings) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)cb, __LINE__, MEMTRACK_FREED_MEM_REF, "MEM",
"Command Buffer 0x%p still has a reference to mem obj 0x%" PRIxLEAST64, cb, (uint64_t)pMemObjInfo->mem);
}
// Clear the list of hanging references
pMemObjInfo->command_buffer_bindings.clear();
}
if (objRefCount > 0 && pMemObjInfo->obj_bindings.size() > 0) {
for (auto obj : pMemObjInfo->obj_bindings) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, obj.type, obj.handle, __LINE__,
MEMTRACK_FREED_MEM_REF, "MEM", "VK Object 0x%" PRIxLEAST64 " still has a reference to mem obj 0x%" PRIxLEAST64,
obj.handle, (uint64_t)pMemObjInfo->mem);
}
// Clear the list of hanging references
pMemObjInfo->obj_bindings.clear();
}
return skip_call;
}
static bool freeMemObjInfo(layer_data *dev_data, void *object, VkDeviceMemory mem, bool internal) {
bool skip_call = false;
// Parse global list to find info w/ mem
DEVICE_MEM_INFO *pInfo = getMemObjInfo(dev_data, mem);
if (pInfo) {
// TODO: Verify against Valid Use section
// Clear any CB bindings for completed CBs
// TODO : Is there a better place to do this?
assert(pInfo->object != VK_NULL_HANDLE);
// clear_cmd_buf_and_mem_references removes elements from
// pInfo->command_buffer_bindings -- this copy not needed in c++14,
// and probably not needed in practice in c++11
auto bindings = pInfo->command_buffer_bindings;
for (auto cb : bindings) {
if (!dev_data->globalInFlightCmdBuffers.count(cb)) {
clear_cmd_buf_and_mem_references(dev_data, cb);
}
}
// Now verify that no references to this mem obj remain and remove bindings
if (pInfo->command_buffer_bindings.size() || pInfo->obj_bindings.size()) {
skip_call |= reportMemReferencesAndCleanUp(dev_data, pInfo);
}
// Delete mem obj info
dev_data->memObjMap.erase(dev_data->memObjMap.find(mem));
} else if (VK_NULL_HANDLE != mem) {
// The request is to free an invalid, non-zero handle
skip_call = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
reinterpret_cast<uint64_t &>(mem), __LINE__,
MEMTRACK_INVALID_MEM_OBJ,
"MEM", "Request to delete memory object 0x%"
PRIxLEAST64 " not present in memory Object Map",
reinterpret_cast<uint64_t &>(mem));
}
return skip_call;
}
// Remove object binding performs 3 tasks:
// 1. Remove ObjectInfo from MemObjInfo list container of obj bindings & free it
// 2. Clear mem binding for image/buffer by setting its handle to 0
// TODO : This only applied to Buffer, Image, and Swapchain objects now, how should it be updated/customized?
static bool clear_object_binding(layer_data *dev_data, uint64_t handle, VkDebugReportObjectTypeEXT type) {
// TODO : Need to customize images/buffers/swapchains to track mem binding and clear it here appropriately
bool skip_call = false;
VkDeviceMemory *pMemBinding = get_object_mem_binding(dev_data, handle, type);
if (pMemBinding) {
DEVICE_MEM_INFO *pMemObjInfo = getMemObjInfo(dev_data, *pMemBinding);
// TODO : Make sure this is a reasonable way to reset mem binding
*pMemBinding = VK_NULL_HANDLE;
if (pMemObjInfo) {
// This obj is bound to a memory object. Remove the reference to this object in that memory object's list,
// and set the objects memory binding pointer to NULL.
if (!pMemObjInfo->obj_bindings.erase({handle, type})) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, type, handle, __LINE__, MEMTRACK_INVALID_OBJECT,
"MEM", "While trying to clear mem binding for %s obj 0x%" PRIxLEAST64
", unable to find that object referenced by mem obj 0x%" PRIxLEAST64,
object_type_to_string(type), handle, (uint64_t)pMemObjInfo->mem);
}
}
}
return skip_call;
}
// Check to see if memory was ever bound to this image
bool ValidateMemoryIsBoundToImage(const layer_data *dev_data, const IMAGE_NODE *image_node, const char *api_name) {
bool result = false;
if (0 == (static_cast<uint32_t>(image_node->createInfo.flags) & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)) {
if (0 == image_node->mem) {
result = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<const uint64_t &>(image_node->image), __LINE__, MEMTRACK_OBJECT_NOT_BOUND, "MEM",
"%s: VkImage object 0x%" PRIxLEAST64 " used without first calling vkBindImageMemory.", api_name,
reinterpret_cast<const uint64_t &>(image_node->image));
}
}
return result;
}
// Check to see if memory was bound to this buffer
bool ValidateMemoryIsBoundToBuffer(const layer_data *dev_data, const BUFFER_NODE *buffer_node, const char *api_name) {
bool result = false;
if (0 == (static_cast<uint32_t>(buffer_node->createInfo.flags) & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)) {
if (0 == buffer_node->mem) {
result = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
reinterpret_cast<const uint64_t &>(buffer_node->buffer), __LINE__, MEMTRACK_OBJECT_NOT_BOUND, "MEM",
"%s: VkBuffer object 0x%" PRIxLEAST64 " used without first calling vkBindBufferMemory.", api_name,
reinterpret_cast<const uint64_t &>(buffer_node->buffer));
}
}
return result;
}
// For NULL mem case, output warning
// Make sure given object is in global object map
// IF a previous binding existed, output validation error
// Otherwise, add reference from objectInfo to memoryInfo
// Add reference off of objInfo
static bool set_mem_binding(layer_data *dev_data, VkDeviceMemory mem, uint64_t handle,
VkDebugReportObjectTypeEXT type, const char *apiName) {
bool skip_call = false;
// Handle NULL case separately, just clear previous binding & decrement reference
if (mem == VK_NULL_HANDLE) {
// TODO: Verify against Valid Use section of spec.
skip_call = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, type, handle, __LINE__, MEMTRACK_INVALID_MEM_OBJ,
"MEM", "In %s, attempting to Bind Obj(0x%" PRIxLEAST64 ") to NULL", apiName, handle);
} else {
VkDeviceMemory *pMemBinding = get_object_mem_binding(dev_data, handle, type);
assert(pMemBinding);
DEVICE_MEM_INFO *pMemInfo = getMemObjInfo(dev_data, mem);
if (pMemInfo) {
DEVICE_MEM_INFO *pPrevBinding = getMemObjInfo(dev_data, *pMemBinding);
if (pPrevBinding != NULL) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, (uint64_t)mem, __LINE__, MEMTRACK_REBIND_OBJECT,
"MEM", "In %s, attempting to bind memory (0x%" PRIxLEAST64 ") to object (0x%" PRIxLEAST64
") which has already been bound to mem object 0x%" PRIxLEAST64,
apiName, (uint64_t)mem, handle, (uint64_t)pPrevBinding->mem);
} else {
pMemInfo->obj_bindings.insert({handle, type});
// For image objects, make sure default memory state is correctly set
// TODO : What's the best/correct way to handle this?
if (VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT == type) {
auto const image_node = getImageNode(dev_data, VkImage(handle));
if (image_node) {
VkImageCreateInfo ici = image_node->createInfo;
if (ici.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
// TODO:: More memory state transition stuff.
}
}
}
*pMemBinding = mem;
}
}
}
return skip_call;
}
// For NULL mem case, clear any previous binding Else...
// Make sure given object is in its object map
// IF a previous binding existed, update binding
// Add reference from objectInfo to memoryInfo
// Add reference off of object's binding info
// Return VK_TRUE if addition is successful, VK_FALSE otherwise
static bool set_sparse_mem_binding(layer_data *dev_data, VkDeviceMemory mem, uint64_t handle,
VkDebugReportObjectTypeEXT type, const char *apiName) {
bool skip_call = VK_FALSE;
// Handle NULL case separately, just clear previous binding & decrement reference
if (mem == VK_NULL_HANDLE) {
skip_call = clear_object_binding(dev_data, handle, type);
} else {
VkDeviceMemory *pMemBinding = get_object_mem_binding(dev_data, handle, type);
assert(pMemBinding);
DEVICE_MEM_INFO *pInfo = getMemObjInfo(dev_data, mem);
if (pInfo) {
pInfo->obj_bindings.insert({handle, type});
// Need to set mem binding for this object
*pMemBinding = mem;
}
}
return skip_call;
}
// For handle of given object type, return memory binding
static bool get_mem_for_type(layer_data *dev_data, uint64_t handle, VkDebugReportObjectTypeEXT type, VkDeviceMemory *mem) {
bool skip_call = false;
*mem = VK_NULL_HANDLE;
switch (type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT:
*mem = getImageNode(dev_data, VkImage(handle))->mem;
break;
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT:
*mem = getBufferNode(dev_data, VkBuffer(handle))->mem;
break;
default:
assert(0);
}
if (!*mem) {
skip_call = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, type, handle, __LINE__, MEMTRACK_INVALID_OBJECT,
"MEM", "Trying to get mem binding for %s object 0x%" PRIxLEAST64
" but binding is NULL. Has memory been bound to this object?",
object_type_to_string(type), handle);
}
return skip_call;
}
// Print details of MemObjInfo list
static void print_mem_list(layer_data *dev_data) {
// Early out if info is not requested
if (!(dev_data->report_data->active_flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)) {
return;
}
// Just printing each msg individually for now, may want to package these into single large print
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0, __LINE__,
MEMTRACK_NONE, "MEM", "Details of Memory Object list (of size " PRINTF_SIZE_T_SPECIFIER " elements)",
dev_data->memObjMap.size());
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0, __LINE__,
MEMTRACK_NONE, "MEM", "=============================");
if (dev_data->memObjMap.size() <= 0)
return;
for (auto ii = dev_data->memObjMap.begin(); ii != dev_data->memObjMap.end(); ++ii) {
auto mem_info = (*ii).second.get();
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " ===MemObjInfo at 0x%p===", (void *)mem_info);
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " Mem object: 0x%" PRIxLEAST64, (uint64_t)(mem_info->mem));
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " Ref Count: " PRINTF_SIZE_T_SPECIFIER,
mem_info->command_buffer_bindings.size() + mem_info->obj_bindings.size());
if (0 != mem_info->alloc_info.allocationSize) {
string pAllocInfoMsg = vk_print_vkmemoryallocateinfo(&mem_info->alloc_info, "MEM(INFO): ");
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " Mem Alloc info:\n%s", pAllocInfoMsg.c_str());
} else {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " Mem Alloc info is NULL (alloc done by vkCreateSwapchainKHR())");
}
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " VK OBJECT Binding list of size " PRINTF_SIZE_T_SPECIFIER " elements:",
mem_info->obj_bindings.size());
if (mem_info->obj_bindings.size() > 0) {
for (auto obj : mem_info->obj_bindings) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
0, __LINE__, MEMTRACK_NONE, "MEM", " VK OBJECT 0x%" PRIx64, obj.handle);
}
}
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM",
" VK Command Buffer (CB) binding list of size " PRINTF_SIZE_T_SPECIFIER " elements",
mem_info->command_buffer_bindings.size());
if (mem_info->command_buffer_bindings.size() > 0) {
for (auto cb : mem_info->command_buffer_bindings) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
0, __LINE__, MEMTRACK_NONE, "MEM", " VK CB 0x%p", cb);
}
}
}
}
static void printCBList(layer_data *my_data) {
GLOBAL_CB_NODE *pCBInfo = NULL;
// Early out if info is not requested
if (!(my_data->report_data->active_flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)) {
return;
}
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0, __LINE__,
MEMTRACK_NONE, "MEM", "Details of CB list (of size " PRINTF_SIZE_T_SPECIFIER " elements)",
my_data->commandBufferMap.size());
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0, __LINE__,
MEMTRACK_NONE, "MEM", "==================");
if (my_data->commandBufferMap.size() <= 0)
return;
for (auto &cb_node : my_data->commandBufferMap) {
pCBInfo = cb_node.second;
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " CB Info (0x%p) has CB 0x%p", (void *)pCBInfo, (void *)pCBInfo->commandBuffer);
if (pCBInfo->memObjs.size() <= 0)
continue;
for (auto obj : pCBInfo->memObjs) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, 0,
__LINE__, MEMTRACK_NONE, "MEM", " Mem obj 0x%" PRIx64, (uint64_t)obj);
}
}
}
// Return a string representation of CMD_TYPE enum
static string cmdTypeToString(CMD_TYPE cmd) {
switch (cmd) {
case CMD_BINDPIPELINE:
return "CMD_BINDPIPELINE";
case CMD_BINDPIPELINEDELTA:
return "CMD_BINDPIPELINEDELTA";
case CMD_SETVIEWPORTSTATE:
return "CMD_SETVIEWPORTSTATE";
case CMD_SETLINEWIDTHSTATE:
return "CMD_SETLINEWIDTHSTATE";
case CMD_SETDEPTHBIASSTATE:
return "CMD_SETDEPTHBIASSTATE";
case CMD_SETBLENDSTATE:
return "CMD_SETBLENDSTATE";
case CMD_SETDEPTHBOUNDSSTATE:
return "CMD_SETDEPTHBOUNDSSTATE";
case CMD_SETSTENCILREADMASKSTATE:
return "CMD_SETSTENCILREADMASKSTATE";
case CMD_SETSTENCILWRITEMASKSTATE:
return "CMD_SETSTENCILWRITEMASKSTATE";
case CMD_SETSTENCILREFERENCESTATE:
return "CMD_SETSTENCILREFERENCESTATE";
case CMD_BINDDESCRIPTORSETS:
return "CMD_BINDDESCRIPTORSETS";
case CMD_BINDINDEXBUFFER:
return "CMD_BINDINDEXBUFFER";
case CMD_BINDVERTEXBUFFER:
return "CMD_BINDVERTEXBUFFER";
case CMD_DRAW:
return "CMD_DRAW";
case CMD_DRAWINDEXED:
return "CMD_DRAWINDEXED";
case CMD_DRAWINDIRECT:
return "CMD_DRAWINDIRECT";
case CMD_DRAWINDEXEDINDIRECT:
return "CMD_DRAWINDEXEDINDIRECT";
case CMD_DISPATCH:
return "CMD_DISPATCH";
case CMD_DISPATCHINDIRECT:
return "CMD_DISPATCHINDIRECT";
case CMD_COPYBUFFER:
return "CMD_COPYBUFFER";
case CMD_COPYIMAGE:
return "CMD_COPYIMAGE";
case CMD_BLITIMAGE:
return "CMD_BLITIMAGE";
case CMD_COPYBUFFERTOIMAGE:
return "CMD_COPYBUFFERTOIMAGE";
case CMD_COPYIMAGETOBUFFER:
return "CMD_COPYIMAGETOBUFFER";
case CMD_CLONEIMAGEDATA:
return "CMD_CLONEIMAGEDATA";
case CMD_UPDATEBUFFER:
return "CMD_UPDATEBUFFER";
case CMD_FILLBUFFER:
return "CMD_FILLBUFFER";
case CMD_CLEARCOLORIMAGE:
return "CMD_CLEARCOLORIMAGE";
case CMD_CLEARATTACHMENTS:
return "CMD_CLEARCOLORATTACHMENT";
case CMD_CLEARDEPTHSTENCILIMAGE:
return "CMD_CLEARDEPTHSTENCILIMAGE";
case CMD_RESOLVEIMAGE:
return "CMD_RESOLVEIMAGE";
case CMD_SETEVENT:
return "CMD_SETEVENT";
case CMD_RESETEVENT:
return "CMD_RESETEVENT";
case CMD_WAITEVENTS:
return "CMD_WAITEVENTS";
case CMD_PIPELINEBARRIER:
return "CMD_PIPELINEBARRIER";
case CMD_BEGINQUERY:
return "CMD_BEGINQUERY";
case CMD_ENDQUERY:
return "CMD_ENDQUERY";
case CMD_RESETQUERYPOOL:
return "CMD_RESETQUERYPOOL";
case CMD_COPYQUERYPOOLRESULTS:
return "CMD_COPYQUERYPOOLRESULTS";
case CMD_WRITETIMESTAMP:
return "CMD_WRITETIMESTAMP";
case CMD_INITATOMICCOUNTERS:
return "CMD_INITATOMICCOUNTERS";
case CMD_LOADATOMICCOUNTERS:
return "CMD_LOADATOMICCOUNTERS";
case CMD_SAVEATOMICCOUNTERS:
return "CMD_SAVEATOMICCOUNTERS";
case CMD_BEGINRENDERPASS:
return "CMD_BEGINRENDERPASS";
case CMD_ENDRENDERPASS:
return "CMD_ENDRENDERPASS";
default:
return "UNKNOWN";
}
}
// SPIRV utility functions
static void build_def_index(shader_module *module) {
for (auto insn : *module) {
switch (insn.opcode()) {
/* Types */
case spv::OpTypeVoid:
case spv::OpTypeBool:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeImage:
case spv::OpTypeSampler:
case spv::OpTypeSampledImage:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeStruct:
case spv::OpTypeOpaque:
case spv::OpTypePointer:
case spv::OpTypeFunction:
case spv::OpTypeEvent:
case spv::OpTypeDeviceEvent:
case spv::OpTypeReserveId:
case spv::OpTypeQueue:
case spv::OpTypePipe:
module->def_index[insn.word(1)] = insn.offset();
break;
/* Fixed constants */
case spv::OpConstantTrue:
case spv::OpConstantFalse:
case spv::OpConstant:
case spv::OpConstantComposite:
case spv::OpConstantSampler:
case spv::OpConstantNull:
module->def_index[insn.word(2)] = insn.offset();
break;
/* Specialization constants */
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
module->def_index[insn.word(2)] = insn.offset();
break;
/* Variables */
case spv::OpVariable:
module->def_index[insn.word(2)] = insn.offset();
break;
/* Functions */
case spv::OpFunction:
module->def_index[insn.word(2)] = insn.offset();
break;
default:
/* We don't care about any other defs for now. */
break;
}
}
}
static spirv_inst_iter find_entrypoint(shader_module *src, char const *name, VkShaderStageFlagBits stageBits) {
for (auto insn : *src) {
if (insn.opcode() == spv::OpEntryPoint) {
auto entrypointName = (char const *)&insn.word(3);
auto entrypointStageBits = 1u << insn.word(1);
if (!strcmp(entrypointName, name) && (entrypointStageBits & stageBits)) {
return insn;
}
}
}
return src->end();
}
static char const *storage_class_name(unsigned sc) {
switch (sc) {
case spv::StorageClassInput:
return "input";
case spv::StorageClassOutput:
return "output";
case spv::StorageClassUniformConstant:
return "const uniform";
case spv::StorageClassUniform:
return "uniform";
case spv::StorageClassWorkgroup:
return "workgroup local";
case spv::StorageClassCrossWorkgroup:
return "workgroup global";
case spv::StorageClassPrivate:
return "private global";
case spv::StorageClassFunction:
return "function";
case spv::StorageClassGeneric:
return "generic";
case spv::StorageClassAtomicCounter:
return "atomic counter";
case spv::StorageClassImage:
return "image";
case spv::StorageClassPushConstant:
return "push constant";
default:
return "unknown";
}
}
/* get the value of an integral constant */
unsigned get_constant_value(shader_module const *src, unsigned id) {
auto value = src->get_def(id);
assert(value != src->end());
if (value.opcode() != spv::OpConstant) {
/* TODO: Either ensure that the specialization transform is already performed on a module we're
considering here, OR -- specialize on the fly now.
*/
return 1;
}
return value.word(3);
}
static void describe_type_inner(std::ostringstream &ss, shader_module const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn.word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn.word(3) << " of ";
describe_type_inner(ss, src, insn.word(2));
break;
case spv::OpTypeMatrix:
ss << "mat" << insn.word(3) << " of ";
describe_type_inner(ss, src, insn.word(2));
break;
case spv::OpTypeArray:
ss << "arr[" << get_constant_value(src, insn.word(3)) << "] of ";
describe_type_inner(ss, src, insn.word(2));
break;
case spv::OpTypePointer:
ss << "ptr to " << storage_class_name(insn.word(2)) << " ";
describe_type_inner(ss, src, insn.word(3));
break;
case spv::OpTypeStruct: {
ss << "struct of (";
for (unsigned i = 2; i < insn.len(); i++) {
describe_type_inner(ss, src, insn.word(i));
if (i == insn.len() - 1) {
ss << ")";
} else {
ss << ", ";
}
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
describe_type_inner(ss, src, insn.word(2));
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")";
break;
default:
ss << "oddtype";
break;
}
}
static std::string describe_type(shader_module const *src, unsigned type) {
std::ostringstream ss;
describe_type_inner(ss, src, type);
return ss.str();
}
static bool is_narrow_numeric_type(spirv_inst_iter type)
{
if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat)
return false;
return type.word(2) < 64;
}
static bool types_match(shader_module const *a, shader_module const *b, unsigned a_type, unsigned b_type, bool a_arrayed, bool b_arrayed, bool relaxed) {
/* walk two type trees together, and complain about differences */
auto a_insn = a->get_def(a_type);
auto b_insn = b->get_def(b_type);
assert(a_insn != a->end());
assert(b_insn != b->end());
if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) {
return types_match(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed);
}
if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) {
/* we probably just found the extra level of arrayness in b_type: compare the type inside it to a_type */
return types_match(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed);
}
if (a_insn.opcode() == spv::OpTypeVector && relaxed && is_narrow_numeric_type(b_insn)) {
return types_match(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false);
}
if (a_insn.opcode() != b_insn.opcode()) {
return false;
}
if (a_insn.opcode() == spv::OpTypePointer) {
/* match on pointee type. storage class is expected to differ */
return types_match(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed);
}
if (a_arrayed || b_arrayed) {
/* if we havent resolved array-of-verts by here, we're not going to. */
return false;
}
switch (a_insn.opcode()) {
case spv::OpTypeBool:
return true;
case spv::OpTypeInt:
/* match on width, signedness */
return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeFloat:
/* match on width */
return a_insn.word(2) == b_insn.word(2);
case spv::OpTypeVector:
/* match on element type, count. */
if (!types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false))
return false;
if (relaxed && is_narrow_numeric_type(a->get_def(a_insn.word(2)))) {
return a_insn.word(3) >= b_insn.word(3);
}
else {
return a_insn.word(3) == b_insn.word(3);
}
case spv::OpTypeMatrix:
/* match on element type, count. */
return types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeArray:
/* match on element type, count. these all have the same layout. we don't get here if
* b_arrayed. This differs from vector & matrix types in that the array size is the id of a constant instruction,
* not a literal within OpTypeArray */
return types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
get_constant_value(a, a_insn.word(3)) == get_constant_value(b, b_insn.word(3));
case spv::OpTypeStruct:
/* match on all element types */
{
if (a_insn.len() != b_insn.len()) {
return false; /* structs cannot match if member counts differ */
}
for (unsigned i = 2; i < a_insn.len(); i++) {
if (!types_match(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) {
return false;
}
}
return true;
}
default:
/* remaining types are CLisms, or may not appear in the interfaces we
* are interested in. Just claim no match.
*/
return false;
}
}
static int value_or_default(std::unordered_map<unsigned, unsigned> const &map, unsigned id, int def) {
auto it = map.find(id);
if (it == map.end())
return def;
else
return it->second;
}
static unsigned get_locations_consumed_by_type(shader_module const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
/* see through the ptr -- this is only ever at the toplevel for graphics shaders;
* we're never actually passing pointers around. */
return get_locations_consumed_by_type(src, insn.word(3), strip_array_level);
case spv::OpTypeArray:
if (strip_array_level) {
return get_locations_consumed_by_type(src, insn.word(2), false);
} else {
return get_constant_value(src, insn.word(3)) * get_locations_consumed_by_type(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
/* num locations is the dimension * element size */
return insn.word(3) * get_locations_consumed_by_type(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width = (scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ?
scalar_type.word(2) : 32;
/* locations are 128-bit wide; 3- and 4-component vectors of 64 bit
* types require two. */
return (bit_width * insn.word(3) + 127) / 128;
}
default:
/* everything else is just 1. */
return 1;
/* TODO: extend to handle 64bit scalar types, whose vectors may need
* multiple locations. */
}
}
static unsigned get_locations_consumed_by_format(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
typedef std::pair<unsigned, unsigned> location_t;
typedef std::pair<unsigned, unsigned> descriptor_slot_t;
struct interface_var {
uint32_t id;
uint32_t type_id;
uint32_t offset;
bool is_patch;
bool is_block_member;
/* TODO: collect the name, too? Isn't required to be present. */
};
struct shader_stage_attributes {
char const *const name;
bool arrayed_input;
bool arrayed_output;
};
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false},
{"tessellation control shader", true, true},
{"tessellation evaluation shader", true, false},
{"geometry shader", true, false},
{"fragment shader", false, false},
};
static spirv_inst_iter get_struct_type(shader_module const *src, spirv_inst_iter def, bool is_array_of_verts) {
while (true) {
if (def.opcode() == spv::OpTypePointer) {
def = src->get_def(def.word(3));
} else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) {
def = src->get_def(def.word(2));
is_array_of_verts = false;
} else if (def.opcode() == spv::OpTypeStruct) {
return def;
} else {
return src->end();
}
}
}
static void collect_interface_block_members(shader_module const *src,
std::map<location_t, interface_var> *out,
std::unordered_map<unsigned, unsigned> const &blocks, bool is_array_of_verts,
uint32_t id, uint32_t type_id, bool is_patch) {
/* Walk down the type_id presented, trying to determine whether it's actually an interface block. */
auto type = get_struct_type(src, src->get_def(type_id), is_array_of_verts && !is_patch);
if (type == src->end() || blocks.find(type.word(1)) == blocks.end()) {
/* this isn't an interface block. */
return;
}
std::unordered_map<unsigned, unsigned> member_components;
/* Walk all the OpMemberDecorate for type's result id -- first pass, collect components. */
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
if (insn.word(3) == spv::DecorationComponent) {
unsigned component = insn.word(4);
member_components[member_index] = component;
}
}
}
/* Second pass -- produce the output, from Location decorations */
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
unsigned member_type_id = type.word(2 + member_index);
if (insn.word(3) == spv::DecorationLocation) {
unsigned location = insn.word(4);
unsigned num_locations = get_locations_consumed_by_type(src, member_type_id, false);
auto component_it = member_components.find(member_index);
unsigned component = component_it == member_components.end() ? 0 : component_it->second;
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v;
v.id = id;
/* TODO: member index in interface_var too? */
v.type_id = member_type_id;
v.offset = offset;
v.is_patch = is_patch;
v.is_block_member = true;
(*out)[std::make_pair(location + offset, component)] = v;
}
}
}
}
}
static std::map<location_t, interface_var> collect_interface_by_location(
shader_module const *src, spirv_inst_iter entrypoint,
spv::StorageClass sinterface, bool is_array_of_verts) {
std::unordered_map<unsigned, unsigned> var_locations;
std::unordered_map<unsigned, unsigned> var_builtins;
std::unordered_map<unsigned, unsigned> var_components;
std::unordered_map<unsigned, unsigned> blocks;
std::unordered_map<unsigned, unsigned> var_patch;
for (auto insn : *src) {
/* We consider two interface models: SSO rendezvous-by-location, and
* builtins. Complain about anything that fits neither model.
*/
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationLocation) {
var_locations[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBuiltIn) {
var_builtins[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationComponent) {
var_components[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBlock) {
blocks[insn.word(1)] = 1;
}
if (insn.word(2) == spv::DecorationPatch) {
var_patch[insn.word(1)] = 1;
}
}
}
/* TODO: handle grouped decorations */
/* TODO: handle index=1 dual source outputs from FS -- two vars will
* have the same location, and we DON'T want to clobber. */
/* find the end of the entrypoint's name string. additional zero bytes follow the actual null
terminator, to fill out the rest of the word - so we only need to look at the last byte in
the word to determine which word contains the terminator. */
uint32_t word = 3;
while (entrypoint.word(word) & 0xff000000u) {
++word;
}
++word;
std::map<location_t, interface_var> out;
for (; word < entrypoint.len(); word++) {
auto insn = src->get_def(entrypoint.word(word));
assert(insn != src->end());
assert(insn.opcode() == spv::OpVariable);
if (insn.word(3) == static_cast<uint32_t>(sinterface)) {
unsigned id = insn.word(2);
unsigned type = insn.word(1);
int location = value_or_default(var_locations, id, -1);
int builtin = value_or_default(var_builtins, id, -1);
unsigned component = value_or_default(var_components, id, 0); /* unspecified is OK, is 0 */
bool is_patch = var_patch.find(id) != var_patch.end();
/* All variables and interface block members in the Input or Output storage classes
* must be decorated with either a builtin or an explicit location.
*
* TODO: integrate the interface block support here. For now, don't complain --
* a valid SPIRV module will only hit this path for the interface block case, as the
* individual members of the type are decorated, rather than variable declarations.
*/
if (location != -1) {
/* A user-defined interface variable, with a location. Where a variable
* occupied multiple locations, emit one result for each. */
unsigned num_locations = get_locations_consumed_by_type(src, type, is_array_of_verts && !is_patch);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v;
v.id = id;
v.type_id = type;
v.offset = offset;
v.is_patch = is_patch;
v.is_block_member = false;
out[std::make_pair(location + offset, component)] = v;
}
} else if (builtin == -1) {
/* An interface block instance */
collect_interface_block_members(src, &out, blocks, is_array_of_verts, id, type, is_patch);
}
}
}
return out;
}
static std::vector<std::pair<uint32_t, interface_var>> collect_interface_by_input_attachment_index(
debug_report_data *report_data, shader_module const *src,
std::unordered_set<uint32_t> const &accessible_ids) {
std::vector<std::pair<uint32_t, interface_var>> out;
for (auto insn : *src) {
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationInputAttachmentIndex) {
auto attachment_index = insn.word(3);
auto id = insn.word(1);
if (accessible_ids.count(id)) {
auto def = src->get_def(id);
assert(def != src->end());
if (def.opcode() == spv::OpVariable && insn.word(3) == spv::StorageClassUniformConstant) {
auto num_locations = get_locations_consumed_by_type(src, def.word(1), false);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v;
v.id = id;
v.type_id = def.word(1);
v.offset = offset;
v.is_patch = false;
v.is_block_member = false;
out.emplace_back(attachment_index + offset, v);
}
}
}
}
}
}
return out;
}
static std::vector<std::pair<descriptor_slot_t, interface_var>> collect_interface_by_descriptor_slot(
debug_report_data *report_data, shader_module const *src,
std::unordered_set<uint32_t> const &accessible_ids) {
std::unordered_map<unsigned, unsigned> var_sets;
std::unordered_map<unsigned, unsigned> var_bindings;
for (auto insn : *src) {
/* All variables in the Uniform or UniformConstant storage classes are required to be decorated with both
* DecorationDescriptorSet and DecorationBinding.
*/
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationDescriptorSet) {
var_sets[insn.word(1)] = insn.word(3);
}
if (insn.word(2) == spv::DecorationBinding) {
var_bindings[insn.word(1)] = insn.word(3);
}
}
}
std::vector<std::pair<descriptor_slot_t, interface_var>> out;
for (auto id : accessible_ids) {
auto insn = src->get_def(id);
assert(insn != src->end());
if (insn.opcode() == spv::OpVariable &&
(insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant)) {
unsigned set = value_or_default(var_sets, insn.word(2), 0);
unsigned binding = value_or_default(var_bindings, insn.word(2), 0);
interface_var v;
v.id = insn.word(2);
v.type_id = insn.word(1);
v.offset = 0;
v.is_patch = false;
v.is_block_member = false;
out.emplace_back(std::make_pair(set, binding), v);
}
}
return out;
}
static bool validate_interface_between_stages(debug_report_data *report_data, shader_module const *producer,
spirv_inst_iter producer_entrypoint, shader_stage_attributes const *producer_stage,
shader_module const *consumer, spirv_inst_iter consumer_entrypoint,
shader_stage_attributes const *consumer_stage) {
bool pass = true;
auto outputs = collect_interface_by_location(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = collect_interface_by_location(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto a_it = outputs.begin();
auto b_it = inputs.begin();
/* maps sorted by key (location); walk them together to find mismatches */
while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) {
bool a_at_end = outputs.size() == 0 || a_it == outputs.end();
bool b_at_end = inputs.size() == 0 || b_it == inputs.end();
auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first;
auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first;
if (b_at_end || ((!a_at_end) && (a_first < b_first))) {
if (log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "SC",
"%s writes to output location %u.%u which is not consumed by %s", producer_stage->name, a_first.first,
a_first.second, consumer_stage->name)) {
pass = false;
}
a_it++;
} else if (a_at_end || a_first > b_first) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INPUT_NOT_PRODUCED, "SC",
"%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first, b_first.second,
producer_stage->name)) {
pass = false;
}
b_it++;
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!types_match(producer, consumer, a_it->second.type_id, b_it->second.type_id,
producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member,
consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member,
true)) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "SC", "Type mismatch on location %u.%u: '%s' vs '%s'",
a_first.first, a_first.second,
describe_type(producer, a_it->second.type_id).c_str(),
describe_type(consumer, b_it->second.type_id).c_str())) {
pass = false;
}
}
if (a_it->second.is_patch != b_it->second.is_patch) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, /*dev*/ 0,
__LINE__, SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "SC",
"Decoration mismatch on location %u.%u: is per-%s in %s stage but "
"per-%s in %s stage", a_first.first, a_first.second,
a_it->second.is_patch ? "patch" : "vertex", producer_stage->name,
b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name)) {
pass = false;
}
}
a_it++;
b_it++;
}
}
return pass;
}
enum FORMAT_TYPE {
FORMAT_TYPE_UNDEFINED,
FORMAT_TYPE_FLOAT, /* UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader */
FORMAT_TYPE_SINT,
FORMAT_TYPE_UINT,
};
static unsigned get_format_type(VkFormat fmt) {
switch (fmt) {
case VK_FORMAT_UNDEFINED:
return FORMAT_TYPE_UNDEFINED;
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8G8B8_SINT:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16G16B16_SINT:
case VK_FORMAT_R16G16B16A16_SINT:
case VK_FORMAT_R32_SINT:
case VK_FORMAT_R32G32_SINT:
case VK_FORMAT_R32G32B32_SINT:
case VK_FORMAT_R32G32B32A32_SINT:
case VK_FORMAT_R64_SINT:
case VK_FORMAT_R64G64_SINT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_B8G8R8_SINT:
case VK_FORMAT_B8G8R8A8_SINT:
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_A2B10G10R10_SINT_PACK32:
case VK_FORMAT_A2R10G10B10_SINT_PACK32:
return FORMAT_TYPE_SINT;
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8G8B8_UINT:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16G16_UINT:
case VK_FORMAT_R16G16B16_UINT:
case VK_FORMAT_R16G16B16A16_UINT:
case VK_FORMAT_R32_UINT:
case VK_FORMAT_R32G32_UINT:
case VK_FORMAT_R32G32B32_UINT:
case VK_FORMAT_R32G32B32A32_UINT:
case VK_FORMAT_R64_UINT:
case VK_FORMAT_R64G64_UINT:
case VK_FORMAT_R64G64B64_UINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_B8G8R8_UINT:
case VK_FORMAT_B8G8R8A8_UINT:
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
case VK_FORMAT_A2R10G10B10_UINT_PACK32:
return FORMAT_TYPE_UINT;
default:
return FORMAT_TYPE_FLOAT;
}
}
/* characterizes a SPIR-V type appearing in an interface to a FF stage,
* for comparison to a VkFormat's characterization above. */
static unsigned get_fundamental_type(shader_module const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeInt:
return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT;
case spv::OpTypeFloat:
return FORMAT_TYPE_FLOAT;
case spv::OpTypeVector:
return get_fundamental_type(src, insn.word(2));
case spv::OpTypeMatrix:
return get_fundamental_type(src, insn.word(2));
case spv::OpTypeArray:
return get_fundamental_type(src, insn.word(2));
case spv::OpTypePointer:
return get_fundamental_type(src, insn.word(3));
case spv::OpTypeImage:
return get_fundamental_type(src, insn.word(2));
default:
return FORMAT_TYPE_UNDEFINED;
}
}
static uint32_t get_shader_stage_id(VkShaderStageFlagBits stage) {
uint32_t bit_pos = u_ffs(stage);
return bit_pos - 1;
}
static bool validate_vi_consistency(debug_report_data *report_data, VkPipelineVertexInputStateCreateInfo const *vi) {
/* walk the binding descriptions, which describe the step rate and stride of each vertex buffer.
* each binding should be specified only once.
*/
std::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool pass = true;
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INCONSISTENT_VI, "SC",
"Duplicate vertex input binding descriptions for binding %d", desc->binding)) {
pass = false;
}
} else {
binding = desc;
}
}
return pass;
}
static bool validate_vi_against_vs_inputs(debug_report_data *report_data, VkPipelineVertexInputStateCreateInfo const *vi,
shader_module const *vs, spirv_inst_iter entrypoint) {
bool pass = true;
auto inputs = collect_interface_by_location(vs, entrypoint, spv::StorageClassInput, false);
/* Build index by location */
std::map<uint32_t, VkVertexInputAttributeDescription const *> attribs;
if (vi) {
for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; i++) {
auto num_locations = get_locations_consumed_by_format(vi->pVertexAttributeDescriptions[i].format);
for (auto j = 0u; j < num_locations; j++) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
auto it_a = attribs.begin();
auto it_b = inputs.begin();
bool used = false;
while ((attribs.size() > 0 && it_a != attribs.end()) || (inputs.size() > 0 && it_b != inputs.end())) {
bool a_at_end = attribs.size() == 0 || it_a == attribs.end();
bool b_at_end = inputs.size() == 0 || it_b == inputs.end();
auto a_first = a_at_end ? 0 : it_a->first;
auto b_first = b_at_end ? 0 : it_b->first.first;
if (!a_at_end && (b_at_end || a_first < b_first)) {
if (!used && log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "SC",
"Vertex attribute at location %d not consumed by VS", a_first)) {
pass = false;
}
used = false;
it_a++;
} else if (!b_at_end && (a_at_end || b_first < a_first)) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, /*dev*/ 0,
__LINE__, SHADER_CHECKER_INPUT_NOT_PRODUCED, "SC", "VS consumes input at location %d but not provided",
b_first)) {
pass = false;
}
it_b++;
} else {
unsigned attrib_type = get_format_type(it_a->second->format);
unsigned input_type = get_fundamental_type(vs, it_b->second.type_id);
/* type checking */
if (attrib_type != FORMAT_TYPE_UNDEFINED && input_type != FORMAT_TYPE_UNDEFINED && attrib_type != input_type) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "SC",
"Attribute type of `%s` at location %d does not match VS input type of `%s`",
string_VkFormat(it_a->second->format), a_first,
describe_type(vs, it_b->second.type_id).c_str())) {
pass = false;
}
}
/* OK! */
used = true;
it_b++;
}
}
return pass;
}
static bool validate_fs_outputs_against_render_pass(debug_report_data *report_data, shader_module const *fs,
spirv_inst_iter entrypoint, VkRenderPassCreateInfo const *rpci,
uint32_t subpass_index) {
std::map<uint32_t, VkFormat> color_attachments;
auto subpass = rpci->pSubpasses[subpass_index];
for (auto i = 0u; i < subpass.colorAttachmentCount; ++i) {
uint32_t attachment = subpass.pColorAttachments[i].attachment;
if (attachment == VK_ATTACHMENT_UNUSED)
continue;
if (rpci->pAttachments[attachment].format != VK_FORMAT_UNDEFINED) {
color_attachments[i] = rpci->pAttachments[attachment].format;
}
}
bool pass = true;
/* TODO: dual source blend index (spv::DecIndex, zero if not provided) */
auto outputs = collect_interface_by_location(fs, entrypoint, spv::StorageClassOutput, false);
auto it_a = outputs.begin();
auto it_b = color_attachments.begin();
/* Walk attachment list and outputs together */
while ((outputs.size() > 0 && it_a != outputs.end()) || (color_attachments.size() > 0 && it_b != color_attachments.end())) {
bool a_at_end = outputs.size() == 0 || it_a == outputs.end();
bool b_at_end = color_attachments.size() == 0 || it_b == color_attachments.end();
if (!a_at_end && (b_at_end || it_a->first.first < it_b->first)) {
if (log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "SC",
"FS writes to output location %d with no matching attachment", it_a->first.first)) {
pass = false;
}
it_a++;
} else if (!b_at_end && (a_at_end || it_a->first.first > it_b->first)) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INPUT_NOT_PRODUCED, "SC", "Attachment %d not written by FS", it_b->first)) {
pass = false;
}
it_b++;
} else {
unsigned output_type = get_fundamental_type(fs, it_a->second.type_id);
unsigned att_type = get_format_type(it_b->second);
/* type checking */
if (att_type != FORMAT_TYPE_UNDEFINED && output_type != FORMAT_TYPE_UNDEFINED && att_type != output_type) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "SC",
"Attachment %d of type `%s` does not match FS output type of `%s`", it_b->first,
string_VkFormat(it_b->second),
describe_type(fs, it_a->second.type_id).c_str())) {
pass = false;
}
}
/* OK! */
it_a++;
it_b++;
}
}
return pass;
}
/* For some analyses, we need to know about all ids referenced by the static call tree of a particular
* entrypoint. This is important for identifying the set of shader resources actually used by an entrypoint,
* for example.
* Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
* - NOT the shader input/output interfaces.
*
* TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
* converting parts of this to be generated from the machine-readable spec instead.
*/
static std::unordered_set<uint32_t> mark_accessible_ids(shader_module const *src, spirv_inst_iter entrypoint) {
std::unordered_set<uint32_t> ids;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
while (!worklist.empty()) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
/* id is something we didn't collect in build_def_index. that's OK -- we'll stumble
* across all kinds of things here that we may not care about. */
continue;
}
/* try to add to the output set */
if (!ids.insert(id).second) {
continue; /* if we already saw this id, we don't want to walk it again. */
}
switch (insn.opcode()) {
case spv::OpFunction:
/* scan whole body of the function, enlisting anything interesting */
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpAtomicLoad:
case spv::OpAtomicExchange:
case spv::OpAtomicCompareExchange:
case spv::OpAtomicCompareExchangeWeak:
case spv::OpAtomicIIncrement:
case spv::OpAtomicIDecrement:
case spv::OpAtomicIAdd:
case spv::OpAtomicISub:
case spv::OpAtomicSMin:
case spv::OpAtomicUMin:
case spv::OpAtomicSMax:
case spv::OpAtomicUMax:
case spv::OpAtomicAnd:
case spv::OpAtomicOr:
case spv::OpAtomicXor:
worklist.insert(insn.word(3)); /* ptr */
break;
case spv::OpStore:
case spv::OpAtomicStore:
worklist.insert(insn.word(1)); /* ptr */
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
worklist.insert(insn.word(3)); /* base ptr */
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
worklist.insert(insn.word(3)); /* image or sampled image */
break;
case spv::OpImageWrite:
worklist.insert(insn.word(1)); /* image -- different operand order to above */
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn.len(); i++) {
worklist.insert(insn.word(i)); /* fn itself, and all args */
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn.len(); i++) {
worklist.insert(insn.word(i)); /* operands to ext inst */
}
break;
}
}
break;
}
}
return ids;
}
static bool validate_push_constant_block_against_pipeline(debug_report_data *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges,
shader_module const *src, spirv_inst_iter type,
VkShaderStageFlagBits stage) {
bool pass = true;
/* strip off ptrs etc */
type = get_struct_type(src, type, false);
assert(type != src->end());
/* validate directly off the offsets. this isn't quite correct for arrays
* and matrices, but is a good first step. TODO: arrays, matrices, weird
* sizes */
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
if (insn.word(3) == spv::DecorationOffset) {
unsigned offset = insn.word(4);
auto size = 4; /* bytes; TODO: calculate this based on the type */
bool found_range = false;
for (auto const &range : *push_constant_ranges) {
if (range.offset <= offset && range.offset + range.size >= offset + size) {
found_range = true;
if ((range.stageFlags & stage) == 0) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_PUSH_CONSTANT_NOT_ACCESSIBLE_FROM_STAGE, "SC",
"Push constant range covering variable starting at "
"offset %u not accessible from stage %s",
offset, string_VkShaderStageFlagBits(stage))) {
pass = false;
}
}
break;
}
}
if (!found_range) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_PUSH_CONSTANT_OUT_OF_RANGE, "SC",
"Push constant range covering variable starting at "
"offset %u not declared in layout",
offset)) {
pass = false;
}
}
}
}
}
return pass;
}
static bool validate_push_constant_usage(debug_report_data *report_data,
std::vector<VkPushConstantRange> const *push_constant_ranges, shader_module const *src,
std::unordered_set<uint32_t> accessible_ids, VkShaderStageFlagBits stage) {
bool pass = true;
for (auto id : accessible_ids) {
auto def_insn = src->get_def(id);
if (def_insn.opcode() == spv::OpVariable && def_insn.word(3) == spv::StorageClassPushConstant) {
pass &= validate_push_constant_block_against_pipeline(report_data, push_constant_ranges, src,
src->get_def(def_insn.word(1)), stage);
}
}
return pass;
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const * get_descriptor_binding(PIPELINE_LAYOUT_NODE const *pipelineLayout, descriptor_slot_t slot) {
if (!pipelineLayout)
return nullptr;
if (slot.first >= pipelineLayout->set_layouts.size())
return nullptr;
return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second);
}
// Block of code at start here for managing/tracking Pipeline state that this layer cares about
static uint64_t g_drawCount[NUM_DRAW_TYPES] = {0, 0, 0, 0};
// TODO : Should be tracking lastBound per commandBuffer and when draws occur, report based on that cmd buffer lastBound
// Then need to synchronize the accesses based on cmd buffer so that if I'm reading state on one cmd buffer, updates
// to that same cmd buffer by separate thread are not changing state from underneath us
// Track the last cmd buffer touched by this thread
static bool hasDrawCmd(GLOBAL_CB_NODE *pCB) {
for (uint32_t i = 0; i < NUM_DRAW_TYPES; i++) {
if (pCB->drawCount[i])
return true;
}
return false;
}
// Check object status for selected flag state
static bool validate_status(layer_data *my_data, GLOBAL_CB_NODE *pNode, CBStatusFlags status_mask, VkFlags msg_flags,
DRAW_STATE_ERROR error_code, const char *fail_msg) {
if (!(pNode->status & status_mask)) {
return log_msg(my_data->report_data, msg_flags, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<const uint64_t &>(pNode->commandBuffer), __LINE__, error_code, "DS",
"CB object 0x%" PRIxLEAST64 ": %s", reinterpret_cast<const uint64_t &>(pNode->commandBuffer), fail_msg);
}
return false;
}
// Retrieve pipeline node ptr for given pipeline object
static PIPELINE_NODE *getPipeline(layer_data const *my_data, VkPipeline pipeline) {
auto it = my_data->pipelineMap.find(pipeline);
if (it == my_data->pipelineMap.end()) {
return nullptr;
}
return it->second;
}
static RENDER_PASS_NODE *getRenderPass(layer_data const *my_data, VkRenderPass renderpass) {
auto it = my_data->renderPassMap.find(renderpass);
if (it == my_data->renderPassMap.end()) {
return nullptr;
}
return it->second;
}
static FRAMEBUFFER_NODE *getFramebuffer(const layer_data *my_data, VkFramebuffer framebuffer) {
auto it = my_data->frameBufferMap.find(framebuffer);
if (it == my_data->frameBufferMap.end()) {
return nullptr;
}
return it->second.get();
}
cvdescriptorset::DescriptorSetLayout const *getDescriptorSetLayout(layer_data const *my_data, VkDescriptorSetLayout dsLayout) {
auto it = my_data->descriptorSetLayoutMap.find(dsLayout);
if (it == my_data->descriptorSetLayoutMap.end()) {
return nullptr;
}
return it->second;
}
static PIPELINE_LAYOUT_NODE const *getPipelineLayout(layer_data const *my_data, VkPipelineLayout pipeLayout) {
auto it = my_data->pipelineLayoutMap.find(pipeLayout);
if (it == my_data->pipelineLayoutMap.end()) {
return nullptr;
}
return &it->second;
}
// Return true if for a given PSO, the given state enum is dynamic, else return false
static bool isDynamic(const PIPELINE_NODE *pPipeline, const VkDynamicState state) {
if (pPipeline && pPipeline->graphicsPipelineCI.pDynamicState) {
for (uint32_t i = 0; i < pPipeline->graphicsPipelineCI.pDynamicState->dynamicStateCount; i++) {
if (state == pPipeline->graphicsPipelineCI.pDynamicState->pDynamicStates[i])
return true;
}
}
return false;
}
// Validate state stored as flags at time of draw call
static bool validate_draw_state_flags(layer_data *dev_data, GLOBAL_CB_NODE *pCB, const PIPELINE_NODE *pPipe, bool indexedDraw) {
bool result;
result = validate_status(dev_data, pCB, CBSTATUS_VIEWPORT_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT, DRAWSTATE_VIEWPORT_NOT_BOUND,
"Dynamic viewport state not set for this command buffer");
result |= validate_status(dev_data, pCB, CBSTATUS_SCISSOR_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT, DRAWSTATE_SCISSOR_NOT_BOUND,
"Dynamic scissor state not set for this command buffer");
if (pPipe->graphicsPipelineCI.pInputAssemblyState &&
((pPipe->graphicsPipelineCI.pInputAssemblyState->topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST) ||
(pPipe->graphicsPipelineCI.pInputAssemblyState->topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP))) {
result |= validate_status(dev_data, pCB, CBSTATUS_LINE_WIDTH_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_LINE_WIDTH_NOT_BOUND, "Dynamic line width state not set for this command buffer");
}
if (pPipe->graphicsPipelineCI.pRasterizationState &&
(pPipe->graphicsPipelineCI.pRasterizationState->depthBiasEnable == VK_TRUE)) {
result |= validate_status(dev_data, pCB, CBSTATUS_DEPTH_BIAS_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_DEPTH_BIAS_NOT_BOUND, "Dynamic depth bias state not set for this command buffer");
}
if (pPipe->blendConstantsEnabled) {
result |= validate_status(dev_data, pCB, CBSTATUS_BLEND_CONSTANTS_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_BLEND_NOT_BOUND, "Dynamic blend constants state not set for this command buffer");
}
if (pPipe->graphicsPipelineCI.pDepthStencilState &&
(pPipe->graphicsPipelineCI.pDepthStencilState->depthBoundsTestEnable == VK_TRUE)) {
result |= validate_status(dev_data, pCB, CBSTATUS_DEPTH_BOUNDS_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_DEPTH_BOUNDS_NOT_BOUND, "Dynamic depth bounds state not set for this command buffer");
}
if (pPipe->graphicsPipelineCI.pDepthStencilState &&
(pPipe->graphicsPipelineCI.pDepthStencilState->stencilTestEnable == VK_TRUE)) {
result |= validate_status(dev_data, pCB, CBSTATUS_STENCIL_READ_MASK_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil read mask state not set for this command buffer");
result |= validate_status(dev_data, pCB, CBSTATUS_STENCIL_WRITE_MASK_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil write mask state not set for this command buffer");
result |= validate_status(dev_data, pCB, CBSTATUS_STENCIL_REFERENCE_SET, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil reference state not set for this command buffer");
}
if (indexedDraw) {
result |= validate_status(dev_data, pCB, CBSTATUS_INDEX_BUFFER_BOUND, VK_DEBUG_REPORT_ERROR_BIT_EXT,
DRAWSTATE_INDEX_BUFFER_NOT_BOUND,
"Index buffer object not bound to this command buffer when Indexed Draw attempted");
}
return result;
}
// Verify attachment reference compatibility according to spec
// If one array is larger, treat missing elements of shorter array as VK_ATTACHMENT_UNUSED & other array much match this
// If both AttachmentReference arrays have requested index, check their corresponding AttachmentDescriptions
// to make sure that format and samples counts match.
// If not, they are not compatible.
static bool attachment_references_compatible(const uint32_t index, const VkAttachmentReference *pPrimary,
const uint32_t primaryCount, const VkAttachmentDescription *pPrimaryAttachments,
const VkAttachmentReference *pSecondary, const uint32_t secondaryCount,
const VkAttachmentDescription *pSecondaryAttachments) {
// Check potential NULL cases first to avoid nullptr issues later
if (pPrimary == nullptr) {
if (pSecondary == nullptr) {
return true;
}
return false;
} else if (pSecondary == nullptr) {
return false;
}
if (index >= primaryCount) { // Check secondary as if primary is VK_ATTACHMENT_UNUSED
if (VK_ATTACHMENT_UNUSED == pSecondary[index].attachment)
return true;
} else if (index >= secondaryCount) { // Check primary as if secondary is VK_ATTACHMENT_UNUSED
if (VK_ATTACHMENT_UNUSED == pPrimary[index].attachment)
return true;
} else { // Format and sample count must match
if ((pPrimary[index].attachment == VK_ATTACHMENT_UNUSED) && (pSecondary[index].attachment == VK_ATTACHMENT_UNUSED)) {
return true;
} else if ((pPrimary[index].attachment == VK_ATTACHMENT_UNUSED) || (pSecondary[index].attachment == VK_ATTACHMENT_UNUSED)) {
return false;
}
if ((pPrimaryAttachments[pPrimary[index].attachment].format ==
pSecondaryAttachments[pSecondary[index].attachment].format) &&
(pPrimaryAttachments[pPrimary[index].attachment].samples ==
pSecondaryAttachments[pSecondary[index].attachment].samples))
return true;
}
// Format and sample counts didn't match
return false;
}
// TODO : Scrub verify_renderpass_compatibility() and validateRenderPassCompatibility() and unify them and/or share code
// For given primary RenderPass object and secondry RenderPassCreateInfo, verify that they're compatible
static bool verify_renderpass_compatibility(const layer_data *my_data, const VkRenderPassCreateInfo *primaryRPCI,
const VkRenderPassCreateInfo *secondaryRPCI, string &errorMsg) {
if (primaryRPCI->subpassCount != secondaryRPCI->subpassCount) {
stringstream errorStr;
errorStr << "RenderPass for primary cmdBuffer has " << primaryRPCI->subpassCount
<< " subpasses but renderPass for secondary cmdBuffer has " << secondaryRPCI->subpassCount << " subpasses.";
errorMsg = errorStr.str();
return false;
}
uint32_t spIndex = 0;
for (spIndex = 0; spIndex < primaryRPCI->subpassCount; ++spIndex) {
// For each subpass, verify that corresponding color, input, resolve & depth/stencil attachment references are compatible
uint32_t primaryColorCount = primaryRPCI->pSubpasses[spIndex].colorAttachmentCount;
uint32_t secondaryColorCount = secondaryRPCI->pSubpasses[spIndex].colorAttachmentCount;
uint32_t colorMax = std::max(primaryColorCount, secondaryColorCount);
for (uint32_t cIdx = 0; cIdx < colorMax; ++cIdx) {
if (!attachment_references_compatible(cIdx, primaryRPCI->pSubpasses[spIndex].pColorAttachments, primaryColorCount,
primaryRPCI->pAttachments, secondaryRPCI->pSubpasses[spIndex].pColorAttachments,
secondaryColorCount, secondaryRPCI->pAttachments)) {
stringstream errorStr;
errorStr << "color attachments at index " << cIdx << " of subpass index " << spIndex << " are not compatible.";
errorMsg = errorStr.str();
return false;
} else if (!attachment_references_compatible(cIdx, primaryRPCI->pSubpasses[spIndex].pResolveAttachments,
primaryColorCount, primaryRPCI->pAttachments,
secondaryRPCI->pSubpasses[spIndex].pResolveAttachments,
secondaryColorCount, secondaryRPCI->pAttachments)) {
stringstream errorStr;
errorStr << "resolve attachments at index " << cIdx << " of subpass index " << spIndex << " are not compatible.";
errorMsg = errorStr.str();
return false;
}
}
if (!attachment_references_compatible(0, primaryRPCI->pSubpasses[spIndex].pDepthStencilAttachment,
1, primaryRPCI->pAttachments,
secondaryRPCI->pSubpasses[spIndex].pDepthStencilAttachment,
1, secondaryRPCI->pAttachments)) {
stringstream errorStr;
errorStr << "depth/stencil attachments of subpass index " << spIndex << " are not compatible.";
errorMsg = errorStr.str();
return false;
}
uint32_t primaryInputCount = primaryRPCI->pSubpasses[spIndex].inputAttachmentCount;
uint32_t secondaryInputCount = secondaryRPCI->pSubpasses[spIndex].inputAttachmentCount;
uint32_t inputMax = std::max(primaryInputCount, secondaryInputCount);
for (uint32_t i = 0; i < inputMax; ++i) {
if (!attachment_references_compatible(i, primaryRPCI->pSubpasses[spIndex].pInputAttachments, primaryColorCount,
primaryRPCI->pAttachments, secondaryRPCI->pSubpasses[spIndex].pInputAttachments,
secondaryColorCount, secondaryRPCI->pAttachments)) {
stringstream errorStr;
errorStr << "input attachments at index " << i << " of subpass index " << spIndex << " are not compatible.";
errorMsg = errorStr.str();
return false;
}
}
}
return true;
}
// For given cvdescriptorset::DescriptorSet, verify that its Set is compatible w/ the setLayout corresponding to
// pipelineLayout[layoutIndex]
static bool verify_set_layout_compatibility(layer_data *my_data, const cvdescriptorset::DescriptorSet *pSet,
PIPELINE_LAYOUT_NODE const *pipeline_layout, const uint32_t layoutIndex,
string &errorMsg) {
auto num_sets = pipeline_layout->set_layouts.size();
if (layoutIndex >= num_sets) {
stringstream errorStr;
errorStr << "VkPipelineLayout (" << pipeline_layout->layout << ") only contains " << num_sets
<< " setLayouts corresponding to sets 0-" << num_sets - 1 << ", but you're attempting to bind set to index "
<< layoutIndex;
errorMsg = errorStr.str();
return false;
}
auto layout_node = pipeline_layout->set_layouts[layoutIndex];
return pSet->IsCompatible(layout_node, &errorMsg);
}
// Validate that data for each specialization entry is fully contained within the buffer.
static bool validate_specialization_offsets(debug_report_data *report_data, VkPipelineShaderStageCreateInfo const *info) {
bool pass = true;
VkSpecializationInfo const *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
/*dev*/ 0, __LINE__, SHADER_CHECKER_BAD_SPECIALIZATION, "SC",
"Specialization entry %u (for constant id %u) references memory outside provided "
"specialization data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER
" bytes provided)",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize)) {
pass = false;
}
}
}
}
return pass;
}
static bool descriptor_type_match(shader_module const *module, uint32_t type_id,
VkDescriptorType descriptor_type, unsigned &descriptor_count) {
auto type = module->get_def(type_id);
descriptor_count = 1;
/* Strip off any array or ptrs. Where we remove array levels, adjust the
* descriptor count for each dimension. */
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer) {
if (type.opcode() == spv::OpTypeArray) {
descriptor_count *= get_constant_value(module, type.word(3));
type = module->get_def(type.word(2));
}
else {
type = module->get_def(type.word(3));
}
}
switch (type.opcode()) {
case spv::OpTypeStruct: {
for (auto insn : *module) {
if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBlock) {
return descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
} else if (insn.word(2) == spv::DecorationBufferBlock) {
return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
}
}
}
/* Invalid */
return false;
}
case spv::OpTypeSampler:
return descriptor_type == VK_DESCRIPTOR_TYPE_SAMPLER ||
descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
case spv::OpTypeSampledImage:
if (descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) {
/* Slight relaxation for some GLSL historical madness: samplerBuffer
* doesn't really have a sampler, and a texel buffer descriptor
* doesn't really provide one. Allow this slight mismatch.
*/
auto image_type = module->get_def(type.word(2));
auto dim = image_type.word(3);
auto sampled = image_type.word(7);
return dim == spv::DimBuffer && sampled == 1;
}
return descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
case spv::OpTypeImage: {
/* Many descriptor types backing image types-- depends on dimension
* and whether the image will be used with a sampler. SPIRV for
* Vulkan requires that sampled be 1 or 2 -- leaving the decision to
* runtime is unacceptable.
*/
auto dim = type.word(3);
auto sampled = type.word(7);
if (dim == spv::DimSubpassData) {
return descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
return descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER;
} else {
return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
}
} else if (sampled == 1) {
return descriptor_type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
} else {
return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
}
}
/* We shouldn't really see any other junk types -- but if we do, they're
* a mismatch.
*/
default:
return false; /* Mismatch */
}
}
static bool require_feature(debug_report_data *report_data, VkBool32 feature, char const *feature_name) {
if (!feature) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_FEATURE_NOT_ENABLED, "SC",
"Shader requires VkPhysicalDeviceFeatures::%s but is not "
"enabled on the device",
feature_name)) {
return false;
}
}
return true;
}
static bool validate_shader_capabilities(debug_report_data *report_data, shader_module const *src,
VkPhysicalDeviceFeatures const *enabledFeatures) {
bool pass = true;
for (auto insn : *src) {
if (insn.opcode() == spv::OpCapability) {
switch (insn.word(1)) {
case spv::CapabilityMatrix:
case spv::CapabilityShader:
case spv::CapabilityInputAttachment:
case spv::CapabilitySampled1D:
case spv::CapabilityImage1D:
case spv::CapabilitySampledBuffer:
case spv::CapabilityImageBuffer:
case spv::CapabilityImageQuery:
case spv::CapabilityDerivativeControl:
// Always supported by a Vulkan 1.0 implementation -- no feature bits.
break;
case spv::CapabilityGeometry:
pass &= require_feature(report_data, enabledFeatures->geometryShader, "geometryShader");
break;
case spv::CapabilityTessellation:
pass &= require_feature(report_data, enabledFeatures->tessellationShader, "tessellationShader");
break;
case spv::CapabilityFloat64:
pass &= require_feature(report_data, enabledFeatures->shaderFloat64, "shaderFloat64");
break;
case spv::CapabilityInt64:
pass &= require_feature(report_data, enabledFeatures->shaderInt64, "shaderInt64");
break;
case spv::CapabilityTessellationPointSize:
case spv::CapabilityGeometryPointSize:
pass &= require_feature(report_data, enabledFeatures->shaderTessellationAndGeometryPointSize,
"shaderTessellationAndGeometryPointSize");
break;
case spv::CapabilityImageGatherExtended:
pass &= require_feature(report_data, enabledFeatures->shaderImageGatherExtended, "shaderImageGatherExtended");
break;
case spv::CapabilityStorageImageMultisample:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageMultisample, "shaderStorageImageMultisample");
break;
case spv::CapabilityUniformBufferArrayDynamicIndexing:
pass &= require_feature(report_data, enabledFeatures->shaderUniformBufferArrayDynamicIndexing,
"shaderUniformBufferArrayDynamicIndexing");
break;
case spv::CapabilitySampledImageArrayDynamicIndexing:
pass &= require_feature(report_data, enabledFeatures->shaderSampledImageArrayDynamicIndexing,
"shaderSampledImageArrayDynamicIndexing");
break;
case spv::CapabilityStorageBufferArrayDynamicIndexing:
pass &= require_feature(report_data, enabledFeatures->shaderStorageBufferArrayDynamicIndexing,
"shaderStorageBufferArrayDynamicIndexing");
break;
case spv::CapabilityStorageImageArrayDynamicIndexing:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageArrayDynamicIndexing,
"shaderStorageImageArrayDynamicIndexing");
break;
case spv::CapabilityClipDistance:
pass &= require_feature(report_data, enabledFeatures->shaderClipDistance, "shaderClipDistance");
break;
case spv::CapabilityCullDistance:
pass &= require_feature(report_data, enabledFeatures->shaderCullDistance, "shaderCullDistance");
break;
case spv::CapabilityImageCubeArray:
pass &= require_feature(report_data, enabledFeatures->imageCubeArray, "imageCubeArray");
break;
case spv::CapabilitySampleRateShading:
pass &= require_feature(report_data, enabledFeatures->sampleRateShading, "sampleRateShading");
break;
case spv::CapabilitySparseResidency:
pass &= require_feature(report_data, enabledFeatures->shaderResourceResidency, "shaderResourceResidency");
break;
case spv::CapabilityMinLod:
pass &= require_feature(report_data, enabledFeatures->shaderResourceMinLod, "shaderResourceMinLod");
break;
case spv::CapabilitySampledCubeArray:
pass &= require_feature(report_data, enabledFeatures->imageCubeArray, "imageCubeArray");
break;
case spv::CapabilityImageMSArray:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageMultisample, "shaderStorageImageMultisample");
break;
case spv::CapabilityStorageImageExtendedFormats:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageExtendedFormats,
"shaderStorageImageExtendedFormats");
break;
case spv::CapabilityInterpolationFunction:
pass &= require_feature(report_data, enabledFeatures->sampleRateShading, "sampleRateShading");
break;
case spv::CapabilityStorageImageReadWithoutFormat:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageReadWithoutFormat,
"shaderStorageImageReadWithoutFormat");
break;
case spv::CapabilityStorageImageWriteWithoutFormat:
pass &= require_feature(report_data, enabledFeatures->shaderStorageImageWriteWithoutFormat,
"shaderStorageImageWriteWithoutFormat");
break;
case spv::CapabilityMultiViewport:
pass &= require_feature(report_data, enabledFeatures->multiViewport, "multiViewport");
break;
default:
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_BAD_CAPABILITY, "SC",
"Shader declares capability %u, not supported in Vulkan.",
insn.word(1)))
pass = false;
break;
}
}
}
return pass;
}
static uint32_t descriptor_type_to_reqs(shader_module const *module, uint32_t type_id) {
auto type = module->get_def(type_id);
while (true) {
switch (type.opcode()) {
case spv::OpTypeArray:
case spv::OpTypeSampledImage:
type = module->get_def(type.word(2));
break;
case spv::OpTypePointer:
type = module->get_def(type.word(3));
break;
case spv::OpTypeImage: {
auto dim = type.word(3);
auto arrayed = type.word(5);
auto msaa = type.word(6);
switch (dim) {
case spv::Dim1D:
return arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D;
case spv::Dim2D:
return (msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE) |
(arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D);
case spv::Dim3D:
return DESCRIPTOR_REQ_VIEW_TYPE_3D;
case spv::DimCube:
return arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE;
case spv::DimSubpassData:
return msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
default: // buffer, etc.
return 0;
}
}
default:
return 0;
}
}
}
static bool validate_pipeline_shader_stage(debug_report_data *report_data,
VkPipelineShaderStageCreateInfo const *pStage,
PIPELINE_NODE *pipeline,
shader_module **out_module,
spirv_inst_iter *out_entrypoint,
VkPhysicalDeviceFeatures const *enabledFeatures,
std::unordered_map<VkShaderModule,
std::unique_ptr<shader_module>> const &shaderModuleMap) {
bool pass = true;
auto module_it = shaderModuleMap.find(pStage->module);
auto module = *out_module = module_it->second.get();
pass &= validate_specialization_offsets(report_data, pStage);
/* find the entrypoint */
auto entrypoint = *out_entrypoint = find_entrypoint(module, pStage->pName, pStage->stage);
if (entrypoint == module->end()) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_MISSING_ENTRYPOINT, "SC",
"No entrypoint found named `%s` for stage %s", pStage->pName,
string_VkShaderStageFlagBits(pStage->stage))) {
pass = false;
}
}
/* validate shader capabilities against enabled device features */
pass &= validate_shader_capabilities(report_data, module, enabledFeatures);
/* mark accessible ids */
auto accessible_ids = mark_accessible_ids(module, entrypoint);
/* validate descriptor set layout against what the entrypoint actually uses */
auto descriptor_uses = collect_interface_by_descriptor_slot(report_data, module, accessible_ids);
auto pipelineLayout = pipeline->pipeline_layout;
/* validate push constant usage */
pass &= validate_push_constant_usage(report_data, &pipelineLayout.push_constant_ranges, module, accessible_ids, pStage->stage);
/* validate descriptor use */
for (auto use : descriptor_uses) {
// While validating shaders capture which slots are used by the pipeline
auto & reqs = pipeline->active_slots[use.first.first][use.first.second];
reqs = descriptor_req(reqs | descriptor_type_to_reqs(module, use.second.type_id));
/* verify given pipelineLayout has requested setLayout with requested binding */
const auto &binding = get_descriptor_binding(&pipelineLayout, use.first);
unsigned required_descriptor_count;
if (!binding) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_MISSING_DESCRIPTOR, "SC",
"Shader uses descriptor slot %u.%u (used as type `%s`) but not declared in pipeline layout",
use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str())) {
pass = false;
}
} else if (~binding->stageFlags & pStage->stage) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
/*dev*/ 0, __LINE__, SHADER_CHECKER_DESCRIPTOR_NOT_ACCESSIBLE_FROM_STAGE, "SC",
"Shader uses descriptor slot %u.%u (used "
"as type `%s`) but descriptor not "
"accessible from stage %s",
use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str(),
string_VkShaderStageFlagBits(pStage->stage))) {
pass = false;
}
} else if (!descriptor_type_match(module, use.second.type_id, binding->descriptorType,
/*out*/ required_descriptor_count)) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
SHADER_CHECKER_DESCRIPTOR_TYPE_MISMATCH, "SC", "Type mismatch on descriptor slot "
"%u.%u (used as type `%s`) but "
"descriptor of type %s",
use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str(),
string_VkDescriptorType(binding->descriptorType))) {
pass = false;
}
} else if (binding->descriptorCount < required_descriptor_count) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
SHADER_CHECKER_DESCRIPTOR_TYPE_MISMATCH, "SC",
"Shader expects at least %u descriptors for binding %u.%u (used as type `%s`) but only %u provided",
required_descriptor_count, use.first.first, use.first.second,
describe_type(module, use.second.type_id).c_str(), binding->descriptorCount)) {
pass = false;
}
}
}
/* validate use of input attachments against subpass structure */
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = collect_interface_by_input_attachment_index(report_data, module, accessible_ids);
auto rpci = pipeline->render_pass_ci.ptr();
auto subpass = pipeline->graphicsPipelineCI.subpass;
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount) ?
input_attachments[use.first].attachment : VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
SHADER_CHECKER_MISSING_INPUT_ATTACHMENT, "SC",
"Shader consumes input attachment index %d but not provided in subpass",
use.first)) {
pass = false;
}
}
else if (get_format_type(rpci->pAttachments[index].format) !=
get_fundamental_type(module, use.second.type_id)) {
if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
SHADER_CHECKER_INPUT_ATTACHMENT_TYPE_MISMATCH, "SC",
"Subpass input attachment %u format of %s does not match type used in shader `%s`",
use.first, string_VkFormat(rpci->pAttachments[index].format),
describe_type(module, use.second.type_id).c_str())) {
pass = false;
}
}
}
}
return pass;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
static bool validate_and_capture_pipeline_shader_state(debug_report_data *report_data, PIPELINE_NODE *pPipeline,
VkPhysicalDeviceFeatures const *enabledFeatures,
std::unordered_map<VkShaderModule, unique_ptr<shader_module>> const & shaderModuleMap) {
auto pCreateInfo = pPipeline->graphicsPipelineCI.ptr();
int vertex_stage = get_shader_stage_id(VK_SHADER_STAGE_VERTEX_BIT);
int fragment_stage = get_shader_stage_id(VK_SHADER_STAGE_FRAGMENT_BIT);
shader_module *shaders[5];
memset(shaders, 0, sizeof(shaders));
spirv_inst_iter entrypoints[5];
memset(entrypoints, 0, sizeof(entrypoints));
VkPipelineVertexInputStateCreateInfo const *vi = 0;
bool pass = true;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
auto pStage = &pCreateInfo->pStages[i];
auto stage_id = get_shader_stage_id(pStage->stage);
pass &= validate_pipeline_shader_stage(report_data, pStage, pPipeline,
&shaders[stage_id], &entrypoints[stage_id],
enabledFeatures, shaderModuleMap);
}
vi = pCreateInfo->pVertexInputState;
if (vi) {
pass &= validate_vi_consistency(report_data, vi);
}
if (shaders[vertex_stage]) {
pass &= validate_vi_against_vs_inputs(report_data, vi, shaders[vertex_stage], entrypoints[vertex_stage]);
}
int producer = get_shader_stage_id(VK_SHADER_STAGE_VERTEX_BIT);
int consumer = get_shader_stage_id(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
while (!shaders[producer] && producer != fragment_stage) {
producer++;
consumer++;
}
for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) {
assert(shaders[producer]);
if (shaders[consumer]) {
pass &= validate_interface_between_stages(report_data,
shaders[producer], entrypoints[producer], &shader_stage_attribs[producer],
shaders[consumer], entrypoints[consumer], &shader_stage_attribs[consumer]);
producer = consumer;
}
}
if (shaders[fragment_stage]) {
pass &= validate_fs_outputs_against_render_pass(report_data, shaders[fragment_stage], entrypoints[fragment_stage],
pPipeline->render_pass_ci.ptr(), pCreateInfo->subpass);
}
return pass;
}
static bool validate_compute_pipeline(debug_report_data *report_data, PIPELINE_NODE *pPipeline, VkPhysicalDeviceFeatures const *enabledFeatures,
std::unordered_map<VkShaderModule, unique_ptr<shader_module>> const & shaderModuleMap) {
auto pCreateInfo = pPipeline->computePipelineCI.ptr();
shader_module *module;
spirv_inst_iter entrypoint;
return validate_pipeline_shader_stage(report_data, &pCreateInfo->stage, pPipeline,
&module, &entrypoint, enabledFeatures, shaderModuleMap);
}
// Return Set node ptr for specified set or else NULL
cvdescriptorset::DescriptorSet *getSetNode(const layer_data *my_data, VkDescriptorSet set) {
auto set_it = my_data->setMap.find(set);
if (set_it == my_data->setMap.end()) {
return NULL;
}
return set_it->second;
}
// For the given command buffer, verify and update the state for activeSetBindingsPairs
// This includes:
// 1. Verifying that any dynamic descriptor in that set has a valid dynamic offset bound.
// To be valid, the dynamic offset combined with the offset and range from its
// descriptor update must not overflow the size of its buffer being updated
// 2. Grow updateImages for given pCB to include any bound STORAGE_IMAGE descriptor images
// 3. Grow updateBuffers for pCB to include buffers from STORAGE*_BUFFER descriptor buffers
static bool validate_and_update_drawtime_descriptor_state(
layer_data *dev_data, GLOBAL_CB_NODE *pCB,
const vector<std::tuple<cvdescriptorset::DescriptorSet *, std::map<uint32_t, descriptor_req>, std::vector<uint32_t> const *>>
&activeSetBindingsPairs,
const char *function) {
bool result = false;
for (auto set_bindings_pair : activeSetBindingsPairs) {
cvdescriptorset::DescriptorSet *set_node = std::get<0>(set_bindings_pair);
std::string err_str;
if (!set_node->ValidateDrawState(std::get<1>(set_bindings_pair), *std::get<2>(set_bindings_pair),
&err_str)) {
// Report error here
auto set = set_node->GetSet();
result |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
reinterpret_cast<const uint64_t &>(set), __LINE__, DRAWSTATE_DESCRIPTOR_SET_NOT_UPDATED, "DS",
"DS 0x%" PRIxLEAST64 " encountered the following validation error at %s() time: %s",
reinterpret_cast<const uint64_t &>(set), function, err_str.c_str());
}
set_node->GetStorageUpdates(std::get<1>(set_bindings_pair), &pCB->updateBuffers, &pCB->updateImages);
}
return result;
}
// For given pipeline, return number of MSAA samples, or one if MSAA disabled
static VkSampleCountFlagBits getNumSamples(PIPELINE_NODE const *pipe) {
if (pipe->graphicsPipelineCI.pMultisampleState != NULL &&
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO == pipe->graphicsPipelineCI.pMultisampleState->sType) {
return pipe->graphicsPipelineCI.pMultisampleState->rasterizationSamples;
}
return VK_SAMPLE_COUNT_1_BIT;
}
static void list_bits(std::ostream& s, uint32_t bits) {
for (int i = 0; i < 32 && bits; i++) {
if (bits & (1 << i)) {
s << i;
bits &= ~(1 << i);
if (bits) {
s << ",";
}
}
}
}
// Validate draw-time state related to the PSO
static bool validatePipelineDrawtimeState(layer_data const *my_data,
LAST_BOUND_STATE const &state,
const GLOBAL_CB_NODE *pCB,
PIPELINE_NODE const *pPipeline) {
bool skip_call = false;
// Verify Vtx binding
if (pPipeline->vertexBindingDescriptions.size() > 0) {
for (size_t i = 0; i < pPipeline->vertexBindingDescriptions.size(); i++) {
auto vertex_binding = pPipeline->vertexBindingDescriptions[i].binding;
if ((pCB->currentDrawData.buffers.size() < (vertex_binding + 1)) ||
(pCB->currentDrawData.buffers[vertex_binding] == VK_NULL_HANDLE)) {
skip_call |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_VTX_INDEX_OUT_OF_BOUNDS, "DS",
"The Pipeline State Object (0x%" PRIxLEAST64 ") expects that this Command Buffer's vertex binding Index %u "
"should be set via vkCmdBindVertexBuffers. This is because VkVertexInputBindingDescription struct "
"at index " PRINTF_SIZE_T_SPECIFIER " of pVertexBindingDescriptions has a binding value of %u.",
(uint64_t)state.pipeline_node->pipeline, vertex_binding, i, vertex_binding);
}
}
} else {
if (!pCB->currentDrawData.buffers.empty()) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0,
0, __LINE__, DRAWSTATE_VTX_INDEX_OUT_OF_BOUNDS, "DS",
"Vertex buffers are bound to command buffer (0x%" PRIxLEAST64
") but no vertex buffers are attached to this Pipeline State Object (0x%" PRIxLEAST64 ").",
(uint64_t)pCB->commandBuffer, (uint64_t)state.pipeline_node->pipeline);
}
}
// If Viewport or scissors are dynamic, verify that dynamic count matches PSO count.
// Skip check if rasterization is disabled or there is no viewport.
if ((!pPipeline->graphicsPipelineCI.pRasterizationState ||
(pPipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable == VK_FALSE)) &&
pPipeline->graphicsPipelineCI.pViewportState) {
bool dynViewport = isDynamic(pPipeline, VK_DYNAMIC_STATE_VIEWPORT);
bool dynScissor = isDynamic(pPipeline, VK_DYNAMIC_STATE_SCISSOR);
if (dynViewport) {
auto requiredViewportsMask = (1 << pPipeline->graphicsPipelineCI.pViewportState->viewportCount) - 1;
auto missingViewportMask = ~pCB->viewportMask & requiredViewportsMask;
if (missingViewportMask) {
std::stringstream ss;
ss << "Dynamic viewport(s) ";
list_bits(ss, missingViewportMask);
ss << " are used by PSO, but were not provided via calls to vkCmdSetViewport().";
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"%s", ss.str().c_str());
}
}
if (dynScissor) {
auto requiredScissorMask = (1 << pPipeline->graphicsPipelineCI.pViewportState->scissorCount) - 1;
auto missingScissorMask = ~pCB->scissorMask & requiredScissorMask;
if (missingScissorMask) {
std::stringstream ss;
ss << "Dynamic scissor(s) ";
list_bits(ss, missingScissorMask);
ss << " are used by PSO, but were not provided via calls to vkCmdSetScissor().";
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"%s", ss.str().c_str());
}
}
}
// Verify that any MSAA request in PSO matches sample# in bound FB
// Skip the check if rasterization is disabled.
if (!pPipeline->graphicsPipelineCI.pRasterizationState ||
(pPipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable == VK_FALSE)) {
VkSampleCountFlagBits pso_num_samples = getNumSamples(pPipeline);
if (pCB->activeRenderPass) {
const VkRenderPassCreateInfo *render_pass_info = pCB->activeRenderPass->pCreateInfo;
const VkSubpassDescription *subpass_desc = &render_pass_info->pSubpasses[pCB->activeSubpass];
uint32_t i;
const safe_VkPipelineColorBlendStateCreateInfo *color_blend_state = pPipeline->graphicsPipelineCI.pColorBlendState;
if ((color_blend_state != NULL) && (pCB->activeSubpass == pPipeline->graphicsPipelineCI.subpass) &&
(color_blend_state->attachmentCount != subpass_desc->colorAttachmentCount)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
reinterpret_cast<const uint64_t &>(pPipeline->pipeline), __LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"Render pass subpass %u mismatch with blending state defined and blend state attachment "
"count %u while subpass color attachment count %u in Pipeline (0x%" PRIxLEAST64 ")! These "
"must be the same at draw-time.",
pCB->activeSubpass, color_blend_state->attachmentCount, subpass_desc->colorAttachmentCount,
reinterpret_cast<const uint64_t &>(pPipeline->pipeline));
}
unsigned subpass_num_samples = 0;
for (i = 0; i < subpass_desc->colorAttachmentCount; i++) {
auto attachment = subpass_desc->pColorAttachments[i].attachment;
if (attachment != VK_ATTACHMENT_UNUSED)
subpass_num_samples |= (unsigned)render_pass_info->pAttachments[attachment].samples;
}
if (subpass_desc->pDepthStencilAttachment &&
subpass_desc->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
auto attachment = subpass_desc->pDepthStencilAttachment->attachment;
subpass_num_samples |= (unsigned)render_pass_info->pAttachments[attachment].samples;
}
if (subpass_num_samples && static_cast<unsigned>(pso_num_samples) != subpass_num_samples) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
reinterpret_cast<const uint64_t &>(pPipeline->pipeline), __LINE__, DRAWSTATE_NUM_SAMPLES_MISMATCH, "DS",
"Num samples mismatch! At draw-time in Pipeline (0x%" PRIxLEAST64
") with %u samples while current RenderPass (0x%" PRIxLEAST64 ") w/ %u samples!",
reinterpret_cast<const uint64_t &>(pPipeline->pipeline), pso_num_samples,
reinterpret_cast<const uint64_t &>(pCB->activeRenderPass->renderPass), subpass_num_samples);
}
} else {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
reinterpret_cast<const uint64_t &>(pPipeline->pipeline), __LINE__, DRAWSTATE_NUM_SAMPLES_MISMATCH, "DS",
"No active render pass found at draw-time in Pipeline (0x%" PRIxLEAST64 ")!",
reinterpret_cast<const uint64_t &>(pPipeline->pipeline));
}
}
// Verify that PSO creation renderPass is compatible with active renderPass
if (pCB->activeRenderPass) {
std::string err_string;
if ((pCB->activeRenderPass->renderPass != pPipeline->graphicsPipelineCI.renderPass) &&
!verify_renderpass_compatibility(my_data, pCB->activeRenderPass->pCreateInfo, pPipeline->render_pass_ci.ptr(),
err_string)) {
// renderPass that PSO was created with must be compatible with active renderPass that PSO is being used with
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
reinterpret_cast<const uint64_t &>(pPipeline->pipeline), __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE, "DS",
"At Draw time the active render pass (0x%" PRIxLEAST64 ") is incompatible w/ gfx pipeline "
"(0x%" PRIxLEAST64 ") that was created w/ render pass (0x%" PRIxLEAST64 ") due to: %s",
reinterpret_cast<uint64_t &>(pCB->activeRenderPass->renderPass), reinterpret_cast<uint64_t &>(pPipeline),
reinterpret_cast<const uint64_t &>(pPipeline->graphicsPipelineCI.renderPass), err_string.c_str());
}
}
// TODO : Add more checks here
return skip_call;
}
// Validate overall state at the time of a draw call
static bool validate_and_update_draw_state(layer_data *my_data, GLOBAL_CB_NODE *cb_node, const bool indexedDraw,
const VkPipelineBindPoint bindPoint, const char *function) {
bool result = false;
auto const &state = cb_node->lastBound[bindPoint];
PIPELINE_NODE *pPipe = state.pipeline_node;
if (nullptr == pPipe) {
result |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE, "DS",
"At Draw/Dispatch time no valid VkPipeline is bound! This is illegal. Please bind one with vkCmdBindPipeline().");
// Early return as any further checks below will be busted w/o a pipeline
if (result)
return true;
}
// First check flag states
if (VK_PIPELINE_BIND_POINT_GRAPHICS == bindPoint)
result = validate_draw_state_flags(my_data, cb_node, pPipe, indexedDraw);
// Now complete other state checks
if (VK_NULL_HANDLE != state.pipeline_layout.layout) {
string errorString;
auto pipeline_layout = pPipe->pipeline_layout;
// Need a vector (vs. std::set) of active Sets for dynamicOffset validation in case same set bound w/ different offsets
vector<std::tuple<cvdescriptorset::DescriptorSet *, std::map<uint32_t, descriptor_req>, std::vector<uint32_t> const *>>
activeSetBindingsPairs;
for (auto & setBindingPair : pPipe->active_slots) {
uint32_t setIndex = setBindingPair.first;
// If valid set is not bound throw an error
if ((state.boundDescriptorSets.size() <= setIndex) || (!state.boundDescriptorSets[setIndex])) {
result |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_DESCRIPTOR_SET_NOT_BOUND, "DS",
"VkPipeline 0x%" PRIxLEAST64 " uses set #%u but that set is not bound.", (uint64_t)pPipe->pipeline,
setIndex);
} else if (!verify_set_layout_compatibility(my_data, state.boundDescriptorSets[setIndex], &pipeline_layout, setIndex,
errorString)) {
// Set is bound but not compatible w/ overlapping pipeline_layout from PSO
VkDescriptorSet setHandle = state.boundDescriptorSets[setIndex]->GetSet();
result |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
(uint64_t)setHandle, __LINE__, DRAWSTATE_PIPELINE_LAYOUTS_INCOMPATIBLE, "DS",
"VkDescriptorSet (0x%" PRIxLEAST64
") bound as set #%u is not compatible with overlapping VkPipelineLayout 0x%" PRIxLEAST64 " due to: %s",
reinterpret_cast<uint64_t &>(setHandle), setIndex, reinterpret_cast<uint64_t &>(pipeline_layout.layout),
errorString.c_str());
} else { // Valid set is bound and layout compatible, validate that it's updated
// Pull the set node
cvdescriptorset::DescriptorSet *pSet = state.boundDescriptorSets[setIndex];
// Gather active bindings
std::unordered_set<uint32_t> bindings;
for (auto binding : setBindingPair.second) {
bindings.insert(binding.first);
}
// Bind this set and its active descriptor resources to the command buffer
pSet->BindCommandBuffer(cb_node, bindings);
// Save vector of all active sets to verify dynamicOffsets below
activeSetBindingsPairs.push_back(std::make_tuple(pSet, setBindingPair.second, &state.dynamicOffsets[setIndex]));
// Make sure set has been updated if it has no immutable samplers
// If it has immutable samplers, we'll flag error later as needed depending on binding
if (!pSet->IsUpdated()) {
for (auto binding : bindings) {
if (!pSet->GetImmutableSamplerPtrFromBinding(binding)) {
result |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
(uint64_t)pSet->GetSet(), __LINE__, DRAWSTATE_DESCRIPTOR_SET_NOT_UPDATED, "DS",
"DS 0x%" PRIxLEAST64 " bound but it was never updated. It is now being used to draw so "
"this will result in undefined behavior.",
(uint64_t)pSet->GetSet());
}
}
}
}
}
// For given active slots, verify any dynamic descriptors and record updated images & buffers
result |= validate_and_update_drawtime_descriptor_state(my_data, cb_node, activeSetBindingsPairs, function);
}
// Check general pipeline state that needs to be validated at drawtime
if (VK_PIPELINE_BIND_POINT_GRAPHICS == bindPoint)
result |= validatePipelineDrawtimeState(my_data, state, cb_node, pPipe);
return result;
}
// Validate HW line width capabilities prior to setting requested line width.
static bool verifyLineWidth(layer_data *my_data, DRAW_STATE_ERROR dsError, const uint64_t &target, float lineWidth) {
bool skip_call = false;
// First check to see if the physical device supports wide lines.
if ((VK_FALSE == my_data->phys_dev_properties.features.wideLines) && (1.0f != lineWidth)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, target, __LINE__,
dsError, "DS", "Attempt to set lineWidth to %f but physical device wideLines feature "
"not supported/enabled so lineWidth must be 1.0f!",
lineWidth);
} else {
// Otherwise, make sure the width falls in the valid range.
if ((my_data->phys_dev_properties.properties.limits.lineWidthRange[0] > lineWidth) ||
(my_data->phys_dev_properties.properties.limits.lineWidthRange[1] < lineWidth)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, target,
__LINE__, dsError, "DS", "Attempt to set lineWidth to %f but physical device limits line width "
"to between [%f, %f]!",
lineWidth, my_data->phys_dev_properties.properties.limits.lineWidthRange[0],
my_data->phys_dev_properties.properties.limits.lineWidthRange[1]);
}
}
return skip_call;
}
// Verify that create state for a pipeline is valid
static bool verifyPipelineCreateState(layer_data *my_data, const VkDevice device, std::vector<PIPELINE_NODE *> pPipelines,
int pipelineIndex) {
bool skip_call = false;
PIPELINE_NODE *pPipeline = pPipelines[pipelineIndex];
// If create derivative bit is set, check that we've specified a base
// pipeline correctly, and that the base pipeline was created to allow
// derivatives.
if (pPipeline->graphicsPipelineCI.flags & VK_PIPELINE_CREATE_DERIVATIVE_BIT) {
PIPELINE_NODE *pBasePipeline = nullptr;
if (!((pPipeline->graphicsPipelineCI.basePipelineHandle != VK_NULL_HANDLE) ^
(pPipeline->graphicsPipelineCI.basePipelineIndex != -1))) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo: exactly one of base pipeline index and handle must be specified");
} else if (pPipeline->graphicsPipelineCI.basePipelineIndex != -1) {
if (pPipeline->graphicsPipelineCI.basePipelineIndex >= pipelineIndex) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo: base pipeline must occur earlier in array than derivative pipeline.");
} else {
pBasePipeline = pPipelines[pPipeline->graphicsPipelineCI.basePipelineIndex];
}
} else if (pPipeline->graphicsPipelineCI.basePipelineHandle != VK_NULL_HANDLE) {
pBasePipeline = getPipeline(my_data, pPipeline->graphicsPipelineCI.basePipelineHandle);
}
if (pBasePipeline && !(pBasePipeline->graphicsPipelineCI.flags & VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo: base pipeline does not allow derivatives.");
}
}
if (pPipeline->graphicsPipelineCI.pColorBlendState != NULL) {
if (!my_data->phys_dev_properties.features.independentBlend) {
if (pPipeline->attachments.size() > 1) {
VkPipelineColorBlendAttachmentState *pAttachments = &pPipeline->attachments[0];
for (size_t i = 1; i < pPipeline->attachments.size(); i++) {
// Quoting the spec: "If [the independent blend] feature is not enabled, the VkPipelineColorBlendAttachmentState
// settings for all color attachments must be identical." VkPipelineColorBlendAttachmentState contains
// only attachment state, so memcmp is best suited for the comparison
if (memcmp(static_cast<const void *>(pAttachments), static_cast<const void *>(&pAttachments[i]),
sizeof(pAttachments[0]))) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INDEPENDENT_BLEND, "DS",
"Invalid Pipeline CreateInfo: If independent blend feature not "
"enabled, all elements of pAttachments must be identical");
break;
}
}
}
}
if (!my_data->phys_dev_properties.features.logicOp &&
(pPipeline->graphicsPipelineCI.pColorBlendState->logicOpEnable != VK_FALSE)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_DISABLED_LOGIC_OP, "DS",
"Invalid Pipeline CreateInfo: If logic operations feature not enabled, logicOpEnable must be VK_FALSE");
}
if ((pPipeline->graphicsPipelineCI.pColorBlendState->logicOpEnable == VK_TRUE) &&
((pPipeline->graphicsPipelineCI.pColorBlendState->logicOp < VK_LOGIC_OP_CLEAR) ||
(pPipeline->graphicsPipelineCI.pColorBlendState->logicOp > VK_LOGIC_OP_SET))) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_LOGIC_OP, "DS",
"Invalid Pipeline CreateInfo: If logicOpEnable is VK_TRUE, logicOp must be a valid VkLogicOp value");
}
}
// Ensure the subpass index is valid. If not, then validate_and_capture_pipeline_shader_state
// produces nonsense errors that confuse users. Other layers should already
// emit errors for renderpass being invalid.
auto renderPass = getRenderPass(my_data, pPipeline->graphicsPipelineCI.renderPass);
if (renderPass &&
pPipeline->graphicsPipelineCI.subpass >= renderPass->pCreateInfo->subpassCount) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS", "Invalid Pipeline CreateInfo State: Subpass index %u "
"is out of range for this renderpass (0..%u)",
pPipeline->graphicsPipelineCI.subpass, renderPass->pCreateInfo->subpassCount - 1);
}
if (!validate_and_capture_pipeline_shader_state(my_data->report_data, pPipeline, &my_data->phys_dev_properties.features,
my_data->shaderModuleMap)) {
skip_call = true;
}
// Each shader's stage must be unique
if (pPipeline->duplicate_shaders) {
for (uint32_t stage = VK_SHADER_STAGE_VERTEX_BIT; stage & VK_SHADER_STAGE_ALL_GRAPHICS; stage <<= 1) {
if (pPipeline->duplicate_shaders & stage) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: Multiple shaders provided for stage %s",
string_VkShaderStageFlagBits(VkShaderStageFlagBits(stage)));
}
}
}
// VS is required
if (!(pPipeline->active_shaders & VK_SHADER_STAGE_VERTEX_BIT)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS", "Invalid Pipeline CreateInfo State: Vtx Shader required");
}
// Either both or neither TC/TE shaders should be defined
if (((pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) == 0) !=
((pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) == 0)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: TE and TC shaders must be included or excluded as a pair");
}
// Compute shaders should be specified independent of Gfx shaders
if ((pPipeline->active_shaders & VK_SHADER_STAGE_COMPUTE_BIT) &&
(pPipeline->active_shaders &
(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
VK_SHADER_STAGE_GEOMETRY_BIT | VK_SHADER_STAGE_FRAGMENT_BIT))) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: Do not specify Compute Shader for Gfx Pipeline");
}
// VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive topology is only valid for tessellation pipelines.
// Mismatching primitive topology and tessellation fails graphics pipeline creation.
if (pPipeline->active_shaders & (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) &&
(!pPipeline->graphicsPipelineCI.pInputAssemblyState ||
pPipeline->graphicsPipelineCI.pInputAssemblyState->topology != VK_PRIMITIVE_TOPOLOGY_PATCH_LIST)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS", "Invalid Pipeline CreateInfo State: "
"VK_PRIMITIVE_TOPOLOGY_PATCH_LIST must be set as IA "
"topology for tessellation pipelines");
}
if (pPipeline->graphicsPipelineCI.pInputAssemblyState &&
pPipeline->graphicsPipelineCI.pInputAssemblyState->topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST) {
if (~pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS", "Invalid Pipeline CreateInfo State: "
"VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive "
"topology is only valid for tessellation pipelines");
}
if (!pPipeline->graphicsPipelineCI.pTessellationState) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: "
"pTessellationState is NULL when VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive "
"topology used. pTessellationState must not be NULL in this case.");
} else if (!pPipeline->graphicsPipelineCI.pTessellationState->patchControlPoints ||
(pPipeline->graphicsPipelineCI.pTessellationState->patchControlPoints > 32)) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS", "Invalid Pipeline CreateInfo State: "
"VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive "
"topology used with patchControlPoints value %u."
" patchControlPoints should be >0 and <=32.",
pPipeline->graphicsPipelineCI.pTessellationState->patchControlPoints);
}
}
// If a rasterization state is provided, make sure that the line width conforms to the HW.
if (pPipeline->graphicsPipelineCI.pRasterizationState) {
if (!isDynamic(pPipeline, VK_DYNAMIC_STATE_LINE_WIDTH)) {
skip_call |= verifyLineWidth(my_data, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, reinterpret_cast<uint64_t &>(pPipeline),
pPipeline->graphicsPipelineCI.pRasterizationState->lineWidth);
}
}
// Viewport state must be included if rasterization is enabled.
// If the viewport state is included, the viewport and scissor counts should always match.
// NOTE : Even if these are flagged as dynamic, counts need to be set correctly for shader compiler
if (!pPipeline->graphicsPipelineCI.pRasterizationState ||
(pPipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable == VK_FALSE)) {
if (!pPipeline->graphicsPipelineCI.pViewportState) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS", "Gfx Pipeline pViewportState is null. Even if viewport "
"and scissors are dynamic PSO must include "
"viewportCount and scissorCount in pViewportState.");
} else if (pPipeline->graphicsPipelineCI.pViewportState->scissorCount !=
pPipeline->graphicsPipelineCI.pViewportState->viewportCount) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline viewport count (%u) must match scissor count (%u).",
pPipeline->graphicsPipelineCI.pViewportState->viewportCount,
pPipeline->graphicsPipelineCI.pViewportState->scissorCount);
} else {
// If viewport or scissor are not dynamic, then verify that data is appropriate for count
bool dynViewport = isDynamic(pPipeline, VK_DYNAMIC_STATE_VIEWPORT);
bool dynScissor = isDynamic(pPipeline, VK_DYNAMIC_STATE_SCISSOR);
if (!dynViewport) {
if (pPipeline->graphicsPipelineCI.pViewportState->viewportCount &&
!pPipeline->graphicsPipelineCI.pViewportState->pViewports) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline viewportCount is %u, but pViewports is NULL. For non-zero viewportCount, you "
"must either include pViewports data, or include viewport in pDynamicState and set it with "
"vkCmdSetViewport().",
pPipeline->graphicsPipelineCI.pViewportState->viewportCount);
}
}
if (!dynScissor) {
if (pPipeline->graphicsPipelineCI.pViewportState->scissorCount &&
!pPipeline->graphicsPipelineCI.pViewportState->pScissors) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline scissorCount is %u, but pScissors is NULL. For non-zero scissorCount, you "
"must either include pScissors data, or include scissor in pDynamicState and set it with "
"vkCmdSetScissor().",
pPipeline->graphicsPipelineCI.pViewportState->scissorCount);
}
}
}
}
return skip_call;
}
// Free the Pipeline nodes
static void deletePipelines(layer_data *my_data) {
if (my_data->pipelineMap.size() <= 0)
return;
for (auto &pipe_map_pair : my_data->pipelineMap) {
delete pipe_map_pair.second;
}
my_data->pipelineMap.clear();
}
// Block of code at start here specifically for managing/tracking DSs
// Return Pool node ptr for specified pool or else NULL
DESCRIPTOR_POOL_NODE *getPoolNode(const layer_data *dev_data, const VkDescriptorPool pool) {
auto pool_it = dev_data->descriptorPoolMap.find(pool);
if (pool_it == dev_data->descriptorPoolMap.end()) {
return NULL;
}
return pool_it->second;
}
// Return false if update struct is of valid type, otherwise flag error and return code from callback
static bool validUpdateStruct(layer_data *my_data, const VkDevice device, const GENERIC_HEADER *pUpdateStruct) {
switch (pUpdateStruct->sType) {
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
return false;
default:
return log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_UPDATE_STRUCT, "DS",
"Unexpected UPDATE struct of type %s (value %u) in vkUpdateDescriptors() struct tree",
string_VkStructureType(pUpdateStruct->sType), pUpdateStruct->sType);
}
}
// Set count for given update struct in the last parameter
static uint32_t getUpdateCount(layer_data *my_data, const VkDevice device, const GENERIC_HEADER *pUpdateStruct) {
switch (pUpdateStruct->sType) {
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
return ((VkWriteDescriptorSet *)pUpdateStruct)->descriptorCount;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
// TODO : Need to understand this case better and make sure code is correct
return ((VkCopyDescriptorSet *)pUpdateStruct)->descriptorCount;
default:
return 0;
}
}
// For given layout and update, return the first overall index of the layout that is updated
static uint32_t getUpdateStartIndex(layer_data *my_data, const VkDevice device, const uint32_t binding_start_index,
const uint32_t arrayIndex, const GENERIC_HEADER *pUpdateStruct) {
return binding_start_index + arrayIndex;
}
// For given layout and update, return the last overall index of the layout that is updated
static uint32_t getUpdateEndIndex(layer_data *my_data, const VkDevice device, const uint32_t binding_start_index,
const uint32_t arrayIndex, const GENERIC_HEADER *pUpdateStruct) {
uint32_t count = getUpdateCount(my_data, device, pUpdateStruct);
return binding_start_index + arrayIndex + count - 1;
}
// Verify that the descriptor type in the update struct matches what's expected by the layout
static bool validateUpdateConsistency(layer_data *my_data, const VkDevice device, const VkDescriptorType layout_type,
const GENERIC_HEADER *pUpdateStruct, uint32_t startIndex, uint32_t endIndex) {
// First get actual type of update
bool skip_call = false;
VkDescriptorType actualType = VK_DESCRIPTOR_TYPE_MAX_ENUM;
switch (pUpdateStruct->sType) {
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
actualType = ((VkWriteDescriptorSet *)pUpdateStruct)->descriptorType;
break;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
/* no need to validate */
return false;
break;
default:
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_UPDATE_STRUCT, "DS",
"Unexpected UPDATE struct of type %s (value %u) in vkUpdateDescriptors() struct tree",
string_VkStructureType(pUpdateStruct->sType), pUpdateStruct->sType);
}
if (!skip_call) {
if (layout_type != actualType) {
skip_call |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_DESCRIPTOR_TYPE_MISMATCH, "DS",
"Write descriptor update has descriptor type %s that does not match overlapping binding descriptor type of %s!",
string_VkDescriptorType(actualType), string_VkDescriptorType(layout_type));
}
}
return skip_call;
}
//TODO: Consolidate functions
bool FindLayout(const GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair, IMAGE_CMD_BUF_LAYOUT_NODE &node, const VkImageAspectFlags aspectMask) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(pCB->commandBuffer), layer_data_map);
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) {
return false;
}
if (node.layout != VK_IMAGE_LAYOUT_MAX_ENUM && node.layout != imgsubIt->second.layout) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t&>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t&>(imgpair.image), oldAspectMask, string_VkImageLayout(node.layout), string_VkImageLayout(imgsubIt->second.layout));
}
if (node.initialLayout != VK_IMAGE_LAYOUT_MAX_ENUM && node.initialLayout != imgsubIt->second.initialLayout) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t&>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple initial layout types: %s and %s",
reinterpret_cast<uint64_t&>(imgpair.image), oldAspectMask, string_VkImageLayout(node.initialLayout), string_VkImageLayout(imgsubIt->second.initialLayout));
}
node = imgsubIt->second;
return true;
}
bool FindLayout(const layer_data *my_data, ImageSubresourcePair imgpair, VkImageLayout &layout, const VkImageAspectFlags aspectMask) {
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = my_data->imageLayoutMap.find(imgpair);
if (imgsubIt == my_data->imageLayoutMap.end()) {
return false;
}
if (layout != VK_IMAGE_LAYOUT_MAX_ENUM && layout != imgsubIt->second.layout) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t&>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t&>(imgpair.image), oldAspectMask, string_VkImageLayout(layout), string_VkImageLayout(imgsubIt->second.layout));
}
layout = imgsubIt->second.layout;
return true;
}
// find layout(s) on the cmd buf level
bool FindLayout(const GLOBAL_CB_NODE *pCB, VkImage image, VkImageSubresource range, IMAGE_CMD_BUF_LAYOUT_NODE &node) {
ImageSubresourcePair imgpair = {image, true, range};
node = IMAGE_CMD_BUF_LAYOUT_NODE(VK_IMAGE_LAYOUT_MAX_ENUM, VK_IMAGE_LAYOUT_MAX_ENUM);
FindLayout(pCB, imgpair, node, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayout(pCB, imgpair, node, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayout(pCB, imgpair, node, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayout(pCB, imgpair, node, VK_IMAGE_ASPECT_METADATA_BIT);
if (node.layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {image, false, VkImageSubresource()};
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end())
return false;
node = imgsubIt->second;
}
return true;
}
// find layout(s) on the global level
bool FindLayout(const layer_data *my_data, ImageSubresourcePair imgpair, VkImageLayout &layout) {
layout = VK_IMAGE_LAYOUT_MAX_ENUM;
FindLayout(my_data, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayout(my_data, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayout(my_data, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayout(my_data, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
if (layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {imgpair.image, false, VkImageSubresource()};
auto imgsubIt = my_data->imageLayoutMap.find(imgpair);
if (imgsubIt == my_data->imageLayoutMap.end())
return false;
layout = imgsubIt->second.layout;
}
return true;
}
bool FindLayout(const layer_data *my_data, VkImage image, VkImageSubresource range, VkImageLayout &layout) {
ImageSubresourcePair imgpair = {image, true, range};
return FindLayout(my_data, imgpair, layout);
}
bool FindLayouts(const layer_data *my_data, VkImage image, std::vector<VkImageLayout> &layouts) {
auto sub_data = my_data->imageSubresourceMap.find(image);
if (sub_data == my_data->imageSubresourceMap.end())
return false;
auto img_node = getImageNode(my_data, image);
if (!img_node)
return false;
bool ignoreGlobal = false;
// TODO: Make this robust for >1 aspect mask. Now it will just say ignore
// potential errors in this case.
if (sub_data->second.size() >= (img_node->createInfo.arrayLayers * img_node->createInfo.mipLevels + 1)) {
ignoreGlobal = true;
}
for (auto imgsubpair : sub_data->second) {
if (ignoreGlobal && !imgsubpair.hasSubresource)
continue;
auto img_data = my_data->imageLayoutMap.find(imgsubpair);
if (img_data != my_data->imageLayoutMap.end()) {
layouts.push_back(img_data->second.layout);
}
}
return true;
}
// Set the layout on the global level
void SetLayout(layer_data *my_data, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
VkImage &image = imgpair.image;
// TODO (mlentine): Maybe set format if new? Not used atm.
my_data->imageLayoutMap[imgpair].layout = layout;
// TODO (mlentine): Maybe make vector a set?
auto subresource = std::find(my_data->imageSubresourceMap[image].begin(), my_data->imageSubresourceMap[image].end(), imgpair);
if (subresource == my_data->imageSubresourceMap[image].end()) {
my_data->imageSubresourceMap[image].push_back(imgpair);
}
}
// Set the layout on the cmdbuf level
void SetLayout(GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair, const IMAGE_CMD_BUF_LAYOUT_NODE &node) {
pCB->imageLayoutMap[imgpair] = node;
// TODO (mlentine): Maybe make vector a set?
auto subresource =
std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair);
if (subresource == pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageSubresourceMap[imgpair.image].push_back(imgpair);
}
}
void SetLayout(GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
// TODO (mlentine): Maybe make vector a set?
if (std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair) !=
pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageLayoutMap[imgpair].layout = layout;
} else {
// TODO (mlentine): Could be expensive and might need to be removed.
assert(imgpair.hasSubresource);
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindLayout(pCB, imgpair.image, imgpair.subresource, node)) {
node.initialLayout = layout;
}
SetLayout(pCB, imgpair, {node.initialLayout, layout});
}
}
template <class OBJECT, class LAYOUT>
void SetLayout(OBJECT *pObject, ImageSubresourcePair imgpair, const LAYOUT &layout, VkImageAspectFlags aspectMask) {
if (imgpair.subresource.aspectMask & aspectMask) {
imgpair.subresource.aspectMask = aspectMask;
SetLayout(pObject, imgpair, layout);
}
}
template <class OBJECT, class LAYOUT>
void SetLayout(OBJECT *pObject, VkImage image, VkImageSubresource range, const LAYOUT &layout) {
ImageSubresourcePair imgpair = {image, true, range};
SetLayout(pObject, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
SetLayout(pObject, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
SetLayout(pObject, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
SetLayout(pObject, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
}
template <class OBJECT, class LAYOUT> void SetLayout(OBJECT *pObject, VkImage image, const LAYOUT &layout) {
ImageSubresourcePair imgpair = {image, false, VkImageSubresource()};
SetLayout(pObject, image, imgpair, layout);
}
void SetLayout(const layer_data *dev_data, GLOBAL_CB_NODE *pCB, VkImageView imageView, const VkImageLayout &layout) {
auto iv_data = getImageViewData(dev_data, imageView);
assert(iv_data);
const VkImage &image = iv_data->image;
const VkImageSubresourceRange &subRange = iv_data->subresourceRange;
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
// TODO: If ImageView was created with depth or stencil, transition both layouts as
// the aspectMask is ignored and both are used. Verify that the extra implicit layout
// is OK for descriptor set layout validation
if (subRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (vk_format_is_depth_and_stencil(iv_data->format)) {
sub.aspectMask |= (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
SetLayout(pCB, image, sub, layout);
}
}
}
// Validate that given set is valid and that it's not being used by an in-flight CmdBuffer
// func_str is the name of the calling function
// Return false if no errors occur
// Return true if validation error occurs and callback returns true (to skip upcoming API call down the chain)
static bool validateIdleDescriptorSet(const layer_data *my_data, VkDescriptorSet set, std::string func_str) {
bool skip_call = false;
auto set_node = my_data->setMap.find(set);
if (set_node == my_data->setMap.end()) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
(uint64_t)(set), __LINE__, DRAWSTATE_DOUBLE_DESTROY, "DS",
"Cannot call %s() on descriptor set 0x%" PRIxLEAST64 " that has not been allocated.", func_str.c_str(),
(uint64_t)(set));
} else {
if (set_node->second->in_use.load()) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)(set), __LINE__, DRAWSTATE_OBJECT_INUSE,
"DS", "Cannot call %s() on descriptor set 0x%" PRIxLEAST64 " that is in use by a command buffer.",
func_str.c_str(), (uint64_t)(set));
}
}
return skip_call;
}
// Remove set from setMap and delete the set
static void freeDescriptorSet(layer_data *dev_data, cvdescriptorset::DescriptorSet *descriptor_set) {
dev_data->setMap.erase(descriptor_set->GetSet());
delete descriptor_set;
}
// Free all DS Pools including their Sets & related sub-structs
// NOTE : Calls to this function should be wrapped in mutex
static void deletePools(layer_data *my_data) {
if (my_data->descriptorPoolMap.size() <= 0)
return;
for (auto ii = my_data->descriptorPoolMap.begin(); ii != my_data->descriptorPoolMap.end(); ++ii) {
// Remove this pools' sets from setMap and delete them
for (auto ds : (*ii).second->sets) {
freeDescriptorSet(my_data, ds);
}
(*ii).second->sets.clear();
}
my_data->descriptorPoolMap.clear();
}
static void clearDescriptorPool(layer_data *my_data, const VkDevice device, const VkDescriptorPool pool,
VkDescriptorPoolResetFlags flags) {
DESCRIPTOR_POOL_NODE *pPool = getPoolNode(my_data, pool);
// TODO: validate flags
// For every set off of this pool, clear it, remove from setMap, and free cvdescriptorset::DescriptorSet
for (auto ds : pPool->sets) {
freeDescriptorSet(my_data, ds);
}
pPool->sets.clear();
// Reset available count for each type and available sets for this pool
for (uint32_t i = 0; i < pPool->availableDescriptorTypeCount.size(); ++i) {
pPool->availableDescriptorTypeCount[i] = pPool->maxDescriptorTypeCount[i];
}
pPool->availableSets = pPool->maxSets;
}
// For given CB object, fetch associated CB Node from map
static GLOBAL_CB_NODE *getCBNode(layer_data const *my_data, const VkCommandBuffer cb) {
auto it = my_data->commandBufferMap.find(cb);
if (it == my_data->commandBufferMap.end()) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<const uint64_t &>(cb), __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Attempt to use CommandBuffer 0x%" PRIxLEAST64 " that doesn't exist!", (uint64_t)(cb));
return NULL;
}
return it->second;
}
// Free all CB Nodes
// NOTE : Calls to this function should be wrapped in mutex
static void deleteCommandBuffers(layer_data *my_data) {
if (my_data->commandBufferMap.empty()) {
return;
}
for (auto ii = my_data->commandBufferMap.begin(); ii != my_data->commandBufferMap.end(); ++ii) {
delete (*ii).second;
}
my_data->commandBufferMap.clear();
}
static bool report_error_no_cb_begin(const layer_data *dev_data, const VkCommandBuffer cb, const char *caller_name) {
return log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)cb, __LINE__, DRAWSTATE_NO_BEGIN_COMMAND_BUFFER, "DS",
"You must call vkBeginCommandBuffer() before this call to %s", caller_name);
}
bool validateCmdsInCmdBuffer(const layer_data *dev_data, const GLOBAL_CB_NODE *pCB, const CMD_TYPE cmd_type) {
if (!pCB->activeRenderPass)
return false;
bool skip_call = false;
if (pCB->activeSubpassContents == VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS &&
(cmd_type != CMD_EXECUTECOMMANDS && cmd_type != CMD_NEXTSUBPASS && cmd_type != CMD_ENDRENDERPASS)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Commands cannot be called in a subpass using secondary command buffers.");
} else if (pCB->activeSubpassContents == VK_SUBPASS_CONTENTS_INLINE && cmd_type == CMD_EXECUTECOMMANDS) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() cannot be called in a subpass using inline commands.");
}
return skip_call;
}
static bool checkGraphicsBit(const layer_data *my_data, VkQueueFlags flags, const char *name) {
if (!(flags & VK_QUEUE_GRAPHICS_BIT))
return log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Cannot call %s on a command buffer allocated from a pool without graphics capabilities.", name);
return false;
}
static bool checkComputeBit(const layer_data *my_data, VkQueueFlags flags, const char *name) {
if (!(flags & VK_QUEUE_COMPUTE_BIT))
return log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Cannot call %s on a command buffer allocated from a pool without compute capabilities.", name);
return false;
}
static bool checkGraphicsOrComputeBit(const layer_data *my_data, VkQueueFlags flags, const char *name) {
if (!((flags & VK_QUEUE_GRAPHICS_BIT) || (flags & VK_QUEUE_COMPUTE_BIT)))
return log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Cannot call %s on a command buffer allocated from a pool without graphics capabilities.", name);
return false;
}
// Add specified CMD to the CmdBuffer in given pCB, flagging errors if CB is not
// in the recording state or if there's an issue with the Cmd ordering
static bool addCmd(layer_data *my_data, GLOBAL_CB_NODE *pCB, const CMD_TYPE cmd, const char *caller_name) {
bool skip_call = false;
auto pPool = getCommandPoolNode(my_data, pCB->createInfo.commandPool);
if (pPool) {
VkQueueFlags flags = my_data->phys_dev_properties.queue_family_properties[pPool->queueFamilyIndex].queueFlags;
switch (cmd) {
case CMD_BINDPIPELINE:
case CMD_BINDPIPELINEDELTA:
case CMD_BINDDESCRIPTORSETS:
case CMD_FILLBUFFER:
case CMD_CLEARCOLORIMAGE:
case CMD_SETEVENT:
case CMD_RESETEVENT:
case CMD_WAITEVENTS:
case CMD_BEGINQUERY:
case CMD_ENDQUERY:
case CMD_RESETQUERYPOOL:
case CMD_COPYQUERYPOOLRESULTS:
case CMD_WRITETIMESTAMP:
skip_call |= checkGraphicsOrComputeBit(my_data, flags, cmdTypeToString(cmd).c_str());
break;
case CMD_SETVIEWPORTSTATE:
case CMD_SETSCISSORSTATE:
case CMD_SETLINEWIDTHSTATE:
case CMD_SETDEPTHBIASSTATE:
case CMD_SETBLENDSTATE:
case CMD_SETDEPTHBOUNDSSTATE:
case CMD_SETSTENCILREADMASKSTATE:
case CMD_SETSTENCILWRITEMASKSTATE:
case CMD_SETSTENCILREFERENCESTATE:
case CMD_BINDINDEXBUFFER:
case CMD_BINDVERTEXBUFFER:
case CMD_DRAW:
case CMD_DRAWINDEXED:
case CMD_DRAWINDIRECT:
case CMD_DRAWINDEXEDINDIRECT:
case CMD_BLITIMAGE:
case CMD_CLEARATTACHMENTS:
case CMD_CLEARDEPTHSTENCILIMAGE:
case CMD_RESOLVEIMAGE:
case CMD_BEGINRENDERPASS:
case CMD_NEXTSUBPASS:
case CMD_ENDRENDERPASS:
skip_call |= checkGraphicsBit(my_data, flags, cmdTypeToString(cmd).c_str());
break;
case CMD_DISPATCH:
case CMD_DISPATCHINDIRECT:
skip_call |= checkComputeBit(my_data, flags, cmdTypeToString(cmd).c_str());
break;
case CMD_COPYBUFFER:
case CMD_COPYIMAGE:
case CMD_COPYBUFFERTOIMAGE:
case CMD_COPYIMAGETOBUFFER:
case CMD_CLONEIMAGEDATA:
case CMD_UPDATEBUFFER:
case CMD_PIPELINEBARRIER:
case CMD_EXECUTECOMMANDS:
case CMD_END:
break;
default:
break;
}
}
if (pCB->state != CB_RECORDING) {
skip_call |= report_error_no_cb_begin(my_data, pCB->commandBuffer, caller_name);
} else {
skip_call |= validateCmdsInCmdBuffer(my_data, pCB, cmd);
CMD_NODE cmdNode = {};
// init cmd node and append to end of cmd LL
cmdNode.cmdNumber = ++pCB->numCmds;
cmdNode.type = cmd;
pCB->cmds.push_back(cmdNode);
}
return skip_call;
}
// Tie the VK_OBJECT to the cmd buffer which includes:
// Add object_binding to cmd buffer
// Add cb_binding to object
static void addCommandBufferBinding(std::unordered_set<GLOBAL_CB_NODE *> *cb_bindings, VK_OBJECT obj, GLOBAL_CB_NODE *cb_node) {
cb_bindings->insert(cb_node);
cb_node->object_bindings.insert(obj);
}
// For a given object, if cb_node is in that objects cb_bindings, remove cb_node
static void removeCommandBufferBinding(layer_data *dev_data, VK_OBJECT const *object, GLOBAL_CB_NODE *cb_node) {
switch (object->type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT: {
auto img_node = getImageNode(dev_data, reinterpret_cast<const VkImage &>(object->handle));
if (img_node)
img_node->cb_bindings.erase(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT: {
auto buf_node = getBufferNode(dev_data, reinterpret_cast<const VkBuffer &>(object->handle));
if (buf_node)
buf_node->cb_bindings.erase(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT: {
auto evt_node = getEventNode(dev_data, reinterpret_cast<const VkEvent &>(object->handle));
if (evt_node)
evt_node->cb_bindings.erase(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT: {
auto qp_node = getQueryPoolNode(dev_data, reinterpret_cast<const VkQueryPool &>(object->handle));
if (qp_node)
qp_node->cb_bindings.erase(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT: {
auto pipe_node = getPipeline(dev_data, reinterpret_cast<const VkPipeline &>(object->handle));
if (pipe_node)
pipe_node->cb_bindings.erase(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT: {
auto set_node = getSetNode(dev_data, reinterpret_cast<const VkDescriptorSet &>(object->handle));
if (set_node)
set_node->RemoveBoundCommandBuffer(cb_node);
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT: {
auto sampler_node = getSamplerNode(dev_data, reinterpret_cast<const VkSampler &>(object->handle));
if (sampler_node)
sampler_node->cb_bindings.erase(cb_node);
break;
}
default:
assert(0); // unhandled object type
}
}
// Reset the command buffer state
// Maintain the createInfo and set state to CB_NEW, but clear all other state
static void resetCB(layer_data *dev_data, const VkCommandBuffer cb) {
GLOBAL_CB_NODE *pCB = dev_data->commandBufferMap[cb];
if (pCB) {
pCB->in_use.store(0);
pCB->cmds.clear();
// Reset CB state (note that createInfo is not cleared)
pCB->commandBuffer = cb;
memset(&pCB->beginInfo, 0, sizeof(VkCommandBufferBeginInfo));
memset(&pCB->inheritanceInfo, 0, sizeof(VkCommandBufferInheritanceInfo));
pCB->numCmds = 0;
memset(pCB->drawCount, 0, NUM_DRAW_TYPES * sizeof(uint64_t));
pCB->state = CB_NEW;
pCB->submitCount = 0;
pCB->status = 0;
pCB->viewportMask = 0;
pCB->scissorMask = 0;
for (uint32_t i = 0; i < VK_PIPELINE_BIND_POINT_RANGE_SIZE; ++i) {
pCB->lastBound[i].reset();
}
memset(&pCB->activeRenderPassBeginInfo, 0, sizeof(pCB->activeRenderPassBeginInfo));
pCB->activeRenderPass = nullptr;
pCB->activeSubpassContents = VK_SUBPASS_CONTENTS_INLINE;
pCB->activeSubpass = 0;
pCB->broken_bindings.clear();
pCB->waitedEvents.clear();
pCB->events.clear();
pCB->writeEventsBeforeWait.clear();
pCB->waitedEventsBeforeQueryReset.clear();
pCB->queryToStateMap.clear();
pCB->activeQueries.clear();
pCB->startedQueries.clear();
pCB->imageSubresourceMap.clear();
pCB->imageLayoutMap.clear();
pCB->eventToStageMap.clear();
pCB->drawData.clear();
pCB->currentDrawData.buffers.clear();
pCB->primaryCommandBuffer = VK_NULL_HANDLE;
// Make sure any secondaryCommandBuffers are removed from globalInFlight
for (auto secondary_cb : pCB->secondaryCommandBuffers) {
dev_data->globalInFlightCmdBuffers.erase(secondary_cb);
}
pCB->secondaryCommandBuffers.clear();
pCB->updateImages.clear();
pCB->updateBuffers.clear();
clear_cmd_buf_and_mem_references(dev_data, pCB);
pCB->eventUpdates.clear();
pCB->queryUpdates.clear();
// Remove object bindings
for (auto obj : pCB->object_bindings) {
removeCommandBufferBinding(dev_data, &obj, pCB);
}
pCB->object_bindings.clear();
// Remove this cmdBuffer's reference from each FrameBuffer's CB ref list
for (auto framebuffer : pCB->framebuffers) {
auto fb_node = getFramebuffer(dev_data, framebuffer);
if (fb_node)
fb_node->cb_bindings.erase(pCB);
}
pCB->framebuffers.clear();
pCB->activeFramebuffer = VK_NULL_HANDLE;
}
}
// Set PSO-related status bits for CB, including dynamic state set via PSO
static void set_cb_pso_status(GLOBAL_CB_NODE *pCB, const PIPELINE_NODE *pPipe) {
// Account for any dynamic state not set via this PSO
if (!pPipe->graphicsPipelineCI.pDynamicState ||
!pPipe->graphicsPipelineCI.pDynamicState->dynamicStateCount) { // All state is static
pCB->status |= CBSTATUS_ALL;
} else {
// First consider all state on
// Then unset any state that's noted as dynamic in PSO
// Finally OR that into CB statemask
CBStatusFlags psoDynStateMask = CBSTATUS_ALL;
for (uint32_t i = 0; i < pPipe->graphicsPipelineCI.pDynamicState->dynamicStateCount; i++) {
switch (pPipe->graphicsPipelineCI.pDynamicState->pDynamicStates[i]) {
case VK_DYNAMIC_STATE_VIEWPORT:
psoDynStateMask &= ~CBSTATUS_VIEWPORT_SET;
break;
case VK_DYNAMIC_STATE_SCISSOR:
psoDynStateMask &= ~CBSTATUS_SCISSOR_SET;
break;
case VK_DYNAMIC_STATE_LINE_WIDTH:
psoDynStateMask &= ~CBSTATUS_LINE_WIDTH_SET;
break;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
psoDynStateMask &= ~CBSTATUS_DEPTH_BIAS_SET;
break;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
psoDynStateMask &= ~CBSTATUS_BLEND_CONSTANTS_SET;
break;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
psoDynStateMask &= ~CBSTATUS_DEPTH_BOUNDS_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
psoDynStateMask &= ~CBSTATUS_STENCIL_READ_MASK_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
psoDynStateMask &= ~CBSTATUS_STENCIL_WRITE_MASK_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
psoDynStateMask &= ~CBSTATUS_STENCIL_REFERENCE_SET;
break;
default:
// TODO : Flag error here
break;
}
}
pCB->status |= psoDynStateMask;
}
}
// Print the last bound Gfx Pipeline
static bool printPipeline(layer_data *my_data, const VkCommandBuffer cb) {
bool skip_call = false;
GLOBAL_CB_NODE *pCB = getCBNode(my_data, cb);
if (pCB) {
PIPELINE_NODE *pPipeTrav = pCB->lastBound[VK_PIPELINE_BIND_POINT_GRAPHICS].pipeline_node;
if (!pPipeTrav) {
// nothing to print
} else {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_NONE, "DS", "%s",
vk_print_vkgraphicspipelinecreateinfo(
reinterpret_cast<const VkGraphicsPipelineCreateInfo *>(&pPipeTrav->graphicsPipelineCI), "{DS}")
.c_str());
}
}
return skip_call;
}
static void printCB(layer_data *my_data, const VkCommandBuffer cb) {
GLOBAL_CB_NODE *pCB = getCBNode(my_data, cb);
if (pCB && pCB->cmds.size() > 0) {
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_NONE, "DS", "Cmds in CB 0x%p", (void *)cb);
vector<CMD_NODE> cmds = pCB->cmds;
for (auto ii = cmds.begin(); ii != cmds.end(); ++ii) {
// TODO : Need to pass cb as srcObj here
log_msg(my_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_NONE, "DS", " CMD 0x%" PRIx64 ": %s", (*ii).cmdNumber, cmdTypeToString((*ii).type).c_str());
}
} else {
// Nothing to print
}
}
static bool synchAndPrintDSConfig(layer_data *my_data, const VkCommandBuffer cb) {
bool skip_call = false;
if (!(my_data->report_data->active_flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)) {
return skip_call;
}
skip_call |= printPipeline(my_data, cb);
return skip_call;
}
// Flags validation error if the associated call is made inside a render pass. The apiName
// routine should ONLY be called outside a render pass.
static bool insideRenderPass(const layer_data *my_data, GLOBAL_CB_NODE *pCB, const char *apiName) {
bool inside = false;
if (pCB->activeRenderPass) {
inside = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)pCB->commandBuffer, __LINE__, DRAWSTATE_INVALID_RENDERPASS_CMD, "DS",
"%s: It is invalid to issue this call inside an active render pass (0x%" PRIxLEAST64 ")", apiName,
(uint64_t)pCB->activeRenderPass->renderPass);
}
return inside;
}
// Flags validation error if the associated call is made outside a render pass. The apiName
// routine should ONLY be called inside a render pass.
static bool outsideRenderPass(const layer_data *my_data, GLOBAL_CB_NODE *pCB, const char *apiName) {
bool outside = false;
if (((pCB->createInfo.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) && (!pCB->activeRenderPass)) ||
((pCB->createInfo.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) && (!pCB->activeRenderPass) &&
!(pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT))) {
outside = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)pCB->commandBuffer, __LINE__, DRAWSTATE_NO_ACTIVE_RENDERPASS, "DS",
"%s: This call must be issued inside an active render pass.", apiName);
}
return outside;
}
static void init_core_validation(layer_data *instance_data, const VkAllocationCallbacks *pAllocator) {
layer_debug_actions(instance_data->report_data, instance_data->logging_callback, pAllocator, "lunarg_core_validation");
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL)
return VK_ERROR_INITIALIZATION_FAILED;
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS)
return result;
layer_data *instance_data = get_my_data_ptr(get_dispatch_key(*pInstance), layer_data_map);
instance_data->instance = *pInstance;
instance_data->instance_dispatch_table = new VkLayerInstanceDispatchTable;
layer_init_instance_dispatch_table(*pInstance, instance_data->instance_dispatch_table, fpGetInstanceProcAddr);
instance_data->report_data =
debug_report_create_instance(instance_data->instance_dispatch_table, *pInstance, pCreateInfo->enabledExtensionCount,
pCreateInfo->ppEnabledExtensionNames);
init_core_validation(instance_data, pAllocator);
instance_data->instance_state = unique_ptr<INSTANCE_STATE>(new INSTANCE_STATE());
ValidateLayerOrdering(*pCreateInfo);
return result;
}
/* hook DestroyInstance to remove tableInstanceMap entry */
VKAPI_ATTR void VKAPI_CALL DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
// TODOSC : Shouldn't need any customization here
dispatch_key key = get_dispatch_key(instance);
// TBD: Need any locking this early, in case this function is called at the
// same time by more than one thread?
layer_data *my_data = get_my_data_ptr(key, layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
pTable->DestroyInstance(instance, pAllocator);
std::lock_guard<std::mutex> lock(global_lock);
// Clean up logging callback, if any
while (my_data->logging_callback.size() > 0) {
VkDebugReportCallbackEXT callback = my_data->logging_callback.back();
layer_destroy_msg_callback(my_data->report_data, callback, pAllocator);
my_data->logging_callback.pop_back();
}
layer_debug_report_destroy_instance(my_data->report_data);
delete my_data->instance_dispatch_table;
layer_data_map.erase(key);
}
static void checkDeviceRegisterExtensions(const VkDeviceCreateInfo *pCreateInfo, VkDevice device) {
uint32_t i;
// TBD: Need any locking, in case this function is called at the same time
// by more than one thread?
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_extensions.wsi_enabled = false;
dev_data->device_extensions.wsi_display_swapchain_enabled = false;
for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0)
dev_data->device_extensions.wsi_enabled = true;
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME) == 0)
dev_data->device_extensions.wsi_display_swapchain_enabled = true;
}
}
// Verify that queue family has been properly requested
bool ValidateRequestedQueueFamilyProperties(layer_data *dev_data, const VkDeviceCreateInfo *create_info) {
bool skip_call = false;
// First check is app has actually requested queueFamilyProperties
if (!dev_data->physical_device_state) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
0, __LINE__, DEVLIMITS_MUST_QUERY_COUNT, "DL",
"Invalid call to vkCreateDevice() w/o first calling vkEnumeratePhysicalDevices().");
} else if (QUERY_DETAILS != dev_data->physical_device_state->vkGetPhysicalDeviceQueueFamilyPropertiesState) {
// TODO: This is not called out as an invalid use in the spec so make more informative recommendation.
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_INVALID_QUEUE_CREATE_REQUEST,
"DL", "Call to vkCreateDevice() w/o first calling vkGetPhysicalDeviceQueueFamilyProperties().");
} else {
// Check that the requested queue properties are valid
for (uint32_t i = 0; i < create_info->queueCreateInfoCount; i++) {
uint32_t requestedIndex = create_info->pQueueCreateInfos[i].queueFamilyIndex;
if (dev_data->queue_family_properties.size() <=
requestedIndex) { // requested index is out of bounds for this physical device
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0,
__LINE__, DEVLIMITS_INVALID_QUEUE_CREATE_REQUEST, "DL",
"Invalid queue create request in vkCreateDevice(). Invalid queueFamilyIndex %u requested.", requestedIndex);
} else if (create_info->pQueueCreateInfos[i].queueCount >
dev_data->queue_family_properties[requestedIndex]->queueCount) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
0, __LINE__, DEVLIMITS_INVALID_QUEUE_CREATE_REQUEST, "DL",
"Invalid queue create request in vkCreateDevice(). QueueFamilyIndex %u only has %u queues, but "
"requested queueCount is %u.",
requestedIndex, dev_data->queue_family_properties[requestedIndex]->queueCount,
create_info->pQueueCreateInfos[i].queueCount);
}
}
}
return skip_call;
}
// Verify that features have been queried and that they are available
static bool ValidateRequestedFeatures(layer_data *dev_data, const VkPhysicalDeviceFeatures *requested_features) {
bool skip_call = false;
VkBool32 *actual = reinterpret_cast<VkBool32 *>(&(dev_data->physical_device_features));
const VkBool32 *requested = reinterpret_cast<const VkBool32 *>(requested_features);
// TODO : This is a nice, compact way to loop through struct, but a bad way to report issues
// Need to provide the struct member name with the issue. To do that seems like we'll
// have to loop through each struct member which should be done w/ codegen to keep in synch.
uint32_t errors = 0;
uint32_t total_bools = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < total_bools; i++) {
if (requested[i] > actual[i]) {
// TODO: Add index to struct member name helper to be able to include a feature name
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_INVALID_FEATURE_REQUESTED,
"DL", "While calling vkCreateDevice(), requesting feature #%u in VkPhysicalDeviceFeatures struct, "
"which is not available on this device.",
i);
errors++;
}
}
if (errors && (UNCALLED == dev_data->physical_device_state->vkGetPhysicalDeviceFeaturesState)) {
// If user didn't request features, notify them that they should
// TODO: Verify this against the spec. I believe this is an invalid use of the API and should return an error
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_INVALID_FEATURE_REQUESTED,
"DL", "You requested features that are unavailable on this device. You should first query feature "
"availability by calling vkGetPhysicalDeviceFeatures().");
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
layer_data *my_instance_data = get_my_data_ptr(get_dispatch_key(gpu), layer_data_map);
bool skip_call = false;
// Check that any requested features are available
if (pCreateInfo->pEnabledFeatures) {
skip_call |= ValidateRequestedFeatures(my_instance_data, pCreateInfo->pEnabledFeatures);
}
skip_call |= ValidateRequestedQueueFamilyProperties(my_instance_data, pCreateInfo);
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(my_instance_data->instance, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (result != VK_SUCCESS) {
return result;
}
std::unique_lock<std::mutex> lock(global_lock);
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(*pDevice), layer_data_map);
// Setup device dispatch table
my_device_data->device_dispatch_table = new VkLayerDispatchTable;
layer_init_device_dispatch_table(*pDevice, my_device_data->device_dispatch_table, fpGetDeviceProcAddr);
my_device_data->device = *pDevice;
my_device_data->report_data = layer_debug_report_create_device(my_instance_data->report_data, *pDevice);
checkDeviceRegisterExtensions(pCreateInfo, *pDevice);
// Get physical device limits for this device
my_instance_data->instance_dispatch_table->GetPhysicalDeviceProperties(gpu, &(my_device_data->phys_dev_properties.properties));
uint32_t count;
my_instance_data->instance_dispatch_table->GetPhysicalDeviceQueueFamilyProperties(gpu, &count, nullptr);
my_device_data->phys_dev_properties.queue_family_properties.resize(count);
my_instance_data->instance_dispatch_table->GetPhysicalDeviceQueueFamilyProperties(
gpu, &count, &my_device_data->phys_dev_properties.queue_family_properties[0]);
// TODO: device limits should make sure these are compatible
if (pCreateInfo->pEnabledFeatures) {
my_device_data->phys_dev_properties.features = *pCreateInfo->pEnabledFeatures;
} else {
memset(&my_device_data->phys_dev_properties.features, 0, sizeof(VkPhysicalDeviceFeatures));
}
// Store physical device mem limits into device layer_data struct
my_instance_data->instance_dispatch_table->GetPhysicalDeviceMemoryProperties(gpu, &my_device_data->phys_dev_mem_props);
lock.unlock();
ValidateLayerOrdering(*pCreateInfo);
return result;
}
// prototype
static void deleteRenderPasses(layer_data *);
VKAPI_ATTR void VKAPI_CALL DestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
// TODOSC : Shouldn't need any customization here
dispatch_key key = get_dispatch_key(device);
layer_data *dev_data = get_my_data_ptr(key, layer_data_map);
// Free all the memory
std::unique_lock<std::mutex> lock(global_lock);
deletePipelines(dev_data);
deleteRenderPasses(dev_data);
deleteCommandBuffers(dev_data);
// This will also delete all sets in the pool & remove them from setMap
deletePools(dev_data);
// All sets should be removed
assert(dev_data->setMap.empty());
for (auto del_layout : dev_data->descriptorSetLayoutMap) {
delete del_layout.second;
}
dev_data->descriptorSetLayoutMap.clear();
dev_data->imageViewMap.clear();
dev_data->imageMap.clear();
dev_data->imageSubresourceMap.clear();
dev_data->imageLayoutMap.clear();
dev_data->bufferViewMap.clear();
dev_data->bufferMap.clear();
// Queues persist until device is destroyed
dev_data->queueMap.clear();
lock.unlock();
#if MTMERGESOURCE
bool skip_call = false;
lock.lock();
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
(uint64_t)device, __LINE__, MEMTRACK_NONE, "MEM", "Printing List details prior to vkDestroyDevice()");
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
(uint64_t)device, __LINE__, MEMTRACK_NONE, "MEM", "================================================");
print_mem_list(dev_data);
printCBList(dev_data);
// Report any memory leaks
DEVICE_MEM_INFO *pInfo = NULL;
if (!dev_data->memObjMap.empty()) {
for (auto ii = dev_data->memObjMap.begin(); ii != dev_data->memObjMap.end(); ++ii) {
pInfo = (*ii).second.get();
if (pInfo->alloc_info.allocationSize != 0) {
// Valid Usage: All child objects created on device must have been destroyed prior to destroying device
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pInfo->mem, __LINE__, MEMTRACK_MEMORY_LEAK, "MEM",
"Mem Object 0x%" PRIx64 " has not been freed. You should clean up this memory by calling "
"vkFreeMemory(0x%" PRIx64 ") prior to vkDestroyDevice().",
(uint64_t)(pInfo->mem), (uint64_t)(pInfo->mem));
}
}
}
layer_debug_report_destroy_device(device);
lock.unlock();
#if DISPATCH_MAP_DEBUG
fprintf(stderr, "Device: 0x%p, key: 0x%p\n", device, key);
#endif
VkLayerDispatchTable *pDisp = dev_data->device_dispatch_table;
if (!skip_call) {
pDisp->DestroyDevice(device, pAllocator);
}
#else
dev_data->device_dispatch_table->DestroyDevice(device, pAllocator);
#endif
delete dev_data->device_dispatch_table;
layer_data_map.erase(key);
}
static const VkExtensionProperties instance_extensions[] = {{VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_EXT_DEBUG_REPORT_SPEC_VERSION}};
// This validates that the initial layout specified in the command buffer for
// the IMAGE is the same
// as the global IMAGE layout
static bool ValidateCmdBufImageLayouts(layer_data *dev_data, GLOBAL_CB_NODE *pCB) {
bool skip_call = false;
for (auto cb_image_data : pCB->imageLayoutMap) {
VkImageLayout imageLayout;
if (!FindLayout(dev_data, cb_image_data.first, imageLayout)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Cannot submit cmd buffer using deleted image 0x%" PRIx64 ".",
reinterpret_cast<const uint64_t &>(cb_image_data.first));
} else {
if (cb_image_data.second.initialLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (imageLayout != cb_image_data.second.initialLayout) {
if (cb_image_data.first.hasSubresource) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using image (0x%" PRIx64 ") [sub-resource: aspectMask 0x%X array layer %u, mip level %u], "
"with layout %s when first use is %s.",
reinterpret_cast<const uint64_t &>(cb_image_data.first.image), cb_image_data.first.subresource.aspectMask,
cb_image_data.first.subresource.arrayLayer,
cb_image_data.first.subresource.mipLevel, string_VkImageLayout(imageLayout),
string_VkImageLayout(cb_image_data.second.initialLayout));
} else {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using image (0x%" PRIx64 ") with layout %s when "
"first use is %s.",
reinterpret_cast<const uint64_t &>(cb_image_data.first.image), string_VkImageLayout(imageLayout),
string_VkImageLayout(cb_image_data.second.initialLayout));
}
}
SetLayout(dev_data, cb_image_data.first, cb_image_data.second.layout);
}
}
return skip_call;
}
// Loop through bound objects and increment their in_use counts
// For any unknown objects, flag an error
static bool ValidateAndIncrementBoundObjects(layer_data const *dev_data, GLOBAL_CB_NODE const *cb_node) {
bool skip_call = false;
for (auto obj : cb_node->object_bindings) {
switch (obj.type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT: {
auto set_node = getSetNode(dev_data, reinterpret_cast<VkDescriptorSet &>(obj.handle));
if (!set_node) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
obj.handle, __LINE__, DRAWSTATE_INVALID_DESCRIPTOR_SET, "DS",
"Cannot submit cmd buffer using deleted descriptor set 0x%" PRIx64 ".", obj.handle);
} else {
set_node->in_use.fetch_add(1);
}
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT: {
auto sampler_node = getSamplerNode(dev_data, reinterpret_cast<VkSampler &>(obj.handle));
if (!sampler_node) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT,
obj.handle, __LINE__, DRAWSTATE_INVALID_SAMPLER, "DS",
"Cannot submit cmd buffer using deleted sampler 0x%" PRIx64 ".", obj.handle);
} else {
sampler_node->in_use.fetch_add(1);
}
break;
}
default:
// TODO : Merge handling of other objects types into this code
break;
}
}
return skip_call;
}
// Track which resources are in-flight by atomically incrementing their "in_use" count
static bool validateAndIncrementResources(layer_data *dev_data, GLOBAL_CB_NODE *cb_node) {
bool skip_call = false;
cb_node->in_use.fetch_add(1);
dev_data->globalInFlightCmdBuffers.insert(cb_node->commandBuffer);
// First Increment for all "generic" objects bound to cmd buffer, followed by special-case objects below
skip_call |= ValidateAndIncrementBoundObjects(dev_data, cb_node);
// TODO : We should be able to remove the NULL look-up checks from the code below as long as
// all the corresponding cases are verified to cause CB_INVALID state and the CB_INVALID state
// should then be flagged prior to calling this function
for (auto drawDataElement : cb_node->drawData) {
for (auto buffer : drawDataElement.buffers) {
auto buffer_node = getBufferNode(dev_data, buffer);
if (!buffer_node) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
(uint64_t)(buffer), __LINE__, DRAWSTATE_INVALID_BUFFER, "DS",
"Cannot submit cmd buffer using deleted buffer 0x%" PRIx64 ".", (uint64_t)(buffer));
} else {
buffer_node->in_use.fetch_add(1);
}
}
}
for (auto event : cb_node->events) {
auto event_node = getEventNode(dev_data, event);
if (!event_node) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
reinterpret_cast<uint64_t &>(event), __LINE__, DRAWSTATE_INVALID_EVENT, "DS",
"Cannot submit cmd buffer using deleted event 0x%" PRIx64 ".", reinterpret_cast<uint64_t &>(event));
} else {
event_node->in_use.fetch_add(1);
}
}
for (auto event : cb_node->writeEventsBeforeWait) {
auto event_node = getEventNode(dev_data, event);
if (event_node)
event_node->write_in_use++;
}
return skip_call;
}
// Note: This function assumes that the global lock is held by the calling
// thread.
// TODO: untangle this.
static bool cleanInFlightCmdBuffer(layer_data *my_data, VkCommandBuffer cmdBuffer) {
bool skip_call = false;
GLOBAL_CB_NODE *pCB = getCBNode(my_data, cmdBuffer);
if (pCB) {
for (auto queryEventsPair : pCB->waitedEventsBeforeQueryReset) {
for (auto event : queryEventsPair.second) {
if (my_data->eventMap[event].needsSignaled) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, 0, 0, DRAWSTATE_INVALID_QUERY, "DS",
"Cannot get query results on queryPool 0x%" PRIx64
" with index %d which was guarded by unsignaled event 0x%" PRIx64 ".",
(uint64_t)(queryEventsPair.first.pool), queryEventsPair.first.index, (uint64_t)(event));
}
}
}
}
return skip_call;
}
// TODO: nuke this completely.
// Decrement cmd_buffer in_use and if it goes to 0 remove cmd_buffer from globalInFlightCmdBuffers
static inline void removeInFlightCmdBuffer(layer_data *dev_data, VkCommandBuffer cmd_buffer) {
// Pull it off of global list initially, but if we find it in any other queue list, add it back in
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, cmd_buffer);
pCB->in_use.fetch_sub(1);
if (!pCB->in_use.load()) {
dev_data->globalInFlightCmdBuffers.erase(cmd_buffer);
}
}
// Decrement in-use count for objects bound to command buffer
static void DecrementBoundResources(layer_data const *dev_data, GLOBAL_CB_NODE const *cb_node) {
for (auto obj : cb_node->object_bindings) {
switch (obj.type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT: {
auto set_node = getSetNode(dev_data, reinterpret_cast<VkDescriptorSet &>(obj.handle));
if (set_node) {
set_node->in_use.fetch_sub(1);
}
break;
}
case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT: {
auto sampler_node = getSamplerNode(dev_data, reinterpret_cast<VkSampler &>(obj.handle));
if (sampler_node) {
sampler_node->in_use.fetch_sub(1);
}
break;
}
default:
// TODO : Merge handling of other objects types into this code
break;
}
}
}
static bool RetireWorkOnQueue(layer_data *dev_data, QUEUE_NODE *pQueue, uint64_t seq)
{
bool skip_call = false; // TODO: extract everything that might fail to precheck
std::unordered_map<VkQueue, uint64_t> otherQueueSeqs;
// Roll this queue forward, one submission at a time.
while (pQueue->seq < seq) {
auto & submission = pQueue->submissions.front();
for (auto & wait : submission.waitSemaphores) {
auto pSemaphore = getSemaphoreNode(dev_data, wait.semaphore);
pSemaphore->in_use.fetch_sub(1);
auto & lastSeq = otherQueueSeqs[wait.queue];
lastSeq = std::max(lastSeq, wait.seq);
}
for (auto & semaphore : submission.signalSemaphores) {
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
pSemaphore->in_use.fetch_sub(1);
}
for (auto cb : submission.cbs) {
auto cb_node = getCBNode(dev_data, cb);
// First perform decrement on general case bound objects
DecrementBoundResources(dev_data, cb_node);
for (auto drawDataElement : cb_node->drawData) {
for (auto buffer : drawDataElement.buffers) {
auto buffer_node = getBufferNode(dev_data, buffer);
if (buffer_node) {
buffer_node->in_use.fetch_sub(1);
}
}
}
for (auto event : cb_node->events) {
auto eventNode = dev_data->eventMap.find(event);
if (eventNode != dev_data->eventMap.end()) {
eventNode->second.in_use.fetch_sub(1);
}
}
for (auto event : cb_node->writeEventsBeforeWait) {
auto eventNode = dev_data->eventMap.find(event);
if (eventNode != dev_data->eventMap.end()) {
eventNode->second.write_in_use--;
}
}
for (auto queryStatePair : cb_node->queryToStateMap) {
dev_data->queryToStateMap[queryStatePair.first] = queryStatePair.second;
}
for (auto eventStagePair : cb_node->eventToStageMap) {
dev_data->eventMap[eventStagePair.first].stageMask = eventStagePair.second;
}
skip_call |= cleanInFlightCmdBuffer(dev_data, cb);
removeInFlightCmdBuffer(dev_data, cb);
}
auto pFence = getFenceNode(dev_data, submission.fence);
if (pFence) {
pFence->state = FENCE_RETIRED;
}
pQueue->submissions.pop_front();
pQueue->seq++;
}
// Roll other queues forward to the highest seq we saw a wait for
for (auto qs : otherQueueSeqs) {
skip_call |= RetireWorkOnQueue(dev_data, getQueueNode(dev_data, qs.first), qs.second);
}
return skip_call;
}
// Submit a fence to a queue, delimiting previous fences and previous untracked
// work by it.
static void
SubmitFence(QUEUE_NODE *pQueue, FENCE_NODE *pFence, uint64_t submitCount)
{
pFence->state = FENCE_INFLIGHT;
pFence->signaler.first = pQueue->queue;
pFence->signaler.second = pQueue->seq + pQueue->submissions.size() + submitCount;
}
static bool validateCommandBufferSimultaneousUse(layer_data *dev_data, GLOBAL_CB_NODE *pCB) {
bool skip_call = false;
if (dev_data->globalInFlightCmdBuffers.count(pCB->commandBuffer) &&
!(pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_CB_SIMULTANEOUS_USE, "DS",
"Command Buffer 0x%" PRIx64 " is already in use and is not marked for simultaneous use.",
reinterpret_cast<uint64_t>(pCB->commandBuffer));
}
return skip_call;
}
static bool validateCommandBufferState(layer_data *dev_data, GLOBAL_CB_NODE *pCB) {
bool skip_call = false;
// Validate ONE_TIME_SUBMIT_BIT CB is not being submitted more than once
if ((pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) && (pCB->submitCount > 1)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
0, __LINE__, DRAWSTATE_COMMAND_BUFFER_SINGLE_SUBMIT_VIOLATION, "DS",
"CB 0x%" PRIxLEAST64 " was begun w/ VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT "
"set, but has been submitted 0x%" PRIxLEAST64 " times.",
(uint64_t)(pCB->commandBuffer), pCB->submitCount);
}
// Validate that cmd buffers have been updated
if (CB_RECORDED != pCB->state) {
if (CB_INVALID == pCB->state) {
// Inform app of reason CB invalid
for (auto obj : pCB->broken_bindings) {
const char *type_str = object_type_to_string(obj.type);
// Descriptor sets are a special case that can be either destroyed or updated to invalidated a CB
const char *cause_str =
(obj.type == VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT) ? "destroyed or updated" : "destroyed";
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"You are submitting command buffer 0x%" PRIxLEAST64 " that is invalid because bound %s 0x%" PRIxLEAST64
" was %s.",
reinterpret_cast<uint64_t &>(pCB->commandBuffer), type_str, obj.handle, cause_str);
}
} else { // Flag error for using CB w/o vkEndCommandBuffer() called
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)(pCB->commandBuffer), __LINE__, DRAWSTATE_NO_END_COMMAND_BUFFER, "DS",
"You must call vkEndCommandBuffer() on CB 0x%" PRIxLEAST64 " before this call to vkQueueSubmit()!",
(uint64_t)(pCB->commandBuffer));
}
}
return skip_call;
}
// Validate that queueFamilyIndices of primary command buffers match this queue
// Secondary command buffers were previously validated in vkCmdExecuteCommands().
static bool validateQueueFamilyIndices(layer_data *dev_data, GLOBAL_CB_NODE *pCB, VkQueue queue) {
bool skip_call = false;
auto pPool = getCommandPoolNode(dev_data, pCB->createInfo.commandPool);
auto queue_node = getQueueNode(dev_data, queue);
if (pPool && queue_node && (pPool->queueFamilyIndex != queue_node->queueFamilyIndex)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_QUEUE_FAMILY, "DS",
"vkQueueSubmit: Primary command buffer 0x%" PRIxLEAST64
" created in queue family %d is being submitted on queue 0x%" PRIxLEAST64 " from queue family %d.",
reinterpret_cast<uint64_t>(pCB->commandBuffer), pPool->queueFamilyIndex,
reinterpret_cast<uint64_t>(queue), queue_node->queueFamilyIndex);
}
return skip_call;
}
static bool validatePrimaryCommandBufferState(layer_data *dev_data, GLOBAL_CB_NODE *pCB) {
// Track in-use for resources off of primary and any secondary CBs
bool skip_call = false;
// If USAGE_SIMULTANEOUS_USE_BIT not set then CB cannot already be executing
// on device
skip_call |= validateCommandBufferSimultaneousUse(dev_data, pCB);
skip_call |= validateAndIncrementResources(dev_data, pCB);
if (!pCB->secondaryCommandBuffers.empty()) {
for (auto secondaryCmdBuffer : pCB->secondaryCommandBuffers) {
GLOBAL_CB_NODE *pSubCB = getCBNode(dev_data, secondaryCmdBuffer);
skip_call |= validateAndIncrementResources(dev_data, pSubCB);
if ((pSubCB->primaryCommandBuffer != pCB->commandBuffer) &&
!(pSubCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_COMMAND_BUFFER_SINGLE_SUBMIT_VIOLATION, "DS",
"CB 0x%" PRIxLEAST64 " was submitted with secondary buffer 0x%" PRIxLEAST64
" but that buffer has subsequently been bound to "
"primary cmd buffer 0x%" PRIxLEAST64
" and it does not have VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set.",
reinterpret_cast<uint64_t>(pCB->commandBuffer), reinterpret_cast<uint64_t>(secondaryCmdBuffer),
reinterpret_cast<uint64_t>(pSubCB->primaryCommandBuffer));
}
}
}
skip_call |= validateCommandBufferState(dev_data, pCB);
return skip_call;
}
static bool
ValidateFenceForSubmit(layer_data *dev_data, FENCE_NODE *pFence)
{
bool skip_call = false;
if (pFence) {
if (pFence->state == FENCE_INFLIGHT) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
(uint64_t)(pFence->fence), __LINE__, DRAWSTATE_INVALID_FENCE, "DS",
"Fence 0x%" PRIx64 " is already in use by another submission.", (uint64_t)(pFence->fence));
}
else if (pFence->state == FENCE_RETIRED) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
reinterpret_cast<uint64_t &>(pFence->fence), __LINE__, MEMTRACK_INVALID_FENCE_STATE, "MEM",
"Fence 0x%" PRIxLEAST64 " submitted in SIGNALED state. Fences must be reset before being submitted",
reinterpret_cast<uint64_t &>(pFence->fence));
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL
QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
std::unique_lock<std::mutex> lock(global_lock);
auto pQueue = getQueueNode(dev_data, queue);
auto pFence = getFenceNode(dev_data, fence);
skip_call |= ValidateFenceForSubmit(dev_data, pFence);
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
// TODO : Review these old print functions and clean up as appropriate
print_mem_list(dev_data);
printCBList(dev_data);
// Mark the fence in-use.
if (pFence) {
SubmitFence(pQueue, pFence, std::max(1u, submitCount));
}
// Now verify each individual submit
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
vector<SEMAPHORE_WAIT> semaphore_waits;
vector<VkSemaphore> semaphore_signals;
for (uint32_t i = 0; i < submit->waitSemaphoreCount; ++i) {
VkSemaphore semaphore = submit->pWaitSemaphores[i];
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
if (pSemaphore) {
if (pSemaphore->signaled) {
if (pSemaphore->signaler.first != VK_NULL_HANDLE) {
semaphore_waits.push_back({semaphore, pSemaphore->signaler.first, pSemaphore->signaler.second});
pSemaphore->in_use.fetch_add(1);
}
pSemaphore->signaler.first = VK_NULL_HANDLE;
pSemaphore->signaled = false;
} else {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<const uint64_t &>(semaphore), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"Queue 0x%" PRIx64 " is waiting on semaphore 0x%" PRIx64 " that has no way to be signaled.",
reinterpret_cast<uint64_t &>(queue), reinterpret_cast<const uint64_t &>(semaphore));
}
}
}
for (uint32_t i = 0; i < submit->signalSemaphoreCount; ++i) {
VkSemaphore semaphore = submit->pSignalSemaphores[i];
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
if (pSemaphore) {
if (pSemaphore->signaled) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<const uint64_t &>(semaphore), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"Queue 0x%" PRIx64 " is signaling semaphore 0x%" PRIx64
" that has already been signaled but not waited on by queue 0x%" PRIx64 ".",
reinterpret_cast<uint64_t &>(queue), reinterpret_cast<const uint64_t &>(semaphore),
reinterpret_cast<uint64_t &>(pSemaphore->signaler.first));
} else {
pSemaphore->signaler.first = queue;
pSemaphore->signaler.second = pQueue->seq + pQueue->submissions.size() + 1;
pSemaphore->signaled = true;
pSemaphore->in_use.fetch_add(1);
semaphore_signals.push_back(semaphore);
}
}
}
std::vector<VkCommandBuffer> cbs;
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto pCBNode = getCBNode(dev_data, submit->pCommandBuffers[i]);
skip_call |= ValidateCmdBufImageLayouts(dev_data, pCBNode);
if (pCBNode) {
cbs.push_back(submit->pCommandBuffers[i]);
for (auto secondaryCmdBuffer : pCBNode->secondaryCommandBuffers) {
cbs.push_back(secondaryCmdBuffer);
}
pCBNode->submitCount++; // increment submit count
skip_call |= validatePrimaryCommandBufferState(dev_data, pCBNode);
skip_call |= validateQueueFamilyIndices(dev_data, pCBNode, queue);
// Call submit-time functions to validate/update state
for (auto &function : pCBNode->validate_functions) {
skip_call |= function();
}
for (auto &function : pCBNode->eventUpdates) {
skip_call |= function(queue);
}
for (auto &function : pCBNode->queryUpdates) {
skip_call |= function(queue);
}
}
}
pQueue->submissions.emplace_back(cbs, semaphore_waits, semaphore_signals,
submit_idx == submitCount - 1 ? fence : VK_NULL_HANDLE);
}
if (pFence && !submitCount) {
// If no submissions, but just dropping a fence on the end of the queue,
// record an empty submission with just the fence, so we can determine
// its completion.
pQueue->submissions.emplace_back(std::vector<VkCommandBuffer>(),
std::vector<SEMAPHORE_WAIT>(),
std::vector<VkSemaphore>(),
fence);
}
lock.unlock();
if (!skip_call)
result = dev_data->device_dispatch_table->QueueSubmit(queue, submitCount, pSubmits, fence);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL AllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = my_data->device_dispatch_table->AllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
// TODO : Track allocations and overall size here
std::lock_guard<std::mutex> lock(global_lock);
add_mem_obj_info(my_data, device, *pMemory, pAllocateInfo);
print_mem_list(my_data);
return result;
}
VKAPI_ATTR void VKAPI_CALL
FreeMemory(VkDevice device, VkDeviceMemory mem, const VkAllocationCallbacks *pAllocator) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// From spec : A memory object is freed by calling vkFreeMemory() when it is no longer needed.
// Before freeing a memory object, an application must ensure the memory object is no longer
// in use by the device—for example by command buffers queued for execution. The memory need
// not yet be unbound from all images and buffers, but any further use of those images or
// buffers (on host or device) for anything other than destroying those objects will result in
// undefined behavior.
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = freeMemObjInfo(my_data, device, mem, false);
print_mem_list(my_data);
printCBList(my_data);
lock.unlock();
if (!skip_call) {
my_data->device_dispatch_table->FreeMemory(device, mem, pAllocator);
}
}
// Validate that given Map memory range is valid. This means that the memory should not already be mapped,
// and that the size of the map range should be:
// 1. Not zero
// 2. Within the size of the memory allocation
static bool ValidateMapMemRange(layer_data *my_data, VkDeviceMemory mem, VkDeviceSize offset, VkDeviceSize size) {
bool skip_call = false;
if (size == 0) {
skip_call = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)mem, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"VkMapMemory: Attempting to map memory range of size zero");
}
auto mem_element = my_data->memObjMap.find(mem);
if (mem_element != my_data->memObjMap.end()) {
auto mem_info = mem_element->second.get();
// It is an application error to call VkMapMemory on an object that is already mapped
if (mem_info->mem_range.size != 0) {
skip_call = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)mem, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"VkMapMemory: Attempting to map memory on an already-mapped object 0x%" PRIxLEAST64, (uint64_t)mem);
}
// Validate that offset + size is within object's allocationSize
if (size == VK_WHOLE_SIZE) {
if (offset >= mem_info->alloc_info.allocationSize) {
skip_call = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, (uint64_t)mem, __LINE__, MEMTRACK_INVALID_MAP,
"MEM", "Mapping Memory from 0x%" PRIx64 " to 0x%" PRIx64
" with size of VK_WHOLE_SIZE oversteps total array size 0x%" PRIx64,
offset, mem_info->alloc_info.allocationSize, mem_info->alloc_info.allocationSize);
}
} else {
if ((offset + size) > mem_info->alloc_info.allocationSize) {
skip_call =
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)mem, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"Mapping Memory from 0x%" PRIx64 " to 0x%" PRIx64 " oversteps total array size 0x%" PRIx64, offset,
size + offset, mem_info->alloc_info.allocationSize);
}
}
}
return skip_call;
}
static void storeMemRanges(layer_data *my_data, VkDeviceMemory mem, VkDeviceSize offset, VkDeviceSize size) {
auto mem_info = getMemObjInfo(my_data, mem);
if (mem_info) {
mem_info->mem_range.offset = offset;
mem_info->mem_range.size = size;
}
}
static bool deleteMemRanges(layer_data *my_data, VkDeviceMemory mem) {
bool skip_call = false;
auto mem_info = getMemObjInfo(my_data, mem);
if (mem_info) {
if (!mem_info->mem_range.size) {
// Valid Usage: memory must currently be mapped
skip_call = log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)mem, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"Unmapping Memory without memory being mapped: mem obj 0x%" PRIxLEAST64, (uint64_t)mem);
}
mem_info->mem_range.size = 0;
if (mem_info->shadow_copy) {
free(mem_info->shadow_copy_base);
mem_info->shadow_copy_base = 0;
mem_info->shadow_copy = 0;
}
}
return skip_call;
}
// Guard value for pad data
static char NoncoherentMemoryFillValue = 0xb;
static void initializeAndTrackMemory(layer_data *dev_data, VkDeviceMemory mem, VkDeviceSize offset, VkDeviceSize size,
void **ppData) {
auto mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
mem_info->p_driver_data = *ppData;
uint32_t index = mem_info->alloc_info.memoryTypeIndex;
if (dev_data->phys_dev_mem_props.memoryTypes[index].propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) {
mem_info->shadow_copy = 0;
} else {
if (size == VK_WHOLE_SIZE) {
size = mem_info->alloc_info.allocationSize - offset;
}
mem_info->shadow_pad_size = dev_data->phys_dev_properties.properties.limits.minMemoryMapAlignment;
assert(vk_safe_modulo(mem_info->shadow_pad_size,
dev_data->phys_dev_properties.properties.limits.minMemoryMapAlignment) == 0);
// Ensure start of mapped region reflects hardware alignment constraints
uint64_t map_alignment = dev_data->phys_dev_properties.properties.limits.minMemoryMapAlignment;
// From spec: (ppData - offset) must be aligned to at least limits::minMemoryMapAlignment.
uint64_t start_offset = offset % map_alignment;
// Data passed to driver will be wrapped by a guardband of data to detect over- or under-writes.
mem_info->shadow_copy_base = malloc(2 * mem_info->shadow_pad_size + size + map_alignment + start_offset);
mem_info->shadow_copy =
reinterpret_cast<char *>((reinterpret_cast<uintptr_t>(mem_info->shadow_copy_base) + map_alignment) &
~(map_alignment - 1)) + start_offset;
assert(vk_safe_modulo(reinterpret_cast<uintptr_t>(mem_info->shadow_copy) + mem_info->shadow_pad_size - start_offset,
map_alignment) == 0);
memset(mem_info->shadow_copy, NoncoherentMemoryFillValue, 2 * mem_info->shadow_pad_size + size);
*ppData = static_cast<char *>(mem_info->shadow_copy) + mem_info->shadow_pad_size;
}
}
}
// Verify that state for fence being waited on is appropriate. That is,
// a fence being waited on should not already be signaled and
// it should have been submitted on a queue or during acquire next image
static inline bool verifyWaitFenceState(layer_data *dev_data, VkFence fence, const char *apiCall) {
bool skip_call = false;
auto pFence = getFenceNode(dev_data, fence);
if (pFence) {
if (pFence->state == FENCE_UNSIGNALED) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
reinterpret_cast<uint64_t &>(fence), __LINE__, MEMTRACK_INVALID_FENCE_STATE, "MEM",
"%s called for fence 0x%" PRIxLEAST64 " which has not been submitted on a Queue or during "
"acquire next image.",
apiCall, reinterpret_cast<uint64_t &>(fence));
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL
WaitForFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
// Verify fence status of submitted fences
std::unique_lock<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < fenceCount; i++) {
skip_call |= verifyWaitFenceState(dev_data, pFences[i], "vkWaitForFences");
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->WaitForFences(device, fenceCount, pFences, waitAll, timeout);
if (result == VK_SUCCESS) {
lock.lock();
// When we know that all fences are complete we can clean/remove their CBs
if (waitAll || fenceCount == 1) {
for (uint32_t i = 0; i < fenceCount; i++) {
auto pFence = getFenceNode(dev_data, pFences[i]);
if (pFence->signaler.first != VK_NULL_HANDLE) {
skip_call |= RetireWorkOnQueue(dev_data,
getQueueNode(dev_data, pFence->signaler.first),
pFence->signaler.second);
}
}
}
// NOTE : Alternate case not handled here is when some fences have completed. In
// this case for app to guarantee which fences completed it will have to call
// vkGetFenceStatus() at which point we'll clean/remove their CBs if complete.
lock.unlock();
}
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL GetFenceStatus(VkDevice device, VkFence fence) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
skip_call = verifyWaitFenceState(dev_data, fence, "vkGetFenceStatus");
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->GetFenceStatus(device, fence);
lock.lock();
if (result == VK_SUCCESS) {
auto pFence = getFenceNode(dev_data, fence);
if (pFence->signaler.first != VK_NULL_HANDLE) {
skip_call |= RetireWorkOnQueue(dev_data,
getQueueNode(dev_data, pFence->signaler.first),
pFence->signaler.second);
}
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
return result;
}
VKAPI_ATTR void VKAPI_CALL GetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex,
VkQueue *pQueue) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->GetDeviceQueue(device, queueFamilyIndex, queueIndex, pQueue);
std::lock_guard<std::mutex> lock(global_lock);
// Add queue to tracking set only if it is new
auto result = dev_data->queues.emplace(*pQueue);
if (result.second == true) {
QUEUE_NODE *pQNode = &dev_data->queueMap[*pQueue];
pQNode->queue = *pQueue;
pQNode->queueFamilyIndex = queueFamilyIndex;
pQNode->seq = 0;
}
}
VKAPI_ATTR VkResult VKAPI_CALL QueueWaitIdle(VkQueue queue) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto pQueue = getQueueNode(dev_data, queue);
skip_call |= RetireWorkOnQueue(dev_data, pQueue, pQueue->seq + pQueue->submissions.size());
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->QueueWaitIdle(queue);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL DeviceWaitIdle(VkDevice device) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
for (auto & queue : dev_data->queueMap) {
skip_call |= RetireWorkOnQueue(dev_data, &queue.second, queue.second.seq + queue.second.submissions.size());
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->DeviceWaitIdle(device);
return result;
}
VKAPI_ATTR void VKAPI_CALL DestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto fence_pair = dev_data->fenceMap.find(fence);
if (fence_pair != dev_data->fenceMap.end()) {
if (fence_pair->second.state == FENCE_INFLIGHT) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
(uint64_t)(fence), __LINE__, DRAWSTATE_INVALID_FENCE, "DS", "Fence 0x%" PRIx64 " is in use.",
(uint64_t)(fence));
}
dev_data->fenceMap.erase(fence_pair);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->DestroyFence(device, fence, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto item = dev_data->semaphoreMap.find(semaphore);
if (item != dev_data->semaphoreMap.end()) {
if (item->second.in_use.load()) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<uint64_t &>(semaphore), __LINE__, DRAWSTATE_OBJECT_INUSE, "DS",
"Cannot delete semaphore 0x%" PRIx64 " which is in use.", reinterpret_cast<uint64_t &>(semaphore));
}
if (!skip_call) {
dev_data->semaphoreMap.erase(semaphore);
}
}
lock.unlock();
if (!skip_call) {
dev_data->device_dispatch_table->DestroySemaphore(device, semaphore, pAllocator);
}
}
VKAPI_ATTR void VKAPI_CALL DestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto event_node = getEventNode(dev_data, event);
if (event_node) {
if (event_node->in_use.load()) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
reinterpret_cast<uint64_t &>(event), __LINE__, DRAWSTATE_OBJECT_INUSE, "DS",
"Cannot delete event 0x%" PRIx64 " which is in use by a command buffer.", reinterpret_cast<uint64_t &>(event));
}
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(event_node->cb_bindings,
{reinterpret_cast<uint64_t &>(event), VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT});
dev_data->eventMap.erase(event);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->DestroyEvent(device, event, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// TODO : Add detection for an in-flight queryPool
std::unique_lock<std::mutex> lock(global_lock);
auto qp_node = getQueryPoolNode(dev_data, queryPool);
if (qp_node) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(qp_node->cb_bindings,
{reinterpret_cast<uint64_t &>(queryPool), VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT});
dev_data->queryPoolMap.erase(queryPool);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyQueryPool(device, queryPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL GetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery,
uint32_t queryCount, size_t dataSize, void *pData, VkDeviceSize stride,
VkQueryResultFlags flags) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
unordered_map<QueryObject, vector<VkCommandBuffer>> queriesInFlight;
std::unique_lock<std::mutex> lock(global_lock);
for (auto cmdBuffer : dev_data->globalInFlightCmdBuffers) {
auto pCB = getCBNode(dev_data, cmdBuffer);
for (auto queryStatePair : pCB->queryToStateMap) {
queriesInFlight[queryStatePair.first].push_back(cmdBuffer);
}
}
bool skip_call = false;
for (uint32_t i = 0; i < queryCount; ++i) {
QueryObject query = {queryPool, firstQuery + i};
auto queryElement = queriesInFlight.find(query);
auto queryToStateElement = dev_data->queryToStateMap.find(query);
if (queryToStateElement != dev_data->queryToStateMap.end()) {
// Available and in flight
if (queryElement != queriesInFlight.end() && queryToStateElement != dev_data->queryToStateMap.end() &&
queryToStateElement->second) {
for (auto cmdBuffer : queryElement->second) {
auto pCB = getCBNode(dev_data, cmdBuffer);
auto queryEventElement = pCB->waitedEventsBeforeQueryReset.find(query);
if (queryEventElement == pCB->waitedEventsBeforeQueryReset.end()) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, 0, __LINE__, DRAWSTATE_INVALID_QUERY, "DS",
"Cannot get query results on queryPool 0x%" PRIx64 " with index %d which is in flight.",
(uint64_t)(queryPool), firstQuery + i);
} else {
for (auto event : queryEventElement->second) {
dev_data->eventMap[event].needsSignaled = true;
}
}
}
// Unavailable and in flight
} else if (queryElement != queriesInFlight.end() && queryToStateElement != dev_data->queryToStateMap.end() &&
!queryToStateElement->second) {
// TODO : Can there be the same query in use by multiple command buffers in flight?
bool make_available = false;
for (auto cmdBuffer : queryElement->second) {
auto pCB = getCBNode(dev_data, cmdBuffer);
make_available |= pCB->queryToStateMap[query];
}
if (!(((flags & VK_QUERY_RESULT_PARTIAL_BIT) || (flags & VK_QUERY_RESULT_WAIT_BIT)) && make_available)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, 0, __LINE__, DRAWSTATE_INVALID_QUERY, "DS",
"Cannot get query results on queryPool 0x%" PRIx64 " with index %d which is unavailable.",
(uint64_t)(queryPool), firstQuery + i);
}
// Unavailable
} else if (queryToStateElement != dev_data->queryToStateMap.end() && !queryToStateElement->second) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, 0, __LINE__, DRAWSTATE_INVALID_QUERY, "DS",
"Cannot get query results on queryPool 0x%" PRIx64 " with index %d which is unavailable.",
(uint64_t)(queryPool), firstQuery + i);
// Unitialized
} else if (queryToStateElement == dev_data->queryToStateMap.end()) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, 0, __LINE__, DRAWSTATE_INVALID_QUERY, "DS",
"Cannot get query results on queryPool 0x%" PRIx64
" with index %d as data has not been collected for this index.",
(uint64_t)(queryPool), firstQuery + i);
}
}
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
return dev_data->device_dispatch_table->GetQueryPoolResults(device, queryPool, firstQuery, queryCount, dataSize, pData, stride,
flags);
}
static bool validateIdleBuffer(const layer_data *my_data, VkBuffer buffer) {
bool skip_call = false;
auto buffer_node = getBufferNode(my_data, buffer);
if (!buffer_node) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
(uint64_t)(buffer), __LINE__, DRAWSTATE_DOUBLE_DESTROY, "DS",
"Cannot free buffer 0x%" PRIxLEAST64 " that has not been allocated.", (uint64_t)(buffer));
} else {
if (buffer_node->in_use.load()) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
(uint64_t)(buffer), __LINE__, DRAWSTATE_OBJECT_INUSE, "DS",
"Cannot free buffer 0x%" PRIxLEAST64 " that is in use by a command buffer.", (uint64_t)(buffer));
}
}
return skip_call;
}
// Return true if given ranges intersect, else false
// Prereq : For both ranges, range->end - range->start > 0. This case should have already resulted
// in an error so not checking that here
// pad_ranges bool indicates a linear and non-linear comparison which requires padding
// In the case where padding is required, if an alias is encountered then a validation error is reported and skip_call
// may be set by the callback function so caller should merge in skip_call value if padding case is possible.
static bool rangesIntersect(layer_data const *dev_data, MEMORY_RANGE const *range1, MEMORY_RANGE const *range2, bool *skip_call) {
*skip_call = false;
auto r1_start = range1->start;
auto r1_end = range1->end;
auto r2_start = range2->start;
auto r2_end = range2->end;
VkDeviceSize pad_align = 1;
if (range1->linear != range2->linear) {
pad_align = dev_data->phys_dev_properties.properties.limits.bufferImageGranularity;
}
if ((r1_end & ~(pad_align - 1)) < (r2_start & ~(pad_align - 1)))
return false;
if ((r1_start & ~(pad_align - 1)) > (r2_end & ~(pad_align - 1)))
return false;
if (range1->linear != range2->linear) {
// In linear vs. non-linear case, it's an error to alias
const char *r1_linear_str = range1->linear ? "Linear" : "Non-linear";
const char *r1_type_str = range1->image ? "image" : "buffer";
const char *r2_linear_str = range2->linear ? "linear" : "non-linear";
const char *r2_type_str = range2->image ? "image" : "buffer";
auto obj_type = range1->image ? VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT : VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT;
*skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, obj_type, range1->handle, 0, MEMTRACK_INVALID_ALIASING,
"MEM", "%s %s 0x%" PRIx64 " is aliased with %s %s 0x%" PRIx64
" which is in violation of the Buffer-Image Granularity section of the Vulkan specification.",
r1_linear_str, r1_type_str, range1->handle, r2_linear_str, r2_type_str, range2->handle);
}
// Ranges intersect
return true;
}
// Simplified rangesIntersect that calls above function to check range1 for intersection with offset & end addresses
static bool rangesIntersect(layer_data const *dev_data, MEMORY_RANGE const *range1, VkDeviceSize offset, VkDeviceSize end) {
// Create a local MEMORY_RANGE struct to wrap offset/size
MEMORY_RANGE range_wrap;
// Synch linear with range1 to avoid padding and potential validation error case
range_wrap.linear = range1->linear;
range_wrap.start = offset;
range_wrap.end = end;
bool tmp_bool;
return rangesIntersect(dev_data, range1, &range_wrap, &tmp_bool);
}
// For given mem_info, set all ranges valid that intersect [offset-end] range
// TODO : For ranges where there is no alias, we may want to create new buffer ranges that are valid
static void SetMemRangesValid(layer_data const *dev_data, DEVICE_MEM_INFO *mem_info, VkDeviceSize offset, VkDeviceSize end) {
bool tmp_bool = false;
MEMORY_RANGE map_range;
map_range.linear = true;
map_range.start = offset;
map_range.end = end;
for (auto &handle_range_pair : mem_info->bound_ranges) {
if (rangesIntersect(dev_data, &handle_range_pair.second, &map_range, &tmp_bool)) {
// TODO : WARN here if tmp_bool true?
handle_range_pair.second.valid = true;
}
}
}
// Object with given handle is being bound to memory w/ given mem_info struct.
// Track the newly bound memory range with given memoryOffset
// Also scan any previous ranges, track aliased ranges with new range, and flag an error if a linear
// and non-linear range incorrectly overlap.
// Return true if an error is flagged and the user callback returns "true", otherwise false
// is_image indicates an image object, otherwise handle is for a buffer
// is_linear indicates a buffer or linear image
static bool InsertMemoryRange(layer_data const *dev_data, uint64_t handle, DEVICE_MEM_INFO *mem_info, VkDeviceSize memoryOffset,
VkMemoryRequirements memRequirements, bool is_image, bool is_linear) {
bool skip_call = false;
MEMORY_RANGE range;
range.image = is_image;
range.handle = handle;
range.linear = is_linear;
range.valid = mem_info->global_valid;
range.memory = mem_info->mem;
range.start = memoryOffset;
range.size = memRequirements.size;
range.end = memoryOffset + memRequirements.size - 1;
range.aliases.clear();
// Update Memory aliasing
// Save aliase ranges so we can copy into final map entry below. Can't do it in loop b/c we don't yet have final ptr. If we
// inserted into map before loop to get the final ptr, then we may enter loop when not needed & we check range against itself
std::unordered_set<MEMORY_RANGE *> tmp_alias_ranges;
for (auto &obj_range_pair : mem_info->bound_ranges) {
auto check_range = &obj_range_pair.second;
bool intersection_error = false;
if (rangesIntersect(dev_data, &range, check_range, &intersection_error)) {
skip_call |= intersection_error;
range.aliases.insert(check_range);
tmp_alias_ranges.insert(check_range);
}
}
mem_info->bound_ranges[handle] = std::move(range);
for (auto tmp_range : tmp_alias_ranges) {
tmp_range->aliases.insert(&mem_info->bound_ranges[handle]);
}
if (is_image)
mem_info->bound_images.insert(handle);
else
mem_info->bound_buffers.insert(handle);
return skip_call;
}
static bool InsertImageMemoryRange(layer_data const *dev_data, VkImage image, DEVICE_MEM_INFO *mem_info, VkDeviceSize mem_offset,
VkMemoryRequirements mem_reqs, bool is_linear) {
return InsertMemoryRange(dev_data, reinterpret_cast<uint64_t &>(image), mem_info, mem_offset, mem_reqs, true, is_linear);
}
static bool InsertBufferMemoryRange(layer_data const *dev_data, VkBuffer buffer, DEVICE_MEM_INFO *mem_info, VkDeviceSize mem_offset,
VkMemoryRequirements mem_reqs) {
return InsertMemoryRange(dev_data, reinterpret_cast<uint64_t &>(buffer), mem_info, mem_offset, mem_reqs, false, true);
}
// Remove MEMORY_RANGE struct for give handle from bound_ranges of mem_info
// is_image indicates if handle is for image or buffer
// This function will also remove the handle-to-index mapping from the appropriate
// map and clean up any aliases for range being removed.
static void RemoveMemoryRange(uint64_t handle, DEVICE_MEM_INFO *mem_info, bool is_image) {
auto erase_range = &mem_info->bound_ranges[handle];
for (auto alias_range : erase_range->aliases) {
alias_range->aliases.erase(erase_range);
}
erase_range->aliases.clear();
mem_info->bound_ranges.erase(handle);
if (is_image)
mem_info->bound_images.erase(handle);
else
mem_info->bound_buffers.erase(handle);
}
static void RemoveBufferMemoryRange(uint64_t handle, DEVICE_MEM_INFO *mem_info) { RemoveMemoryRange(handle, mem_info, false); }
static void RemoveImageMemoryRange(uint64_t handle, DEVICE_MEM_INFO *mem_info) { RemoveMemoryRange(handle, mem_info, true); }
VKAPI_ATTR void VKAPI_CALL DestroyBuffer(VkDevice device, VkBuffer buffer,
const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
if (!validateIdleBuffer(dev_data, buffer)) {
// Clean up memory binding and range information for buffer
auto buff_node = getBufferNode(dev_data, buffer);
if (buff_node) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(buff_node->cb_bindings,
{reinterpret_cast<uint64_t &>(buff_node->buffer), VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT});
auto mem_info = getMemObjInfo(dev_data, buff_node->mem);
if (mem_info) {
RemoveBufferMemoryRange(reinterpret_cast<uint64_t &>(buffer), mem_info);
}
clear_object_binding(dev_data, reinterpret_cast<uint64_t &>(buffer), VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT);
dev_data->bufferMap.erase(buff_node->buffer);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyBuffer(device, buffer, pAllocator);
}
}
VKAPI_ATTR void VKAPI_CALL
DestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto item = dev_data->bufferViewMap.find(bufferView);
if (item != dev_data->bufferViewMap.end()) {
dev_data->bufferViewMap.erase(item);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyBufferView(device, bufferView, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL DestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto img_node = getImageNode(dev_data, image);
if (img_node) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(img_node->cb_bindings,
{reinterpret_cast<uint64_t &>(img_node->image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT});
// Clean up memory mapping, bindings and range references for image
auto mem_info = getMemObjInfo(dev_data, img_node->mem);
if (mem_info) {
RemoveImageMemoryRange(reinterpret_cast<uint64_t &>(image), mem_info);
clear_object_binding(dev_data, reinterpret_cast<uint64_t &>(image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT);
}
// Remove image from imageMap
dev_data->imageMap.erase(img_node->image);
}
const auto& subEntry = dev_data->imageSubresourceMap.find(image);
if (subEntry != dev_data->imageSubresourceMap.end()) {
for (const auto& pair : subEntry->second) {
dev_data->imageLayoutMap.erase(pair);
}
dev_data->imageSubresourceMap.erase(subEntry);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyImage(device, image, pAllocator);
}
static bool ValidateMemoryTypes(const layer_data *dev_data, const DEVICE_MEM_INFO *mem_info, const uint32_t memory_type_bits,
const char *funcName) {
bool skip_call = false;
if (((1 << mem_info->alloc_info.memoryTypeIndex) & memory_type_bits) == 0) {
skip_call = log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
reinterpret_cast<const uint64_t &>(mem_info->mem), __LINE__, MEMTRACK_INVALID_MEM_TYPE, "MT",
"%s(): MemoryRequirements->memoryTypeBits (0x%X) for this object type are not compatible with the memory "
"type (0x%X) of this memory object 0x%" PRIx64 ".",
funcName, memory_type_bits, mem_info->alloc_info.memoryTypeIndex, reinterpret_cast<const uint64_t &>(mem_info->mem));
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL
BindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory mem, VkDeviceSize memoryOffset) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
std::unique_lock<std::mutex> lock(global_lock);
// Track objects tied to memory
uint64_t buffer_handle = reinterpret_cast<uint64_t &>(buffer);
bool skip_call = set_mem_binding(dev_data, mem, buffer_handle, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, "vkBindBufferMemory");
auto buffer_node = getBufferNode(dev_data, buffer);
if (buffer_node) {
VkMemoryRequirements memRequirements;
dev_data->device_dispatch_table->GetBufferMemoryRequirements(device, buffer, &memRequirements);
buffer_node->mem = mem;
buffer_node->memOffset = memoryOffset;
buffer_node->memSize = memRequirements.size;
// Track and validate bound memory range information
auto mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
skip_call |= InsertBufferMemoryRange(dev_data, buffer, mem_info, memoryOffset, memRequirements);
skip_call |= ValidateMemoryTypes(dev_data, mem_info, memRequirements.memoryTypeBits, "BindBufferMemory");
}
// Validate memory requirements alignment
if (vk_safe_modulo(memoryOffset, memRequirements.alignment) != 0) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0,
__LINE__, DRAWSTATE_INVALID_BUFFER_MEMORY_OFFSET, "DS",
"vkBindBufferMemory(): memoryOffset is 0x%" PRIxLEAST64 " but must be an integer multiple of the "
"VkMemoryRequirements::alignment value 0x%" PRIxLEAST64
", returned from a call to vkGetBufferMemoryRequirements with buffer",
memoryOffset, memRequirements.alignment);
}
// Validate device limits alignments
static const VkBufferUsageFlagBits usage_list[3] = {
static_cast<VkBufferUsageFlagBits>(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT};
static const char *memory_type[3] = {"texel",
"uniform",
"storage"};
static const char *offset_name[3] = {
"minTexelBufferOffsetAlignment",
"minUniformBufferOffsetAlignment",
"minStorageBufferOffsetAlignment"
};
// Keep this one fresh!
const VkDeviceSize offset_requirement[3] = {
dev_data->phys_dev_properties.properties.limits.minTexelBufferOffsetAlignment,
dev_data->phys_dev_properties.properties.limits.minUniformBufferOffsetAlignment,
dev_data->phys_dev_properties.properties.limits.minStorageBufferOffsetAlignment
};
VkBufferUsageFlags usage = dev_data->bufferMap[buffer].get()->createInfo.usage;
for (int i = 0; i < 3; i++) {
if (usage & usage_list[i]) {
if (vk_safe_modulo(memoryOffset, offset_requirement[i]) != 0) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
0, __LINE__, DRAWSTATE_INVALID_TEXEL_BUFFER_OFFSET, "DS",
"vkBindBufferMemory(): %s memoryOffset is 0x%" PRIxLEAST64 " but must be a multiple of "
"device limit %s 0x%" PRIxLEAST64,
memory_type[i], memoryOffset, offset_name[i], offset_requirement[i]);
}
}
}
}
print_mem_list(dev_data);
lock.unlock();
if (!skip_call) {
result = dev_data->device_dispatch_table->BindBufferMemory(device, buffer, mem, memoryOffset);
}
return result;
}
VKAPI_ATTR void VKAPI_CALL
GetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// TODO : What to track here?
// Could potentially save returned mem requirements and validate values passed into BindBufferMemory
my_data->device_dispatch_table->GetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
VKAPI_ATTR void VKAPI_CALL
GetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements *pMemoryRequirements) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// TODO : What to track here?
// Could potentially save returned mem requirements and validate values passed into BindImageMemory
my_data->device_dispatch_table->GetImageMemoryRequirements(device, image, pMemoryRequirements);
}
VKAPI_ATTR void VKAPI_CALL
DestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks *pAllocator) {
// TODO : Clean up any internal data structures using this obj.
get_my_data_ptr(get_dispatch_key(device), layer_data_map)
->device_dispatch_table->DestroyImageView(device, imageView, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks *pAllocator) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
my_data->shaderModuleMap.erase(shaderModule);
lock.unlock();
my_data->device_dispatch_table->DestroyShaderModule(device, shaderModule, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// TODO : Add detection for in-flight pipeline
std::unique_lock<std::mutex> lock(global_lock);
auto pipe_node = getPipeline(dev_data, pipeline);
if (pipe_node) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(pipe_node->cb_bindings,
{reinterpret_cast<uint64_t &>(pipeline), VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT});
dev_data->pipelineMap.erase(pipeline);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyPipeline(device, pipeline, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
dev_data->pipelineLayoutMap.erase(pipelineLayout);
lock.unlock();
dev_data->device_dispatch_table->DestroyPipelineLayout(device, pipelineLayout, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// TODO : Add detection for in-flight sampler
std::unique_lock<std::mutex> lock(global_lock);
auto sampler_node = getSamplerNode(dev_data, sampler);
if (sampler_node) {
// Any bound cmd buffers are now invalid
invalidateCommandBuffers(sampler_node->cb_bindings,
{reinterpret_cast<uint64_t &>(sampler), VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT});
dev_data->samplerMap.erase(sampler);
}
lock.unlock();
dev_data->device_dispatch_table->DestroySampler(device, sampler, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks *pAllocator) {
// TODO : Clean up any internal data structures using this obj.
get_my_data_ptr(get_dispatch_key(device), layer_data_map)
->device_dispatch_table->DestroyDescriptorSetLayout(device, descriptorSetLayout, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks *pAllocator) {
// TODO : Clean up any internal data structures using this obj.
get_my_data_ptr(get_dispatch_key(device), layer_data_map)
->device_dispatch_table->DestroyDescriptorPool(device, descriptorPool, pAllocator);
}
// Verify cmdBuffer in given cb_node is not in global in-flight set, and return skip_call result
// If this is a secondary command buffer, then make sure its primary is also in-flight
// If primary is not in-flight, then remove secondary from global in-flight set
// This function is only valid at a point when cmdBuffer is being reset or freed
static bool checkCommandBufferInFlight(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const char *action) {
bool skip_call = false;
if (dev_data->globalInFlightCmdBuffers.count(cb_node->commandBuffer)) {
// Primary CB or secondary where primary is also in-flight is an error
if ((cb_node->createInfo.level != VK_COMMAND_BUFFER_LEVEL_SECONDARY) ||
(dev_data->globalInFlightCmdBuffers.count(cb_node->primaryCommandBuffer))) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<const uint64_t &>(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER_RESET, "DS",
"Attempt to %s command buffer (0x%" PRIxLEAST64 ") which is in use.", action,
reinterpret_cast<const uint64_t &>(cb_node->commandBuffer));
}
}
return skip_call;
}
// Iterate over all cmdBuffers in given commandPool and verify that each is not in use
static bool checkCommandBuffersInFlight(layer_data *dev_data, COMMAND_POOL_NODE *pPool, const char *action) {
bool skip_call = false;
for (auto cmd_buffer : pPool->commandBuffers) {
if (dev_data->globalInFlightCmdBuffers.count(cmd_buffer)) {
skip_call |= checkCommandBufferInFlight(dev_data, getCBNode(dev_data, cmd_buffer), action);
}
}
return skip_call;
}
static void clearCommandBuffersInFlight(layer_data *dev_data, COMMAND_POOL_NODE *pPool) {
for (auto cmd_buffer : pPool->commandBuffers) {
dev_data->globalInFlightCmdBuffers.erase(cmd_buffer);
}
}
VKAPI_ATTR void VKAPI_CALL
FreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < commandBufferCount; i++) {
auto cb_node = getCBNode(dev_data, pCommandBuffers[i]);
// Delete CB information structure, and remove from commandBufferMap
if (cb_node) {
skip_call |= checkCommandBufferInFlight(dev_data, cb_node, "free");
}
}
if (skip_call)
return;
auto pPool = getCommandPoolNode(dev_data, commandPool);
for (uint32_t i = 0; i < commandBufferCount; i++) {
auto cb_node = getCBNode(dev_data, pCommandBuffers[i]);
// Delete CB information structure, and remove from commandBufferMap
if (cb_node) {
dev_data->globalInFlightCmdBuffers.erase(cb_node->commandBuffer);
// reset prior to delete for data clean-up
resetCB(dev_data, cb_node->commandBuffer);
dev_data->commandBufferMap.erase(cb_node->commandBuffer);
delete cb_node;
}
// Remove commandBuffer reference from commandPoolMap
pPool->commandBuffers.remove(pCommandBuffers[i]);
}
printCBList(dev_data);
lock.unlock();
dev_data->device_dispatch_table->FreeCommandBuffers(device, commandPool, commandBufferCount, pCommandBuffers);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkCommandPool *pCommandPool) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateCommandPool(device, pCreateInfo, pAllocator, pCommandPool);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->commandPoolMap[*pCommandPool].createFlags = pCreateInfo->flags;
dev_data->commandPoolMap[*pCommandPool].queueFamilyIndex = pCreateInfo->queueFamilyIndex;
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkQueryPool *pQueryPool) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateQueryPool(device, pCreateInfo, pAllocator, pQueryPool);
if (result == VK_SUCCESS) {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->queryPoolMap[*pQueryPool].createInfo = *pCreateInfo;
}
return result;
}
// Destroy commandPool along with all of the commandBuffers allocated from that pool
VKAPI_ATTR void VKAPI_CALL
DestroyCommandPool(VkDevice device, VkCommandPool commandPool, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
// Verify that command buffers in pool are complete (not in-flight)
auto pPool = getCommandPoolNode(dev_data, commandPool);
skip_call |= checkCommandBuffersInFlight(dev_data, pPool, "destroy command pool with");
if (skip_call)
return;
// Must remove cmdpool from cmdpoolmap, after removing all cmdbuffers in its list from the commandBufferMap
clearCommandBuffersInFlight(dev_data, pPool);
for (auto cb : pPool->commandBuffers) {
clear_cmd_buf_and_mem_references(dev_data, cb);
auto cb_node = getCBNode(dev_data, cb);
// Remove references to this cb_node prior to delete
// TODO : Need better solution here, resetCB?
for (auto obj : cb_node->object_bindings) {
removeCommandBufferBinding(dev_data, &obj, cb_node);
}
for (auto framebuffer : cb_node->framebuffers) {
auto fb_node = getFramebuffer(dev_data, framebuffer);
if (fb_node)
fb_node->cb_bindings.erase(cb_node);
}
dev_data->commandBufferMap.erase(cb); // Remove this command buffer
delete cb_node; // delete CB info structure
}
dev_data->commandPoolMap.erase(commandPool);
lock.unlock();
dev_data->device_dispatch_table->DestroyCommandPool(device, commandPool, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL
ResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto pPool = getCommandPoolNode(dev_data, commandPool);
skip_call |= checkCommandBuffersInFlight(dev_data, pPool, "reset command pool with");
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->ResetCommandPool(device, commandPool, flags);
// Reset all of the CBs allocated from this pool
if (VK_SUCCESS == result) {
lock.lock();
clearCommandBuffersInFlight(dev_data, pPool);
for (auto cmdBuffer : pPool->commandBuffers) {
resetCB(dev_data, cmdBuffer);
}
lock.unlock();
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL ResetFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < fenceCount; ++i) {
auto pFence = getFenceNode(dev_data, pFences[i]);
if (pFence && pFence->state == FENCE_INFLIGHT) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
reinterpret_cast<const uint64_t &>(pFences[i]), __LINE__, DRAWSTATE_INVALID_FENCE, "DS",
"Fence 0x%" PRIx64 " is in use.", reinterpret_cast<const uint64_t &>(pFences[i]));
}
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->ResetFences(device, fenceCount, pFences);
if (result == VK_SUCCESS) {
lock.lock();
for (uint32_t i = 0; i < fenceCount; ++i) {
auto pFence = getFenceNode(dev_data, pFences[i]);
if (pFence) {
pFence->state = FENCE_UNSIGNALED;
}
}
lock.unlock();
}
return result;
}
// For given cb_nodes, invalidate them and track object causing invalidation
void invalidateCommandBuffers(std::unordered_set<GLOBAL_CB_NODE *> cb_nodes, VK_OBJECT obj) {
for (auto cb_node : cb_nodes) {
cb_node->state = CB_INVALID;
cb_node->broken_bindings.push_back(obj);
}
}
VKAPI_ATTR void VKAPI_CALL
DestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto fb_node = getFramebuffer(dev_data, framebuffer);
if (fb_node) {
invalidateCommandBuffers(fb_node->cb_bindings,
{reinterpret_cast<uint64_t &>(fb_node->framebuffer), VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT});
dev_data->frameBufferMap.erase(fb_node->framebuffer);
}
lock.unlock();
dev_data->device_dispatch_table->DestroyFramebuffer(device, framebuffer, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
dev_data->renderPassMap.erase(renderPass);
// TODO: leaking all the guts of the renderpass node here!
lock.unlock();
dev_data->device_dispatch_table->DestroyRenderPass(device, renderPass, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
// TODO : This doesn't create deep copy of pQueueFamilyIndices so need to fix that if/when we want that data to be valid
dev_data->bufferMap.insert(std::make_pair(*pBuffer, unique_ptr<BUFFER_NODE>(new BUFFER_NODE(*pBuffer, pCreateInfo))));
}
return result;
}
static bool PreCallValidateCreateBufferView(layer_data *dev_data, const VkBufferViewCreateInfo *pCreateInfo) {
bool skip_call = false;
BUFFER_NODE *buf_node = getBufferNode(dev_data, pCreateInfo->buffer);
// If this isn't a sparse buffer, it needs to have memory backing it at CreateBufferView time
if (buf_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buf_node, "vkCreateBufferView()");
// In order to create a valid buffer view, the buffer must have been created with at least one of the
// following flags: UNIFORM_TEXEL_BUFFER_BIT or STORAGE_TEXEL_BUFFER_BIT
skip_call |= ValidateBufferUsageFlags(dev_data, buf_node,
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
false, "vkCreateBufferView()", "VK_BUFFER_USAGE_[STORAGE|UNIFORM]_TEXEL_BUFFER_BIT");
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateBufferView(VkDevice device, const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBufferView *pView) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = PreCallValidateCreateBufferView(dev_data, pCreateInfo);
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->CreateBufferView(device, pCreateInfo, pAllocator, pView);
if (VK_SUCCESS == result) {
lock.lock();
dev_data->bufferViewMap[*pView] = unique_ptr<VkBufferViewCreateInfo>(new VkBufferViewCreateInfo(*pCreateInfo));
lock.unlock();
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateImage(device, pCreateInfo, pAllocator, pImage);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
IMAGE_LAYOUT_NODE image_node;
image_node.layout = pCreateInfo->initialLayout;
image_node.format = pCreateInfo->format;
dev_data->imageMap.insert(std::make_pair(*pImage, unique_ptr<IMAGE_NODE>(new IMAGE_NODE(*pImage, pCreateInfo))));
ImageSubresourcePair subpair = {*pImage, false, VkImageSubresource()};
dev_data->imageSubresourceMap[*pImage].push_back(subpair);
dev_data->imageLayoutMap[subpair] = image_node;
}
return result;
}
static void ResolveRemainingLevelsLayers(layer_data *dev_data, VkImageSubresourceRange *range, VkImage image) {
/* expects global_lock to be held by caller */
auto image_node = getImageNode(dev_data, image);
if (image_node) {
/* If the caller used the special values VK_REMAINING_MIP_LEVELS and
* VK_REMAINING_ARRAY_LAYERS, resolve them now in our internal state to
* the actual values.
*/
if (range->levelCount == VK_REMAINING_MIP_LEVELS) {
range->levelCount = image_node->createInfo.mipLevels - range->baseMipLevel;
}
if (range->layerCount == VK_REMAINING_ARRAY_LAYERS) {
range->layerCount = image_node->createInfo.arrayLayers - range->baseArrayLayer;
}
}
}
// Return the correct layer/level counts if the caller used the special
// values VK_REMAINING_MIP_LEVELS or VK_REMAINING_ARRAY_LAYERS.
static void ResolveRemainingLevelsLayers(layer_data *dev_data, uint32_t *levels, uint32_t *layers, VkImageSubresourceRange range,
VkImage image) {
/* expects global_lock to be held by caller */
*levels = range.levelCount;
*layers = range.layerCount;
auto image_node = getImageNode(dev_data, image);
if (image_node) {
if (range.levelCount == VK_REMAINING_MIP_LEVELS) {
*levels = image_node->createInfo.mipLevels - range.baseMipLevel;
}
if (range.layerCount == VK_REMAINING_ARRAY_LAYERS) {
*layers = image_node->createInfo.arrayLayers - range.baseArrayLayer;
}
}
}
static bool PreCallValidateCreateImageView(layer_data *dev_data, const VkImageViewCreateInfo *pCreateInfo) {
bool skip_call = false;
IMAGE_NODE *image_node = getImageNode(dev_data, pCreateInfo->image);
if (image_node) {
skip_call |= ValidateImageUsageFlags(
dev_data, image_node, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
false, "vkCreateImageView()",
"VK_IMAGE_USAGE_[SAMPLED|STORAGE|COLOR_ATTACHMENT|DEPTH_STENCIL_ATTACHMENT|INPUT_ATTACHMENT]_BIT");
// If this isn't a sparse image, it needs to have memory backing it at CreateImageView time
skip_call |= ValidateMemoryIsBoundToImage(dev_data, image_node, "vkCreateImageView()");
}
return skip_call;
}
static inline void PostCallRecordCreateImageView(layer_data *dev_data, const VkImageViewCreateInfo *pCreateInfo, VkImageView *pView) {
dev_data->imageViewMap[*pView] = unique_ptr<VkImageViewCreateInfo>(new VkImageViewCreateInfo(*pCreateInfo));
ResolveRemainingLevelsLayers(dev_data, &dev_data->imageViewMap[*pView].get()->subresourceRange, pCreateInfo->image);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateImageView(VkDevice device, const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImageView *pView) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = PreCallValidateCreateImageView(dev_data, pCreateInfo);
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->CreateImageView(device, pCreateInfo, pAllocator, pView);
if (VK_SUCCESS == result) {
lock.lock();
PostCallRecordCreateImageView(dev_data, pCreateInfo, pView);
lock.unlock();
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateFence(VkDevice device, const VkFenceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkFence *pFence) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateFence(device, pCreateInfo, pAllocator, pFence);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
auto &fence_node = dev_data->fenceMap[*pFence];
fence_node.fence = *pFence;
fence_node.createInfo = *pCreateInfo;
fence_node.state = (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) ? FENCE_RETIRED : FENCE_UNSIGNALED;
}
return result;
}
// TODO handle pipeline caches
VKAPI_ATTR VkResult VKAPI_CALL CreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreatePipelineCache(device, pCreateInfo, pAllocator, pPipelineCache);
return result;
}
VKAPI_ATTR void VKAPI_CALL
DestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->DestroyPipelineCache(device, pipelineCache, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL
GetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t *pDataSize, void *pData) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->GetPipelineCacheData(device, pipelineCache, pDataSize, pData);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
MergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache *pSrcCaches) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->MergePipelineCaches(device, dstCache, srcCacheCount, pSrcCaches);
return result;
}
// utility function to set collective state for pipeline
void set_pipeline_state(PIPELINE_NODE *pPipe) {
// If any attachment used by this pipeline has blendEnable, set top-level blendEnable
if (pPipe->graphicsPipelineCI.pColorBlendState) {
for (size_t i = 0; i < pPipe->attachments.size(); ++i) {
if (VK_TRUE == pPipe->attachments[i].blendEnable) {
if (((pPipe->attachments[i].dstAlphaBlendFactor >= VK_BLEND_FACTOR_CONSTANT_COLOR) &&
(pPipe->attachments[i].dstAlphaBlendFactor <= VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA)) ||
((pPipe->attachments[i].dstColorBlendFactor >= VK_BLEND_FACTOR_CONSTANT_COLOR) &&
(pPipe->attachments[i].dstColorBlendFactor <= VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA)) ||
((pPipe->attachments[i].srcAlphaBlendFactor >= VK_BLEND_FACTOR_CONSTANT_COLOR) &&
(pPipe->attachments[i].srcAlphaBlendFactor <= VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA)) ||
((pPipe->attachments[i].srcColorBlendFactor >= VK_BLEND_FACTOR_CONSTANT_COLOR) &&
(pPipe->attachments[i].srcColorBlendFactor <= VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA))) {
pPipe->blendConstantsEnabled = true;
}
}
}
}
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
VkResult result = VK_SUCCESS;
// TODO What to do with pipelineCache?
// The order of operations here is a little convoluted but gets the job done
// 1. Pipeline create state is first shadowed into PIPELINE_NODE struct
// 2. Create state is then validated (which uses flags setup during shadowing)
// 3. If everything looks good, we'll then create the pipeline and add NODE to pipelineMap
bool skip_call = false;
// TODO : Improve this data struct w/ unique_ptrs so cleanup below is automatic
vector<PIPELINE_NODE *> pPipeNode(count);
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
uint32_t i = 0;
std::unique_lock<std::mutex> lock(global_lock);
for (i = 0; i < count; i++) {
pPipeNode[i] = new PIPELINE_NODE;
pPipeNode[i]->initGraphicsPipeline(&pCreateInfos[i]);
pPipeNode[i]->render_pass_ci.initialize(getRenderPass(dev_data, pCreateInfos[i].renderPass)->pCreateInfo);
pPipeNode[i]->pipeline_layout = *getPipelineLayout(dev_data, pCreateInfos[i].layout);
skip_call |= verifyPipelineCreateState(dev_data, device, pPipeNode, i);
}
if (!skip_call) {
lock.unlock();
result = dev_data->device_dispatch_table->CreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines);
lock.lock();
for (i = 0; i < count; i++) {
pPipeNode[i]->pipeline = pPipelines[i];
dev_data->pipelineMap[pPipeNode[i]->pipeline] = pPipeNode[i];
}
lock.unlock();
} else {
for (i = 0; i < count; i++) {
delete pPipeNode[i];
}
lock.unlock();
return VK_ERROR_VALIDATION_FAILED_EXT;
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
VkResult result = VK_SUCCESS;
bool skip_call = false;
// TODO : Improve this data struct w/ unique_ptrs so cleanup below is automatic
vector<PIPELINE_NODE *> pPipeNode(count);
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
uint32_t i = 0;
std::unique_lock<std::mutex> lock(global_lock);
for (i = 0; i < count; i++) {
// TODO: Verify compute stage bits
// Create and initialize internal tracking data structure
pPipeNode[i] = new PIPELINE_NODE;
pPipeNode[i]->initComputePipeline(&pCreateInfos[i]);
pPipeNode[i]->pipeline_layout = *getPipelineLayout(dev_data, pCreateInfos[i].layout);
// memcpy(&pPipeNode[i]->computePipelineCI, (const void *)&pCreateInfos[i], sizeof(VkComputePipelineCreateInfo));
// TODO: Add Compute Pipeline Verification
skip_call |= !validate_compute_pipeline(dev_data->report_data, pPipeNode[i], &dev_data->phys_dev_properties.features,
dev_data->shaderModuleMap);
// skip_call |= verifyPipelineCreateState(dev_data, device, pPipeNode[i]);
}
if (!skip_call) {
lock.unlock();
result = dev_data->device_dispatch_table->CreateComputePipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines);
lock.lock();
for (i = 0; i < count; i++) {
pPipeNode[i]->pipeline = pPipelines[i];
dev_data->pipelineMap[pPipeNode[i]->pipeline] = pPipeNode[i];
}
lock.unlock();
} else {
for (i = 0; i < count; i++) {
// Clean up any locally allocated data structures
delete pPipeNode[i];
}
lock.unlock();
return VK_ERROR_VALIDATION_FAILED_EXT;
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateSampler(VkDevice device, const VkSamplerCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSampler *pSampler) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateSampler(device, pCreateInfo, pAllocator, pSampler);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->samplerMap[*pSampler] = unique_ptr<SAMPLER_NODE>(new SAMPLER_NODE(pSampler, pCreateInfo));
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateDescriptorSetLayout(device, pCreateInfo, pAllocator, pSetLayout);
if (VK_SUCCESS == result) {
// TODOSC : Capture layout bindings set
std::lock_guard<std::mutex> lock(global_lock);
dev_data->descriptorSetLayoutMap[*pSetLayout] =
new cvdescriptorset::DescriptorSetLayout(dev_data->report_data, pCreateInfo, *pSetLayout);
}
return result;
}
// Used by CreatePipelineLayout and CmdPushConstants.
// Note that the index argument is optional and only used by CreatePipelineLayout.
static bool validatePushConstantRange(const layer_data *dev_data, const uint32_t offset, const uint32_t size,
const char *caller_name, uint32_t index = 0) {
uint32_t const maxPushConstantsSize = dev_data->phys_dev_properties.properties.limits.maxPushConstantsSize;
bool skip_call = false;
// Check that offset + size don't exceed the max.
// Prevent arithetic overflow here by avoiding addition and testing in this order.
if ((offset >= maxPushConstantsSize) || (size > maxPushConstantsSize - offset)) {
// This is a pain just to adapt the log message to the caller, but better to sort it out only when there is a problem.
if (0 == strcmp(caller_name, "vkCreatePipelineLayout()")) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants index %u with offset %u and size %u that "
"exceeds this device's maxPushConstantSize of %u.",
caller_name, index, offset, size, maxPushConstantsSize);
} else if (0 == strcmp(caller_name, "vkCmdPushConstants()")) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants with offset %u and size %u that "
"exceeds this device's maxPushConstantSize of %u.",
caller_name, offset, size, maxPushConstantsSize);
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INTERNAL_ERROR, "DS", "%s caller not supported.", caller_name);
}
}
// size needs to be non-zero and a multiple of 4.
if ((size == 0) || ((size & 0x3) != 0)) {
if (0 == strcmp(caller_name, "vkCreatePipelineLayout()")) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants index %u with "
"size %u. Size must be greater than zero and a multiple of 4.",
caller_name, index, size);
} else if (0 == strcmp(caller_name, "vkCmdPushConstants()")) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants with "
"size %u. Size must be greater than zero and a multiple of 4.",
caller_name, size);
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INTERNAL_ERROR, "DS", "%s caller not supported.", caller_name);
}
}
// offset needs to be a multiple of 4.
if ((offset & 0x3) != 0) {
if (0 == strcmp(caller_name, "vkCreatePipelineLayout()")) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants index %u with "
"offset %u. Offset must be a multiple of 4.",
caller_name, index, offset);
} else if (0 == strcmp(caller_name, "vkCmdPushConstants()")) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "%s call has push constants with "
"offset %u. Offset must be a multiple of 4.",
caller_name, offset);
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INTERNAL_ERROR, "DS", "%s caller not supported.", caller_name);
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL CreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// Push Constant Range checks
uint32_t i = 0;
for (i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
skip_call |= validatePushConstantRange(dev_data, pCreateInfo->pPushConstantRanges[i].offset,
pCreateInfo->pPushConstantRanges[i].size, "vkCreatePipelineLayout()", i);
if (0 == pCreateInfo->pPushConstantRanges[i].stageFlags) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "vkCreatePipelineLayout() call has no stageFlags set.");
}
}
// Each range has been validated. Now check for overlap between ranges (if they are good).
if (!skip_call) {
uint32_t i, j;
for (i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
for (j = i + 1; j < pCreateInfo->pushConstantRangeCount; ++j) {
const uint32_t minA = pCreateInfo->pPushConstantRanges[i].offset;
const uint32_t maxA = minA + pCreateInfo->pPushConstantRanges[i].size;
const uint32_t minB = pCreateInfo->pPushConstantRanges[j].offset;
const uint32_t maxB = minB + pCreateInfo->pPushConstantRanges[j].size;
if ((minA <= minB && maxA > minB) || (minB <= minA && maxB > minA)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "vkCreatePipelineLayout() call has push constants with "
"overlapping ranges: %u:[%u, %u), %u:[%u, %u)",
i, minA, maxA, j, minB, maxB);
}
}
}
}
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->CreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
PIPELINE_LAYOUT_NODE &plNode = dev_data->pipelineLayoutMap[*pPipelineLayout];
plNode.layout = *pPipelineLayout;
plNode.set_layouts.resize(pCreateInfo->setLayoutCount);
for (i = 0; i < pCreateInfo->setLayoutCount; ++i) {
plNode.set_layouts[i] = getDescriptorSetLayout(dev_data, pCreateInfo->pSetLayouts[i]);
}
plNode.push_constant_ranges.resize(pCreateInfo->pushConstantRangeCount);
for (i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
plNode.push_constant_ranges[i] = pCreateInfo->pPushConstantRanges[i];
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkDescriptorPool *pDescriptorPool) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateDescriptorPool(device, pCreateInfo, pAllocator, pDescriptorPool);
if (VK_SUCCESS == result) {
// Insert this pool into Global Pool LL at head
if (log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT,
(uint64_t)*pDescriptorPool, __LINE__, DRAWSTATE_OUT_OF_MEMORY, "DS", "Created Descriptor Pool 0x%" PRIxLEAST64,
(uint64_t)*pDescriptorPool))
return VK_ERROR_VALIDATION_FAILED_EXT;
DESCRIPTOR_POOL_NODE *pNewNode = new DESCRIPTOR_POOL_NODE(*pDescriptorPool, pCreateInfo);
if (NULL == pNewNode) {
if (log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT,
(uint64_t)*pDescriptorPool, __LINE__, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate DESCRIPTOR_POOL_NODE in vkCreateDescriptorPool()"))
return VK_ERROR_VALIDATION_FAILED_EXT;
} else {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->descriptorPoolMap[*pDescriptorPool] = pNewNode;
}
} else {
// Need to do anything if pool create fails?
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
ResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->ResetDescriptorPool(device, descriptorPool, flags);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
clearDescriptorPool(dev_data, device, descriptorPool, flags);
}
return result;
}
// Ensure the pool contains enough descriptors and descriptor sets to satisfy
// an allocation request. Fills common_data with the total number of descriptors of each type required,
// as well as DescriptorSetLayout ptrs used for later update.
static bool PreCallValidateAllocateDescriptorSets(layer_data *dev_data, const VkDescriptorSetAllocateInfo *pAllocateInfo,
cvdescriptorset::AllocateDescriptorSetsData *common_data) {
// All state checks for AllocateDescriptorSets is done in single function
return cvdescriptorset::ValidateAllocateDescriptorSets(dev_data->report_data, pAllocateInfo, dev_data, common_data);
}
// Allocation state was good and call down chain was made so update state based on allocating descriptor sets
static void PostCallRecordAllocateDescriptorSets(layer_data *dev_data, const VkDescriptorSetAllocateInfo *pAllocateInfo,
VkDescriptorSet *pDescriptorSets,
const cvdescriptorset::AllocateDescriptorSetsData *common_data) {
// All the updates are contained in a single cvdescriptorset function
cvdescriptorset::PerformAllocateDescriptorSets(pAllocateInfo, pDescriptorSets, common_data, &dev_data->descriptorPoolMap,
&dev_data->setMap, dev_data);
}
VKAPI_ATTR VkResult VKAPI_CALL
AllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
cvdescriptorset::AllocateDescriptorSetsData common_data(pAllocateInfo->descriptorSetCount);
bool skip_call = PreCallValidateAllocateDescriptorSets(dev_data, pAllocateInfo, &common_data);
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->AllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets);
if (VK_SUCCESS == result) {
lock.lock();
PostCallRecordAllocateDescriptorSets(dev_data, pAllocateInfo, pDescriptorSets, &common_data);
lock.unlock();
}
return result;
}
// Verify state before freeing DescriptorSets
static bool PreCallValidateFreeDescriptorSets(const layer_data *dev_data, VkDescriptorPool pool, uint32_t count,
const VkDescriptorSet *descriptor_sets) {
bool skip_call = false;
// First make sure sets being destroyed are not currently in-use
for (uint32_t i = 0; i < count; ++i)
skip_call |= validateIdleDescriptorSet(dev_data, descriptor_sets[i], "vkFreeDescriptorSets");
DESCRIPTOR_POOL_NODE *pool_node = getPoolNode(dev_data, pool);
if (pool_node && !(VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT & pool_node->createInfo.flags)) {
// Can't Free from a NON_FREE pool
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT,
reinterpret_cast<uint64_t &>(pool), __LINE__, DRAWSTATE_CANT_FREE_FROM_NON_FREE_POOL, "DS",
"It is invalid to call vkFreeDescriptorSets() with a pool created without setting "
"VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT.");
}
return skip_call;
}
// Sets have been removed from the pool so update underlying state
static void PostCallRecordFreeDescriptorSets(layer_data *dev_data, VkDescriptorPool pool, uint32_t count,
const VkDescriptorSet *descriptor_sets) {
DESCRIPTOR_POOL_NODE *pool_state = getPoolNode(dev_data, pool);
// Update available descriptor sets in pool
pool_state->availableSets += count;
// For each freed descriptor add its resources back into the pool as available and remove from pool and setMap
for (uint32_t i = 0; i < count; ++i) {
auto set_state = dev_data->setMap[descriptor_sets[i]];
uint32_t type_index = 0, descriptor_count = 0;
for (uint32_t j = 0; j < set_state->GetBindingCount(); ++j) {
type_index = static_cast<uint32_t>(set_state->GetTypeFromIndex(j));
descriptor_count = set_state->GetDescriptorCountFromIndex(j);
pool_state->availableDescriptorTypeCount[type_index] += descriptor_count;
}
freeDescriptorSet(dev_data, set_state);
pool_state->sets.erase(set_state);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
FreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet *pDescriptorSets) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// Make sure that no sets being destroyed are in-flight
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = PreCallValidateFreeDescriptorSets(dev_data, descriptorPool, count, pDescriptorSets);
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->FreeDescriptorSets(device, descriptorPool, count, pDescriptorSets);
if (VK_SUCCESS == result) {
lock.lock();
PostCallRecordFreeDescriptorSets(dev_data, descriptorPool, count, pDescriptorSets);
lock.unlock();
}
return result;
}
// TODO : This is a Proof-of-concept for core validation architecture
// Really we'll want to break out these functions to separate files but
// keeping it all together here to prove out design
// PreCallValidate* handles validating all of the state prior to calling down chain to UpdateDescriptorSets()
static bool PreCallValidateUpdateDescriptorSets(layer_data *dev_data, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies) {
// First thing to do is perform map look-ups.
// NOTE : UpdateDescriptorSets is somewhat unique in that it's operating on a number of DescriptorSets
// so we can't just do a single map look-up up-front, but do them individually in functions below
// Now make call(s) that validate state, but don't perform state updates in this function
// Note, here DescriptorSets is unique in that we don't yet have an instance. Using a helper function in the
// namespace which will parse params and make calls into specific class instances
return cvdescriptorset::ValidateUpdateDescriptorSets(dev_data->report_data, dev_data, descriptorWriteCount, pDescriptorWrites,
descriptorCopyCount, pDescriptorCopies);
}
// PostCallRecord* handles recording state updates following call down chain to UpdateDescriptorSets()
static void PostCallRecordUpdateDescriptorSets(layer_data *dev_data, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies) {
cvdescriptorset::PerformUpdateDescriptorSets(dev_data, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount,
pDescriptorCopies);
}
VKAPI_ATTR void VKAPI_CALL
UpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) {
// Only map look-up at top level is for device-level layer_data
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = PreCallValidateUpdateDescriptorSets(dev_data, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount,
pDescriptorCopies);
lock.unlock();
if (!skip_call) {
dev_data->device_dispatch_table->UpdateDescriptorSets(device, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount,
pDescriptorCopies);
lock.lock();
// Since UpdateDescriptorSets() is void, nothing to check prior to updating state
PostCallRecordUpdateDescriptorSets(dev_data, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount,
pDescriptorCopies);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
AllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo *pCreateInfo, VkCommandBuffer *pCommandBuffer) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->AllocateCommandBuffers(device, pCreateInfo, pCommandBuffer);
if (VK_SUCCESS == result) {
std::unique_lock<std::mutex> lock(global_lock);
auto pPool = getCommandPoolNode(dev_data, pCreateInfo->commandPool);
if (pPool) {
for (uint32_t i = 0; i < pCreateInfo->commandBufferCount; i++) {
// Add command buffer to its commandPool map
pPool->commandBuffers.push_back(pCommandBuffer[i]);
GLOBAL_CB_NODE *pCB = new GLOBAL_CB_NODE;
// Add command buffer to map
dev_data->commandBufferMap[pCommandBuffer[i]] = pCB;
resetCB(dev_data, pCommandBuffer[i]);
pCB->createInfo = *pCreateInfo;
pCB->device = device;
}
}
printCBList(dev_data);
lock.unlock();
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
// Validate command buffer level
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
// This implicitly resets the Cmd Buffer so make sure any fence is done and then clear memory references
if (dev_data->globalInFlightCmdBuffers.count(commandBuffer)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, MEMTRACK_RESET_CB_WHILE_IN_FLIGHT, "MEM",
"Calling vkBeginCommandBuffer() on active CB 0x%p before it has completed. "
"You must check CB fence before this call.",
commandBuffer);
}
clear_cmd_buf_and_mem_references(dev_data, pCB);
if (pCB->createInfo.level != VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
// Secondary Command Buffer
const VkCommandBufferInheritanceInfo *pInfo = pBeginInfo->pInheritanceInfo;
if (!pInfo) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(commandBuffer), __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Secondary Command Buffer (0x%p) must have inheritance info.",
reinterpret_cast<void *>(commandBuffer));
} else {
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
if (!pInfo->renderPass) { // renderpass should NOT be null for a Secondary CB
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(commandBuffer), __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Secondary Command Buffers (0x%p) must specify a valid renderpass parameter.",
reinterpret_cast<void *>(commandBuffer));
}
if (!pInfo->framebuffer) { // framebuffer may be null for a Secondary CB, but this affects perf
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(commandBuffer), __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Secondary Command Buffers (0x%p) may perform better if a "
"valid framebuffer parameter is specified.",
reinterpret_cast<void *>(commandBuffer));
} else {
string errorString = "";
auto framebuffer = getFramebuffer(dev_data, pInfo->framebuffer);
if (framebuffer) {
if ((framebuffer->createInfo.renderPass != pInfo->renderPass) &&
!verify_renderpass_compatibility(dev_data, framebuffer->renderPassCreateInfo.ptr(),
getRenderPass(dev_data, pInfo->renderPass)->pCreateInfo,
errorString)) {
// renderPass that framebuffer was created with must be compatible with local renderPass
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, reinterpret_cast<uint64_t>(commandBuffer),
__LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE, "DS",
"vkBeginCommandBuffer(): Secondary Command "
"Buffer (0x%p) renderPass (0x%" PRIxLEAST64 ") is incompatible w/ framebuffer "
"(0x%" PRIxLEAST64 ") w/ render pass (0x%" PRIxLEAST64 ") due to: %s",
reinterpret_cast<void *>(commandBuffer), reinterpret_cast<const uint64_t &>(pInfo->renderPass),
reinterpret_cast<const uint64_t &>(pInfo->framebuffer),
reinterpret_cast<uint64_t &>(framebuffer->createInfo.renderPass), errorString.c_str());
}
// Connect this framebuffer to this cmdBuffer
framebuffer->cb_bindings.insert(pCB);
}
}
}
if ((pInfo->occlusionQueryEnable == VK_FALSE ||
dev_data->phys_dev_properties.features.occlusionQueryPrecise == VK_FALSE) &&
(pInfo->queryFlags & VK_QUERY_CONTROL_PRECISE_BIT)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, reinterpret_cast<uint64_t>(commandBuffer),
__LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Secondary Command Buffer (0x%p) must not have "
"VK_QUERY_CONTROL_PRECISE_BIT if occulusionQuery is disabled or the device does not "
"support precise occlusion queries.",
reinterpret_cast<void *>(commandBuffer));
}
}
if (pInfo && pInfo->renderPass != VK_NULL_HANDLE) {
auto renderPass = getRenderPass(dev_data, pInfo->renderPass);
if (renderPass) {
if (pInfo->subpass >= renderPass->pCreateInfo->subpassCount) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Secondary Command Buffers (0x%p) must has a subpass index (%d) "
"that is less than the number of subpasses (%d).",
(void *)commandBuffer, pInfo->subpass, renderPass->pCreateInfo->subpassCount);
}
}
}
}
if (CB_RECORDING == pCB->state) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkBeginCommandBuffer(): Cannot call Begin on CB (0x%" PRIxLEAST64
") in the RECORDING state. Must first call vkEndCommandBuffer().",
(uint64_t)commandBuffer);
} else if (CB_RECORDED == pCB->state || (CB_INVALID == pCB->state && CMD_END == pCB->cmds.back().type)) {
VkCommandPool cmdPool = pCB->createInfo.commandPool;
auto pPool = getCommandPoolNode(dev_data, cmdPool);
if (!(VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT & pPool->createFlags)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER_RESET, "DS",
"Call to vkBeginCommandBuffer() on command buffer (0x%" PRIxLEAST64
") attempts to implicitly reset cmdBuffer created from command pool (0x%" PRIxLEAST64
") that does NOT have the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT bit set.",
(uint64_t)commandBuffer, (uint64_t)cmdPool);
}
resetCB(dev_data, commandBuffer);
}
// Set updated state here in case implicit reset occurs above
pCB->state = CB_RECORDING;
pCB->beginInfo = *pBeginInfo;
if (pCB->beginInfo.pInheritanceInfo) {
pCB->inheritanceInfo = *(pCB->beginInfo.pInheritanceInfo);
pCB->beginInfo.pInheritanceInfo = &pCB->inheritanceInfo;
// If we are a secondary command-buffer and inheriting. Update the items we should inherit.
if ((pCB->createInfo.level != VK_COMMAND_BUFFER_LEVEL_PRIMARY) &&
(pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
pCB->activeRenderPass = getRenderPass(dev_data, pCB->beginInfo.pInheritanceInfo->renderPass);
pCB->activeSubpass = pCB->beginInfo.pInheritanceInfo->subpass;
pCB->framebuffers.insert(pCB->beginInfo.pInheritanceInfo->framebuffer);
}
}
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"In vkBeginCommandBuffer() and unable to find CommandBuffer Node for CB 0x%p!", (void *)commandBuffer);
}
lock.unlock();
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VkResult result = dev_data->device_dispatch_table->BeginCommandBuffer(commandBuffer, pBeginInfo);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL EndCommandBuffer(VkCommandBuffer commandBuffer) {
bool skip_call = false;
VkResult result = VK_SUCCESS;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if ((VK_COMMAND_BUFFER_LEVEL_PRIMARY == pCB->createInfo.level) || !(pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
// This needs spec clarification to update valid usage, see comments in PR:
// https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/pull/516#discussion_r63013756
skip_call |= insideRenderPass(dev_data, pCB, "vkEndCommandBuffer");
}
skip_call |= addCmd(dev_data, pCB, CMD_END, "vkEndCommandBuffer()");
for (auto query : pCB->activeQueries) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_QUERY, "DS",
"Ending command buffer with in progress query: queryPool 0x%" PRIx64 ", index %d",
(uint64_t)(query.pool), query.index);
}
}
if (!skip_call) {
lock.unlock();
result = dev_data->device_dispatch_table->EndCommandBuffer(commandBuffer);
lock.lock();
if (VK_SUCCESS == result) {
pCB->state = CB_RECORDED;
// Reset CB status flags
pCB->status = 0;
printCB(dev_data, commandBuffer);
}
} else {
result = VK_ERROR_VALIDATION_FAILED_EXT;
}
lock.unlock();
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
ResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
VkCommandPool cmdPool = pCB->createInfo.commandPool;
auto pPool = getCommandPoolNode(dev_data, cmdPool);
if (!(VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT & pPool->createFlags)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER_RESET, "DS",
"Attempt to reset command buffer (0x%" PRIxLEAST64 ") created from command pool (0x%" PRIxLEAST64
") that does NOT have the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT bit set.",
(uint64_t)commandBuffer, (uint64_t)cmdPool);
}
skip_call |= checkCommandBufferInFlight(dev_data, pCB, "reset");
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->ResetCommandBuffer(commandBuffer, flags);
if (VK_SUCCESS == result) {
lock.lock();
dev_data->globalInFlightCmdBuffers.erase(commandBuffer);
resetCB(dev_data, commandBuffer);
lock.unlock();
}
return result;
}
VKAPI_ATTR void VKAPI_CALL
CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_BINDPIPELINE, "vkCmdBindPipeline()");
if ((VK_PIPELINE_BIND_POINT_COMPUTE == pipelineBindPoint) && (pCB->activeRenderPass)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
(uint64_t)pipeline, __LINE__, DRAWSTATE_INVALID_RENDERPASS_CMD, "DS",
"Incorrectly binding compute pipeline (0x%" PRIxLEAST64 ") during active RenderPass (0x%" PRIxLEAST64 ")",
(uint64_t)pipeline, (uint64_t)pCB->activeRenderPass->renderPass);
}
PIPELINE_NODE *pPN = getPipeline(dev_data, pipeline);
if (pPN) {
pCB->lastBound[pipelineBindPoint].pipeline_node = pPN;
set_cb_pso_status(pCB, pPN);
set_pipeline_state(pPN);
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
(uint64_t)pipeline, __LINE__, DRAWSTATE_INVALID_PIPELINE, "DS",
"Attempt to bind Pipeline 0x%" PRIxLEAST64 " that doesn't exist!", (uint64_t)(pipeline));
}
addCommandBufferBinding(&getPipeline(dev_data, pipeline)->cb_bindings,
{reinterpret_cast<uint64_t &>(pipeline), VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT}, pCB);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETVIEWPORTSTATE, "vkCmdSetViewport()");
pCB->status |= CBSTATUS_VIEWPORT_SET;
pCB->viewportMask |= ((1u<<viewportCount) - 1u) << firstViewport;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetViewport(commandBuffer, firstViewport, viewportCount, pViewports);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D *pScissors) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETSCISSORSTATE, "vkCmdSetScissor()");
pCB->status |= CBSTATUS_SCISSOR_SET;
pCB->scissorMask |= ((1u<<scissorCount) - 1u) << firstScissor;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetScissor(commandBuffer, firstScissor, scissorCount, pScissors);
}
VKAPI_ATTR void VKAPI_CALL CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETLINEWIDTHSTATE, "vkCmdSetLineWidth()");
pCB->status |= CBSTATUS_LINE_WIDTH_SET;
PIPELINE_NODE *pPipeTrav = pCB->lastBound[VK_PIPELINE_BIND_POINT_GRAPHICS].pipeline_node;
if (pPipeTrav != NULL && !isDynamic(pPipeTrav, VK_DYNAMIC_STATE_LINE_WIDTH)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0,
reinterpret_cast<uint64_t &>(commandBuffer), __LINE__, DRAWSTATE_INVALID_SET, "DS",
"vkCmdSetLineWidth called but pipeline was created without VK_DYNAMIC_STATE_LINE_WIDTH "
"flag. This is undefined behavior and could be ignored.");
} else {
skip_call |= verifyLineWidth(dev_data, DRAWSTATE_INVALID_SET, reinterpret_cast<uint64_t &>(commandBuffer), lineWidth);
}
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetLineWidth(commandBuffer, lineWidth);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETDEPTHBIASSTATE, "vkCmdSetDepthBias()");
pCB->status |= CBSTATUS_DEPTH_BIAS_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetDepthBias(commandBuffer, depthBiasConstantFactor, depthBiasClamp,
depthBiasSlopeFactor);
}
VKAPI_ATTR void VKAPI_CALL CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4]) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETBLENDSTATE, "vkCmdSetBlendConstants()");
pCB->status |= CBSTATUS_BLEND_CONSTANTS_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetBlendConstants(commandBuffer, blendConstants);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETDEPTHBOUNDSSTATE, "vkCmdSetDepthBounds()");
pCB->status |= CBSTATUS_DEPTH_BOUNDS_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetDepthBounds(commandBuffer, minDepthBounds, maxDepthBounds);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETSTENCILREADMASKSTATE, "vkCmdSetStencilCompareMask()");
pCB->status |= CBSTATUS_STENCIL_READ_MASK_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetStencilCompareMask(commandBuffer, faceMask, compareMask);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETSTENCILWRITEMASKSTATE, "vkCmdSetStencilWriteMask()");
pCB->status |= CBSTATUS_STENCIL_WRITE_MASK_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetStencilWriteMask(commandBuffer, faceMask, writeMask);
}
VKAPI_ATTR void VKAPI_CALL
CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETSTENCILREFERENCESTATE, "vkCmdSetStencilReference()");
pCB->status |= CBSTATUS_STENCIL_REFERENCE_SET;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetStencilReference(commandBuffer, faceMask, reference);
}
VKAPI_ATTR void VKAPI_CALL
CmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout,
uint32_t firstSet, uint32_t setCount, const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_RECORDING) {
// Track total count of dynamic descriptor types to make sure we have an offset for each one
uint32_t totalDynamicDescriptors = 0;
string errorString = "";
uint32_t lastSetIndex = firstSet + setCount - 1;
if (lastSetIndex >= pCB->lastBound[pipelineBindPoint].boundDescriptorSets.size()) {
pCB->lastBound[pipelineBindPoint].boundDescriptorSets.resize(lastSetIndex + 1);
pCB->lastBound[pipelineBindPoint].dynamicOffsets.resize(lastSetIndex + 1);
}
auto oldFinalBoundSet = pCB->lastBound[pipelineBindPoint].boundDescriptorSets[lastSetIndex];
auto pipeline_layout = getPipelineLayout(dev_data, layout);
for (uint32_t i = 0; i < setCount; i++) {
cvdescriptorset::DescriptorSet *pSet = getSetNode(dev_data, pDescriptorSets[i]);
if (pSet) {
pCB->lastBound[pipelineBindPoint].pipeline_layout = *pipeline_layout;
pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i + firstSet] = pSet;
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)pDescriptorSets[i], __LINE__,
DRAWSTATE_NONE, "DS", "DS 0x%" PRIxLEAST64 " bound on pipeline %s",
(uint64_t)pDescriptorSets[i], string_VkPipelineBindPoint(pipelineBindPoint));
if (!pSet->IsUpdated() && (pSet->GetTotalDescriptorCount() != 0)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)pDescriptorSets[i], __LINE__,
DRAWSTATE_DESCRIPTOR_SET_NOT_UPDATED, "DS",
"DS 0x%" PRIxLEAST64
" bound but it was never updated. You may want to either update it or not bind it.",
(uint64_t)pDescriptorSets[i]);
}
// Verify that set being bound is compatible with overlapping setLayout of pipelineLayout
if (!verify_set_layout_compatibility(dev_data, pSet, pipeline_layout, i + firstSet, errorString)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)pDescriptorSets[i], __LINE__,
DRAWSTATE_PIPELINE_LAYOUTS_INCOMPATIBLE, "DS",
"descriptorSet #%u being bound is not compatible with overlapping descriptorSetLayout "
"at index %u of pipelineLayout 0x%" PRIxLEAST64 " due to: %s",
i, i + firstSet, reinterpret_cast<uint64_t &>(layout), errorString.c_str());
}
auto setDynamicDescriptorCount = pSet->GetDynamicDescriptorCount();
pCB->lastBound[pipelineBindPoint].dynamicOffsets[firstSet + i].clear();
if (setDynamicDescriptorCount) {
// First make sure we won't overstep bounds of pDynamicOffsets array
if ((totalDynamicDescriptors + setDynamicDescriptorCount) > dynamicOffsetCount) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)pDescriptorSets[i], __LINE__,
DRAWSTATE_INVALID_DYNAMIC_OFFSET_COUNT, "DS",
"descriptorSet #%u (0x%" PRIxLEAST64
") requires %u dynamicOffsets, but only %u dynamicOffsets are left in pDynamicOffsets "
"array. There must be one dynamic offset for each dynamic descriptor being bound.",
i, (uint64_t)pDescriptorSets[i], pSet->GetDynamicDescriptorCount(),
(dynamicOffsetCount - totalDynamicDescriptors));
} else { // Validate and store dynamic offsets with the set
// Validate Dynamic Offset Minimums
uint32_t cur_dyn_offset = totalDynamicDescriptors;
for (uint32_t d = 0; d < pSet->GetTotalDescriptorCount(); d++) {
if (pSet->GetTypeFromGlobalIndex(d) == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
if (vk_safe_modulo(
pDynamicOffsets[cur_dyn_offset],
dev_data->phys_dev_properties.properties.limits.minUniformBufferOffsetAlignment) != 0) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__,
DRAWSTATE_INVALID_UNIFORM_BUFFER_OFFSET, "DS",
"vkCmdBindDescriptorSets(): pDynamicOffsets[%d] is %d but must be a multiple of "
"device limit minUniformBufferOffsetAlignment 0x%" PRIxLEAST64,
cur_dyn_offset, pDynamicOffsets[cur_dyn_offset],
dev_data->phys_dev_properties.properties.limits.minUniformBufferOffsetAlignment);
}
cur_dyn_offset++;
} else if (pSet->GetTypeFromGlobalIndex(d) == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
if (vk_safe_modulo(
pDynamicOffsets[cur_dyn_offset],
dev_data->phys_dev_properties.properties.limits.minStorageBufferOffsetAlignment) != 0) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__,
DRAWSTATE_INVALID_STORAGE_BUFFER_OFFSET, "DS",
"vkCmdBindDescriptorSets(): pDynamicOffsets[%d] is %d but must be a multiple of "
"device limit minStorageBufferOffsetAlignment 0x%" PRIxLEAST64,
cur_dyn_offset, pDynamicOffsets[cur_dyn_offset],
dev_data->phys_dev_properties.properties.limits.minStorageBufferOffsetAlignment);
}
cur_dyn_offset++;
}
}
pCB->lastBound[pipelineBindPoint].dynamicOffsets[firstSet + i] =
std::vector<uint32_t>(pDynamicOffsets + totalDynamicDescriptors,
pDynamicOffsets + totalDynamicDescriptors + setDynamicDescriptorCount);
// Keep running total of dynamic descriptor count to verify at the end
totalDynamicDescriptors += setDynamicDescriptorCount;
}
}
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, (uint64_t)pDescriptorSets[i], __LINE__,
DRAWSTATE_INVALID_SET, "DS", "Attempt to bind DS 0x%" PRIxLEAST64 " that doesn't exist!",
(uint64_t)pDescriptorSets[i]);
}
skip_call |= addCmd(dev_data, pCB, CMD_BINDDESCRIPTORSETS, "vkCmdBindDescriptorSets()");
// For any previously bound sets, need to set them to "invalid" if they were disturbed by this update
if (firstSet > 0) { // Check set #s below the first bound set
for (uint32_t i = 0; i < firstSet; ++i) {
if (pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i] &&
!verify_set_layout_compatibility(dev_data, pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i],
pipeline_layout, i, errorString)) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
(uint64_t)pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i], __LINE__, DRAWSTATE_NONE, "DS",
"DescriptorSetDS 0x%" PRIxLEAST64
" previously bound as set #%u was disturbed by newly bound pipelineLayout (0x%" PRIxLEAST64 ")",
(uint64_t)pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i], i, (uint64_t)layout);
pCB->lastBound[pipelineBindPoint].boundDescriptorSets[i] = VK_NULL_HANDLE;
}
}
}
// Check if newly last bound set invalidates any remaining bound sets
if ((pCB->lastBound[pipelineBindPoint].boundDescriptorSets.size() - 1) > (lastSetIndex)) {
if (oldFinalBoundSet &&
!verify_set_layout_compatibility(dev_data, oldFinalBoundSet, pipeline_layout, lastSetIndex, errorString)) {
auto old_set = oldFinalBoundSet->GetSet();
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, reinterpret_cast<uint64_t &>(old_set), __LINE__,
DRAWSTATE_NONE, "DS", "DescriptorSetDS 0x%" PRIxLEAST64
" previously bound as set #%u is incompatible with set 0x%" PRIxLEAST64
" newly bound as set #%u so set #%u and any subsequent sets were "
"disturbed by newly bound pipelineLayout (0x%" PRIxLEAST64 ")",
reinterpret_cast<uint64_t &>(old_set), lastSetIndex,
(uint64_t)pCB->lastBound[pipelineBindPoint].boundDescriptorSets[lastSetIndex], lastSetIndex,
lastSetIndex + 1, (uint64_t)layout);
pCB->lastBound[pipelineBindPoint].boundDescriptorSets.resize(lastSetIndex + 1);
}
}
}
// dynamicOffsetCount must equal the total number of dynamic descriptors in the sets being bound
if (totalDynamicDescriptors != dynamicOffsetCount) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_DYNAMIC_OFFSET_COUNT, "DS",
"Attempting to bind %u descriptorSets with %u dynamic descriptors, but dynamicOffsetCount "
"is %u. It should exactly match the number of dynamic descriptors.",
setCount, totalDynamicDescriptors, dynamicOffsetCount);
}
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindDescriptorSets()");
}
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBindDescriptorSets(commandBuffer, pipelineBindPoint, layout, firstSet, setCount,
pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
}
VKAPI_ATTR void VKAPI_CALL
CmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
// TODO : Somewhere need to verify that IBs have correct usage state flagged
std::unique_lock<std::mutex> lock(global_lock);
auto buff_node = getBufferNode(dev_data, buffer);
auto cb_node = getCBNode(dev_data, commandBuffer);
if (cb_node && buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buff_node, "vkCmdBindIndexBuffer()");
std::function<bool()> function = [=]() {
return ValidateBufferMemoryIsValid(dev_data, buff_node, "vkCmdBindIndexBuffer()");
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_BINDINDEXBUFFER, "vkCmdBindIndexBuffer()");
VkDeviceSize offset_align = 0;
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
offset_align = 2;
break;
case VK_INDEX_TYPE_UINT32:
offset_align = 4;
break;
default:
// ParamChecker should catch bad enum, we'll also throw alignment error below if offset_align stays 0
break;
}
if (!offset_align || (offset % offset_align)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_VTX_INDEX_ALIGNMENT_ERROR, "DS",
"vkCmdBindIndexBuffer() offset (0x%" PRIxLEAST64 ") does not fall on alignment (%s) boundary.",
offset, string_VkIndexType(indexType));
}
cb_node->status |= CBSTATUS_INDEX_BUFFER_BOUND;
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBindIndexBuffer(commandBuffer, buffer, offset, indexType);
}
void updateResourceTracking(GLOBAL_CB_NODE *pCB, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer *pBuffers) {
uint32_t end = firstBinding + bindingCount;
if (pCB->currentDrawData.buffers.size() < end) {
pCB->currentDrawData.buffers.resize(end);
}
for (uint32_t i = 0; i < bindingCount; ++i) {
pCB->currentDrawData.buffers[i + firstBinding] = pBuffers[i];
}
}
static inline void updateResourceTrackingOnDraw(GLOBAL_CB_NODE *pCB) { pCB->drawData.push_back(pCB->currentDrawData); }
VKAPI_ATTR void VKAPI_CALL CmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
// TODO : Somewhere need to verify that VBs have correct usage state flagged
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
if (cb_node) {
for (uint32_t i = 0; i < bindingCount; ++i) {
auto buff_node = getBufferNode(dev_data, pBuffers[i]);
assert(buff_node);
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buff_node, "vkCmdBindVertexBuffers()");
std::function<bool()> function = [=]() {
return ValidateBufferMemoryIsValid(dev_data, buff_node, "vkCmdBindVertexBuffers()");
};
cb_node->validate_functions.push_back(function);
}
addCmd(dev_data, cb_node, CMD_BINDVERTEXBUFFER, "vkCmdBindVertexBuffer()");
updateResourceTracking(cb_node, firstBinding, bindingCount, pBuffers);
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindVertexBuffer()");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBindVertexBuffers(commandBuffer, firstBinding, bindingCount, pBuffers, pOffsets);
}
/* expects global_lock to be held by caller */
static bool markStoreImagesAndBuffersAsWritten(layer_data *dev_data, GLOBAL_CB_NODE *pCB) {
bool skip_call = false;
for (auto imageView : pCB->updateImages) {
auto iv_data = getImageViewData(dev_data, imageView);
if (!iv_data)
continue;
auto img_node = getImageNode(dev_data, iv_data->image);
assert(img_node);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, img_node, true);
return false;
};
pCB->validate_functions.push_back(function);
}
for (auto buffer : pCB->updateBuffers) {
auto buff_node = getBufferNode(dev_data, buffer);
assert(buff_node);
std::function<bool()> function = [=]() {
SetBufferMemoryValid(dev_data, buff_node, true);
return false;
};
pCB->validate_functions.push_back(function);
}
return skip_call;
}
VKAPI_ATTR void VKAPI_CALL CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_DRAW, "vkCmdDraw()");
pCB->drawCount[DRAW]++;
skip_call |= validate_and_update_draw_state(dev_data, pCB, false, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDraw");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, pCB);
// TODO : Need to pass commandBuffer as srcObj here
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_NONE, "DS", "vkCmdDraw() call 0x%" PRIx64 ", reporting DS state:", g_drawCount[DRAW]++);
skip_call |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (!skip_call) {
updateResourceTrackingOnDraw(pCB);
}
skip_call |= outsideRenderPass(dev_data, pCB, "vkCmdDraw");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
}
VKAPI_ATTR void VKAPI_CALL CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount,
uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset,
uint32_t firstInstance) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_DRAWINDEXED, "vkCmdDrawIndexed()");
pCB->drawCount[DRAW_INDEXED]++;
skip_call |= validate_and_update_draw_state(dev_data, pCB, true, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexed");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, pCB);
// TODO : Need to pass commandBuffer as srcObj here
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0, __LINE__, DRAWSTATE_NONE, "DS",
"vkCmdDrawIndexed() call 0x%" PRIx64 ", reporting DS state:", g_drawCount[DRAW_INDEXED]++);
skip_call |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (!skip_call) {
updateResourceTrackingOnDraw(pCB);
}
skip_call |= outsideRenderPass(dev_data, pCB, "vkCmdDrawIndexed");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset,
firstInstance);
}
VKAPI_ATTR void VKAPI_CALL
CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto buff_node = getBufferNode(dev_data, buffer);
if (cb_node && buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buff_node, "vkCmdDrawIndirect()");
AddCommandBufferBindingBuffer(dev_data, cb_node, buff_node);
skip_call |= addCmd(dev_data, cb_node, CMD_DRAWINDIRECT, "vkCmdDrawIndirect()");
cb_node->drawCount[DRAW_INDIRECT]++;
skip_call |= validate_and_update_draw_state(dev_data, cb_node, false, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndirect");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, cb_node);
// TODO : Need to pass commandBuffer as srcObj here
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0, __LINE__, DRAWSTATE_NONE, "DS",
"vkCmdDrawIndirect() call 0x%" PRIx64 ", reporting DS state:", g_drawCount[DRAW_INDIRECT]++);
skip_call |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (!skip_call) {
updateResourceTrackingOnDraw(cb_node);
}
skip_call |= outsideRenderPass(dev_data, cb_node, "vkCmdDrawIndirect()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
}
VKAPI_ATTR void VKAPI_CALL
CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto buff_node = getBufferNode(dev_data, buffer);
if (cb_node && buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buff_node, "vkCmdDrawIndexedIndirect()");
AddCommandBufferBindingBuffer(dev_data, cb_node, buff_node);
skip_call |= addCmd(dev_data, cb_node, CMD_DRAWINDEXEDINDIRECT, "vkCmdDrawIndexedIndirect()");
cb_node->drawCount[DRAW_INDEXED_INDIRECT]++;
skip_call |=
validate_and_update_draw_state(dev_data, cb_node, true, VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexedIndirect");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, cb_node);
// TODO : Need to pass commandBuffer as srcObj here
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_NONE, "DS", "vkCmdDrawIndexedIndirect() call 0x%" PRIx64 ", reporting DS state:",
g_drawCount[DRAW_INDEXED_INDIRECT]++);
skip_call |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (!skip_call) {
updateResourceTrackingOnDraw(cb_node);
}
skip_call |= outsideRenderPass(dev_data, cb_node, "vkCmdDrawIndexedIndirect()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
}
VKAPI_ATTR void VKAPI_CALL CmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= validate_and_update_draw_state(dev_data, pCB, false, VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatch");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, pCB);
skip_call |= addCmd(dev_data, pCB, CMD_DISPATCH, "vkCmdDispatch()");
skip_call |= insideRenderPass(dev_data, pCB, "vkCmdDispatch");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDispatch(commandBuffer, x, y, z);
}
VKAPI_ATTR void VKAPI_CALL
CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto buff_node = getBufferNode(dev_data, buffer);
if (cb_node && buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, buff_node, "vkCmdDispatchIndirect()");
AddCommandBufferBindingBuffer(dev_data, cb_node, buff_node);
skip_call |=
validate_and_update_draw_state(dev_data, cb_node, false, VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatchIndirect");
skip_call |= markStoreImagesAndBuffersAsWritten(dev_data, cb_node);
skip_call |= addCmd(dev_data, cb_node, CMD_DISPATCHINDIRECT, "vkCmdDispatchIndirect()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdDispatchIndirect()");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdDispatchIndirect(commandBuffer, buffer, offset);
}
VKAPI_ATTR void VKAPI_CALL CmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_buff_node = getBufferNode(dev_data, srcBuffer);
auto dst_buff_node = getBufferNode(dev_data, dstBuffer);
if (cb_node && src_buff_node && dst_buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, src_buff_node, "vkCmdCopyBuffer()");
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, dst_buff_node, "vkCmdCopyBuffer()");
// Update bindings between buffers and cmd buffer
AddCommandBufferBindingBuffer(dev_data, cb_node, src_buff_node);
AddCommandBufferBindingBuffer(dev_data, cb_node, dst_buff_node);
// Validate that SRC & DST buffers have correct usage flags set
skip_call |= ValidateBufferUsageFlags(dev_data, src_buff_node, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, true, "vkCmdCopyBuffer()",
"VK_BUFFER_USAGE_TRANSFER_SRC_BIT");
skip_call |= ValidateBufferUsageFlags(dev_data, dst_buff_node, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true, "vkCmdCopyBuffer()",
"VK_BUFFER_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
return ValidateBufferMemoryIsValid(dev_data, src_buff_node, "vkCmdCopyBuffer()");
};
cb_node->validate_functions.push_back(function);
function = [=]() {
SetBufferMemoryValid(dev_data, dst_buff_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_COPYBUFFER, "vkCmdCopyBuffer()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyBuffer()");
} else {
// Param_checker will flag errors on invalid objects, just assert here as debugging aid
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
static bool VerifySourceImageLayout(layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkImage srcImage,
VkImageSubresourceLayers subLayers, VkImageLayout srcImageLayout) {
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindLayout(cb_node, srcImage, sub, node)) {
SetLayout(cb_node, srcImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(srcImageLayout, srcImageLayout));
continue;
}
if (node.layout != srcImageLayout) {
// TODO: Improve log message in the next pass
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Cannot copy from an image whose source layout is %s "
"and doesn't match the current layout %s.",
string_VkImageLayout(srcImageLayout), string_VkImageLayout(node.layout));
}
}
if (srcImageLayout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
if (srcImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
// TODO : Can we deal with image node from the top of call tree and avoid map look-up here?
auto image_node = getImageNode(dev_data, srcImage);
if (image_node->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
(VkDebugReportObjectTypeEXT)0, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input image should be TRANSFER_SRC_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Layout for input image is %s but can only be "
"TRANSFER_SRC_OPTIMAL or GENERAL.",
string_VkImageLayout(srcImageLayout));
}
}
return skip_call;
}
static bool VerifyDestImageLayout(layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkImage destImage,
VkImageSubresourceLayers subLayers, VkImageLayout destImageLayout) {
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindLayout(cb_node, destImage, sub, node)) {
SetLayout(cb_node, destImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(destImageLayout, destImageLayout));
continue;
}
if (node.layout != destImageLayout) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Cannot copy from an image whose dest layout is %s and "
"doesn't match the current layout %s.",
string_VkImageLayout(destImageLayout), string_VkImageLayout(node.layout));
}
}
if (destImageLayout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (destImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
auto image_node = getImageNode(dev_data, destImage);
if (image_node->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
(VkDebugReportObjectTypeEXT)0, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for output image should be TRANSFER_DST_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Layout for output image is %s but can only be "
"TRANSFER_DST_OPTIMAL or GENERAL.",
string_VkImageLayout(destImageLayout));
}
}
return skip_call;
}
// Test elements of a VkExtent3D structure against alignment constraints contained in another VkExtent3D structure
static inline bool IsExtentAligned(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const VkExtent3D *extent,
VkExtent3D *granularity) {
bool valid = true;
auto pPool = getCommandPoolNode(dev_data, cb_node->createInfo.commandPool);
if (pPool) {
granularity = &dev_data->phys_dev_properties.queue_family_properties[pPool->queueFamilyIndex].minImageTransferGranularity;
if ((vk_safe_modulo(extent->depth, granularity->depth) != 0) || (vk_safe_modulo(extent->width, granularity->width) != 0) ||
(vk_safe_modulo(extent->height, granularity->height) != 0)) {
valid = false;
}
}
return valid;
}
// Check elements of a VkOffset3D structure against a queue family's Image Transfer Granularity values
static inline bool CheckItgOffset(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const VkOffset3D *offset, const uint32_t i,
const char *function, const char *member) {
bool skip = false;
VkExtent3D granularity = {};
VkExtent3D extent = {};
extent.width = static_cast<uint32_t>(abs(offset->x));
extent.height = static_cast<uint32_t>(abs(offset->y));
extent.depth = static_cast<uint32_t>(abs(offset->z));
if (IsExtentAligned(dev_data, cb_node, &extent, &granularity) == false) {
skip |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS", "%s: pRegion[%d].%s (x=%d, y=%d, z=%d) must respect this command buffer's "
"queue family image transfer granularity (w=%d, h=%d, d=%d).",
function, i, member, offset->x, offset->y, offset->z, granularity.width, granularity.height, granularity.depth);
}
return skip;
}
// Check elements of a VkExtent3D structure against a queue family's Image Transfer Granularity values
static inline bool CheckItgExtent(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const VkExtent3D *extent, const uint32_t i,
const char *function, const char *member) {
bool skip = false;
VkExtent3D granularity = {};
if (IsExtentAligned(dev_data, cb_node, extent, &granularity) == false) {
skip |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (w=%d, h=%d, d=%d) must respect this command buffer's "
"queue family image transfer granularity (w=%d, h=%d, z=%d).",
function, i, member, extent->width, extent->height, extent->depth, granularity.width, granularity.height,
granularity.depth);
}
return skip;
}
// Check a uint32_t width or stride value against a queue family's Image Transfer Granularity width value
static inline bool CheckItgInt(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const uint32_t value, const uint32_t i,
const char *function, const char *member) {
bool skip = false;
VkExtent3D granularity = {};
VkExtent3D extent = {};
extent.width = value;
if (IsExtentAligned(dev_data, cb_node, &extent, &granularity) == false) {
skip |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (%d) must respect this command buffer's queue family image transfer granularity %d).",
function, i, member, extent.width, granularity.width);
}
return skip;
}
// Check a VkDeviceSize value against a queue family's Image Transfer Granularity width value
static inline bool CheckItgSize(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const VkDeviceSize value, const uint32_t i,
const char *function, const char *member) {
bool skip = false;
VkExtent3D *granularity;
auto pPool = getCommandPoolNode(dev_data, cb_node->createInfo.commandPool);
if (pPool) {
granularity = &dev_data->phys_dev_properties.queue_family_properties[pPool->queueFamilyIndex].minImageTransferGranularity;
if (vk_safe_modulo(value, granularity->width) != 0) {
skip |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_IMAGE_TRANSFER_GRANULARITY, "DS",
"%s: pRegion[%d].%s (%" PRIdLEAST64
") must respect this command buffer's queue family image transfer granularity %d).",
function, i, member, value, granularity->width);
}
}
return skip;
}
// Check valid usage Image Tranfer Granularity requirements for elements of a VkImageCopy structure
static inline bool ValidateCopyImageTransferGranularityRequirements(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node,
const VkImageCopy *region, const uint32_t i,
const char *function) {
bool skip = false;
skip |= CheckItgOffset(dev_data, cb_node, ®ion->srcOffset, i, function, "srcOffset");
skip |= CheckItgOffset(dev_data, cb_node, ®ion->dstOffset, i, function, "dstOffset");
skip |= CheckItgExtent(dev_data, cb_node, ®ion->extent, i, function, "extent");
return skip;
}
// Check valid usage Image Tranfer Granularity requirements for elements of a VkBufferImageCopy structure
static inline bool ValidateCopyBufferImageTransferGranularityRequirements(layer_data *dev_data, const GLOBAL_CB_NODE *cb_node,
const VkBufferImageCopy *region, const uint32_t i,
const char *function) {
bool skip = false;
skip |= CheckItgSize(dev_data, cb_node, region->bufferOffset, i, function, "bufferOffset");
skip |= CheckItgInt(dev_data, cb_node, region->bufferRowLength, i, function, "bufferRowLength");
skip |= CheckItgInt(dev_data, cb_node, region->bufferImageHeight, i, function, "bufferImageHeight");
skip |= CheckItgOffset(dev_data, cb_node, ®ion->imageOffset, i, function, "imageOffset");
skip |= CheckItgExtent(dev_data, cb_node, ®ion->imageExtent, i, function, "imageExtent");
return skip;
}
VKAPI_ATTR void VKAPI_CALL
CmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy *pRegions) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_img_node = getImageNode(dev_data, srcImage);
auto dst_img_node = getImageNode(dev_data, dstImage);
if (cb_node && src_img_node && dst_img_node) {
skip_call |= ValidateMemoryIsBoundToImage(dev_data, src_img_node, "vkCmdCopyImage()");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, dst_img_node, "vkCmdCopyImage()");
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(dev_data, cb_node, src_img_node);
AddCommandBufferBindingImage(dev_data, cb_node, dst_img_node);
// Validate that SRC & DST images have correct usage flags set
skip_call |= ValidateImageUsageFlags(dev_data, src_img_node, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true, "vkCmdCopyImage()",
"VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip_call |= ValidateImageUsageFlags(dev_data, dst_img_node, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true, "vkCmdCopyImage()",
"VK_IMAGE_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() { return ValidateImageMemoryIsValid(dev_data, src_img_node, "vkCmdCopyImage()"); };
cb_node->validate_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(dev_data, dst_img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_COPYIMAGE, "vkCmdCopyImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyImage()");
for (uint32_t i = 0; i < regionCount; ++i) {
skip_call |= VerifySourceImageLayout(dev_data, cb_node, srcImage, pRegions[i].srcSubresource, srcImageLayout);
skip_call |= VerifyDestImageLayout(dev_data, cb_node, dstImage, pRegions[i].dstSubresource, dstImageLayout);
skip_call |= ValidateCopyImageTransferGranularityRequirements(dev_data, cb_node, &pRegions[i], i, "vkCmdCopyImage()");
}
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdCopyImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout,
regionCount, pRegions);
}
// Validate that an image's sampleCount matches the requirement for a specific API call
static inline bool ValidateImageSampleCount(layer_data *dev_data, IMAGE_NODE *image_node, VkSampleCountFlagBits sample_count,
const char *location) {
bool skip = false;
if (image_node->createInfo.samples != sample_count) {
skip = log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_node->image), 0, DRAWSTATE_NUM_SAMPLES_MISMATCH, "DS",
"%s for image 0x%" PRIxLEAST64 " was created with a sample count of %s but must be %s.", location,
reinterpret_cast<uint64_t &>(image_node->image),
string_VkSampleCountFlagBits(image_node->createInfo.samples), string_VkSampleCountFlagBits(sample_count));
}
return skip;
}
VKAPI_ATTR void VKAPI_CALL
CmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageBlit *pRegions, VkFilter filter) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_img_node = getImageNode(dev_data, srcImage);
auto dst_img_node = getImageNode(dev_data, dstImage);
if (cb_node && src_img_node && dst_img_node) {
skip_call |= ValidateImageSampleCount(dev_data, src_img_node, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): srcImage");
skip_call |= ValidateImageSampleCount(dev_data, dst_img_node, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): dstImage");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, src_img_node, "vkCmdBlitImage()");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, dst_img_node, "vkCmdBlitImage()");
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(dev_data, cb_node, src_img_node);
AddCommandBufferBindingImage(dev_data, cb_node, dst_img_node);
// Validate that SRC & DST images have correct usage flags set
skip_call |= ValidateImageUsageFlags(dev_data, src_img_node, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true, "vkCmdBlitImage()",
"VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip_call |= ValidateImageUsageFlags(dev_data, dst_img_node, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true, "vkCmdBlitImage()",
"VK_IMAGE_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() { return ValidateImageMemoryIsValid(dev_data, src_img_node, "vkCmdBlitImage()"); };
cb_node->validate_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(dev_data, dst_img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_BLITIMAGE, "vkCmdBlitImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdBlitImage()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout,
regionCount, pRegions, filter);
}
VKAPI_ATTR void VKAPI_CALL CmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer,
VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkBufferImageCopy *pRegions) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_buff_node = getBufferNode(dev_data, srcBuffer);
auto dst_img_node = getImageNode(dev_data, dstImage);
if (cb_node && src_buff_node && dst_img_node) {
skip_call |= ValidateImageSampleCount(dev_data, dst_img_node, VK_SAMPLE_COUNT_1_BIT, "vkCmdCopyBufferToImage(): dstImage");
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, src_buff_node, "vkCmdCopyBufferToImage()");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, dst_img_node, "vkCmdCopyBufferToImage()");
AddCommandBufferBindingBuffer(dev_data, cb_node, src_buff_node);
AddCommandBufferBindingImage(dev_data, cb_node, dst_img_node);
skip_call |= ValidateBufferUsageFlags(dev_data, src_buff_node, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, true,
"vkCmdCopyBufferToImage()", "VK_BUFFER_USAGE_TRANSFER_SRC_BIT");
skip_call |= ValidateImageUsageFlags(dev_data, dst_img_node, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true,
"vkCmdCopyBufferToImage()", "VK_IMAGE_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, dst_img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
function = [=]() { return ValidateBufferMemoryIsValid(dev_data, src_buff_node, "vkCmdCopyBufferToImage()"); };
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_COPYBUFFERTOIMAGE, "vkCmdCopyBufferToImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyBufferToImage()");
for (uint32_t i = 0; i < regionCount; ++i) {
skip_call |= VerifyDestImageLayout(dev_data, cb_node, dstImage, pRegions[i].imageSubresource, dstImageLayout);
skip_call |=
ValidateCopyBufferImageTransferGranularityRequirements(dev_data, cb_node, &pRegions[i], i, "vkCmdCopyBufferToImage()");
}
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount,
pRegions);
}
VKAPI_ATTR void VKAPI_CALL CmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage,
VkImageLayout srcImageLayout, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferImageCopy *pRegions) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_img_node = getImageNode(dev_data, srcImage);
auto dst_buff_node = getBufferNode(dev_data, dstBuffer);
if (cb_node && src_img_node && dst_buff_node) {
skip_call |= ValidateImageSampleCount(dev_data, src_img_node, VK_SAMPLE_COUNT_1_BIT, "vkCmdCopyImageToBuffer(): srcImage");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, src_img_node, "vkCmdCopyImageToBuffer()");
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, dst_buff_node, "vkCmdCopyImageToBuffer()");
// Update bindings between buffer/image and cmd buffer
AddCommandBufferBindingImage(dev_data, cb_node, src_img_node);
AddCommandBufferBindingBuffer(dev_data, cb_node, dst_buff_node);
// Validate that SRC image & DST buffer have correct usage flags set
skip_call |= ValidateImageUsageFlags(dev_data, src_img_node, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true,
"vkCmdCopyImageToBuffer()", "VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip_call |= ValidateBufferUsageFlags(dev_data, dst_buff_node, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true,
"vkCmdCopyImageToBuffer()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(dev_data, src_img_node, "vkCmdCopyImageToBuffer()");
};
cb_node->validate_functions.push_back(function);
function = [=]() {
SetBufferMemoryValid(dev_data, dst_buff_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_COPYIMAGETOBUFFER, "vkCmdCopyImageToBuffer()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyImageToBuffer()");
for (uint32_t i = 0; i < regionCount; ++i) {
skip_call |= VerifySourceImageLayout(dev_data, cb_node, srcImage, pRegions[i].imageSubresource, srcImageLayout);
skip_call |=
ValidateCopyBufferImageTransferGranularityRequirements(dev_data, cb_node, &pRegions[i], i, "CmdCopyImageToBuffer");
}
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount,
pRegions);
}
VKAPI_ATTR void VKAPI_CALL CmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer,
VkDeviceSize dstOffset, VkDeviceSize dataSize, const uint32_t *pData) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto dst_buff_node = getBufferNode(dev_data, dstBuffer);
if (cb_node && dst_buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, dst_buff_node, "vkCmdUpdateBuffer()");
// Update bindings between buffer and cmd buffer
AddCommandBufferBindingBuffer(dev_data, cb_node, dst_buff_node);
// Validate that DST buffer has correct usage flags set
skip_call |= ValidateBufferUsageFlags(dev_data, dst_buff_node, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true,
"vkCmdUpdateBuffer()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
SetBufferMemoryValid(dev_data, dst_buff_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_UPDATEBUFFER, "vkCmdUpdateBuffer()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyUpdateBuffer()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdUpdateBuffer(commandBuffer, dstBuffer, dstOffset, dataSize, pData);
}
VKAPI_ATTR void VKAPI_CALL
CmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize size, uint32_t data) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto dst_buff_node = getBufferNode(dev_data, dstBuffer);
if (cb_node && dst_buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, dst_buff_node, "vkCmdFillBuffer()");
// Update bindings between buffer and cmd buffer
AddCommandBufferBindingBuffer(dev_data, cb_node, dst_buff_node);
// Validate that DST buffer has correct usage flags set
skip_call |= ValidateBufferUsageFlags(dev_data, dst_buff_node, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true, "vkCmdFillBuffer()",
"VK_BUFFER_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
SetBufferMemoryValid(dev_data, dst_buff_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_FILLBUFFER, "vkCmdFillBuffer()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyFillBuffer()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
}
VKAPI_ATTR void VKAPI_CALL CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkClearAttachment *pAttachments, uint32_t rectCount,
const VkClearRect *pRects) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_CLEARATTACHMENTS, "vkCmdClearAttachments()");
// Warn if this is issued prior to Draw Cmd and clearing the entire attachment
if (!hasDrawCmd(pCB) && (pCB->activeRenderPassBeginInfo.renderArea.extent.width == pRects[0].rect.extent.width) &&
(pCB->activeRenderPassBeginInfo.renderArea.extent.height == pRects[0].rect.extent.height)) {
// TODO : commandBuffer should be srcObj
// There are times where app needs to use ClearAttachments (generally when reusing a buffer inside of a render pass)
// Can we make this warning more specific? I'd like to avoid triggering this test if we can tell it's a use that must
// call CmdClearAttachments
// Otherwise this seems more like a performance warning.
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0, 0, DRAWSTATE_CLEAR_CMD_BEFORE_DRAW, "DS",
"vkCmdClearAttachments() issued on CB object 0x%" PRIxLEAST64 " prior to any Draw Cmds."
" It is recommended you use RenderPass LOAD_OP_CLEAR on Attachments prior to any Draw.",
(uint64_t)(commandBuffer));
}
skip_call |= outsideRenderPass(dev_data, pCB, "vkCmdClearAttachments()");
}
// Validate that attachment is in reference list of active subpass
if (pCB->activeRenderPass) {
const VkRenderPassCreateInfo *pRPCI = pCB->activeRenderPass->pCreateInfo;
const VkSubpassDescription *pSD = &pRPCI->pSubpasses[pCB->activeSubpass];
for (uint32_t attachment_idx = 0; attachment_idx < attachmentCount; attachment_idx++) {
const VkClearAttachment *attachment = &pAttachments[attachment_idx];
if (attachment->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
bool found = false;
for (uint32_t i = 0; i < pSD->colorAttachmentCount; i++) {
if (attachment->colorAttachment == pSD->pColorAttachments[i].attachment) {
found = true;
break;
}
}
if (!found) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() attachment index %d not found in attachment reference array of active subpass %d",
attachment->colorAttachment, pCB->activeSubpass);
}
} else if (attachment->aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (!pSD->pDepthStencilAttachment || // Says no DS will be used in active subpass
(pSD->pDepthStencilAttachment->attachment ==
VK_ATTACHMENT_UNUSED)) { // Says no DS will be used in active subpass
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() attachment index %d does not match depthStencilAttachment.attachment (%d) found "
"in active subpass %d",
attachment->colorAttachment,
(pSD->pDepthStencilAttachment) ? pSD->pDepthStencilAttachment->attachment : VK_ATTACHMENT_UNUSED,
pCB->activeSubpass);
}
}
}
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdClearAttachments(commandBuffer, attachmentCount, pAttachments, rectCount, pRects);
}
VKAPI_ATTR void VKAPI_CALL CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, const VkClearColorValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(dev_data, commandBuffer);
auto img_node = getImageNode(dev_data, image);
if (cb_node && img_node) {
skip_call |= ValidateMemoryIsBoundToImage(dev_data, img_node, "vkCmdClearColorImage()");
AddCommandBufferBindingImage(dev_data, cb_node, img_node);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_CLEARCOLORIMAGE, "vkCmdClearColorImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdClearColorImage()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdClearColorImage(commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
}
VKAPI_ATTR void VKAPI_CALL
CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(dev_data, commandBuffer);
auto img_node = getImageNode(dev_data, image);
if (cb_node && img_node) {
skip_call |= ValidateMemoryIsBoundToImage(dev_data, img_node, "vkCmdClearDepthStencilImage()");
AddCommandBufferBindingImage(dev_data, cb_node, img_node);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_CLEARDEPTHSTENCILIMAGE, "vkCmdClearDepthStencilImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdClearDepthStencilImage()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount,
pRanges);
}
VKAPI_ATTR void VKAPI_CALL
CmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto src_img_node = getImageNode(dev_data, srcImage);
auto dst_img_node = getImageNode(dev_data, dstImage);
if (cb_node && src_img_node && dst_img_node) {
skip_call |= ValidateMemoryIsBoundToImage(dev_data, src_img_node, "vkCmdResolveImage()");
skip_call |= ValidateMemoryIsBoundToImage(dev_data, dst_img_node, "vkCmdResolveImage()");
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(dev_data, cb_node, src_img_node);
AddCommandBufferBindingImage(dev_data, cb_node, dst_img_node);
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(dev_data, src_img_node, "vkCmdResolveImage()");
};
cb_node->validate_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(dev_data, dst_img_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
skip_call |= addCmd(dev_data, cb_node, CMD_RESOLVEIMAGE, "vkCmdResolveImage()");
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdResolveImage()");
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout,
regionCount, pRegions);
}
bool setEventStageMask(VkQueue queue, VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
pCB->eventToStageMap[event] = stageMask;
}
auto queue_data = dev_data->queueMap.find(queue);
if (queue_data != dev_data->queueMap.end()) {
queue_data->second.eventToStageMap[event] = stageMask;
}
return false;
}
VKAPI_ATTR void VKAPI_CALL
CmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_SETEVENT, "vkCmdSetEvent()");
skip_call |= insideRenderPass(dev_data, pCB, "vkCmdSetEvent");
auto event_node = getEventNode(dev_data, event);
if (event_node) {
addCommandBufferBinding(&event_node->cb_bindings,
{reinterpret_cast<uint64_t &>(event), VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT}, pCB);
event_node->cb_bindings.insert(pCB);
}
pCB->events.push_back(event);
if (!pCB->waitedEvents.count(event)) {
pCB->writeEventsBeforeWait.push_back(event);
}
std::function<bool(VkQueue)> eventUpdate =
std::bind(setEventStageMask, std::placeholders::_1, commandBuffer, event, stageMask);
pCB->eventUpdates.push_back(eventUpdate);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdSetEvent(commandBuffer, event, stageMask);
}
VKAPI_ATTR void VKAPI_CALL
CmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_RESETEVENT, "vkCmdResetEvent()");
skip_call |= insideRenderPass(dev_data, pCB, "vkCmdResetEvent");
auto event_node = getEventNode(dev_data, event);
if (event_node) {
addCommandBufferBinding(&event_node->cb_bindings,
{reinterpret_cast<uint64_t &>(event), VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT}, pCB);
event_node->cb_bindings.insert(pCB);
}
pCB->events.push_back(event);
if (!pCB->waitedEvents.count(event)) {
pCB->writeEventsBeforeWait.push_back(event);
}
std::function<bool(VkQueue)> eventUpdate =
std::bind(setEventStageMask, std::placeholders::_1, commandBuffer, event, VkPipelineStageFlags(0));
pCB->eventUpdates.push_back(eventUpdate);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdResetEvent(commandBuffer, event, stageMask);
}
static bool TransitionImageLayouts(VkCommandBuffer cmdBuffer, uint32_t memBarrierCount,
const VkImageMemoryBarrier *pImgMemBarriers) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, cmdBuffer);
bool skip = false;
uint32_t levelCount = 0;
uint32_t layerCount = 0;
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = &pImgMemBarriers[i];
if (!mem_barrier)
continue;
// TODO: Do not iterate over every possibility - consolidate where
// possible
ResolveRemainingLevelsLayers(dev_data, &levelCount, &layerCount, mem_barrier->subresourceRange, mem_barrier->image);
for (uint32_t j = 0; j < levelCount; j++) {
uint32_t level = mem_barrier->subresourceRange.baseMipLevel + j;
for (uint32_t k = 0; k < layerCount; k++) {
uint32_t layer = mem_barrier->subresourceRange.baseArrayLayer + k;
VkImageSubresource sub = {mem_barrier->subresourceRange.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindLayout(pCB, mem_barrier->image, sub, node)) {
SetLayout(pCB, mem_barrier->image, sub,
IMAGE_CMD_BUF_LAYOUT_NODE(mem_barrier->oldLayout, mem_barrier->newLayout));
continue;
}
if (mem_barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (node.layout != mem_barrier->oldLayout) {
skip |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "You cannot transition the layout from %s "
"when current layout is %s.",
string_VkImageLayout(mem_barrier->oldLayout), string_VkImageLayout(node.layout));
}
SetLayout(pCB, mem_barrier->image, sub, mem_barrier->newLayout);
}
}
}
return skip;
}
// Print readable FlagBits in FlagMask
static std::string string_VkAccessFlags(VkAccessFlags accessMask) {
std::string result;
std::string separator;
if (accessMask == 0) {
result = "[None]";
} else {
result = "[";
for (auto i = 0; i < 32; i++) {
if (accessMask & (1 << i)) {
result = result + separator + string_VkAccessFlagBits((VkAccessFlagBits)(1 << i));
separator = " | ";
}
}
result = result + "]";
}
return result;
}
// AccessFlags MUST have 'required_bit' set, and may have one or more of 'optional_bits' set.
// If required_bit is zero, accessMask must have at least one of 'optional_bits' set
// TODO: Add tracking to ensure that at least one barrier has been set for these layout transitions
static bool ValidateMaskBits(const layer_data *my_data, VkCommandBuffer cmdBuffer, const VkAccessFlags &accessMask,
const VkImageLayout &layout, VkAccessFlags required_bit, VkAccessFlags optional_bits,
const char *type) {
bool skip_call = false;
if ((accessMask & required_bit) || (!required_bit && (accessMask & optional_bits))) {
if (accessMask & ~(required_bit | optional_bits)) {
// TODO: Verify against Valid Use
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "Additional bits in %s accessMask 0x%X %s are specified when layout is %s.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
} else {
if (!required_bit) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s AccessMask %d %s must contain at least one of access bits %d "
"%s when layout is %s, unless the app has previously added a "
"barrier for this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), optional_bits,
string_VkAccessFlags(optional_bits).c_str(), string_VkImageLayout(layout));
} else {
std::string opt_bits;
if (optional_bits != 0) {
std::stringstream ss;
ss << optional_bits;
opt_bits = "and may have optional bits " + ss.str() + ' ' + string_VkAccessFlags(optional_bits);
}
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s AccessMask %d %s must have required access bit %d %s %s when "
"layout is %s, unless the app has previously added a barrier for "
"this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), required_bit,
string_VkAccessFlags(required_bit).c_str(), opt_bits.c_str(), string_VkImageLayout(layout));
}
}
return skip_call;
}
static bool ValidateMaskBitsFromLayouts(const layer_data *my_data, VkCommandBuffer cmdBuffer, const VkAccessFlags &accessMask,
const VkImageLayout &layout, const char *type) {
bool skip_call = false;
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_WRITE_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_PREINITIALIZED: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, VK_ACCESS_HOST_WRITE_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: {
skip_call |= ValidateMaskBits(my_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_READ_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_UNDEFINED: {
if (accessMask != 0) {
// TODO: Verify against Valid Use section spec
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "Additional bits in %s accessMask 0x%X %s are specified when layout is %s.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
break;
}
case VK_IMAGE_LAYOUT_GENERAL:
default: { break; }
}
return skip_call;
}
static bool ValidateBarriers(const char *funcName, VkCommandBuffer cmdBuffer, uint32_t memBarrierCount,
const VkMemoryBarrier *pMemBarriers, uint32_t bufferBarrierCount,
const VkBufferMemoryBarrier *pBufferMemBarriers, uint32_t imageMemBarrierCount,
const VkImageMemoryBarrier *pImageMemBarriers) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, cmdBuffer);
if (pCB->activeRenderPass && memBarrierCount) {
if (!pCB->activeRenderPass->hasSelfDependency[pCB->activeSubpass]) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Barriers cannot be set during subpass %d "
"with no self dependency specified.",
funcName, pCB->activeSubpass);
}
}
for (uint32_t i = 0; i < imageMemBarrierCount; ++i) {
auto mem_barrier = &pImageMemBarriers[i];
auto image_data = getImageNode(dev_data, mem_barrier->image);
if (image_data) {
uint32_t src_q_f_index = mem_barrier->srcQueueFamilyIndex;
uint32_t dst_q_f_index = mem_barrier->dstQueueFamilyIndex;
if (image_data->createInfo.sharingMode == VK_SHARING_MODE_CONCURRENT) {
// srcQueueFamilyIndex and dstQueueFamilyIndex must both
// be VK_QUEUE_FAMILY_IGNORED
if ((src_q_f_index != VK_QUEUE_FAMILY_IGNORED) || (dst_q_f_index != VK_QUEUE_FAMILY_IGNORED)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_QUEUE_INDEX, "DS",
"%s: Image Barrier for image 0x%" PRIx64 " was created with sharingMode of "
"VK_SHARING_MODE_CONCURRENT. Src and dst "
" queueFamilyIndices must be VK_QUEUE_FAMILY_IGNORED.",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->image));
}
} else {
// Sharing mode is VK_SHARING_MODE_EXCLUSIVE. srcQueueFamilyIndex and
// dstQueueFamilyIndex must either both be VK_QUEUE_FAMILY_IGNORED,
// or both be a valid queue family
if (((src_q_f_index == VK_QUEUE_FAMILY_IGNORED) || (dst_q_f_index == VK_QUEUE_FAMILY_IGNORED)) &&
(src_q_f_index != dst_q_f_index)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_QUEUE_INDEX, "DS", "%s: Image 0x%" PRIx64 " was created with sharingMode "
"of VK_SHARING_MODE_EXCLUSIVE. If one of src- or "
"dstQueueFamilyIndex is VK_QUEUE_FAMILY_IGNORED, both "
"must be.",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->image));
} else if (((src_q_f_index != VK_QUEUE_FAMILY_IGNORED) && (dst_q_f_index != VK_QUEUE_FAMILY_IGNORED)) &&
((src_q_f_index >= dev_data->phys_dev_properties.queue_family_properties.size()) ||
(dst_q_f_index >= dev_data->phys_dev_properties.queue_family_properties.size()))) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_QUEUE_INDEX, "DS",
"%s: Image 0x%" PRIx64 " was created with sharingMode "
"of VK_SHARING_MODE_EXCLUSIVE, but srcQueueFamilyIndex %d"
" or dstQueueFamilyIndex %d is greater than " PRINTF_SIZE_T_SPECIFIER
"queueFamilies crated for this device.",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->image), src_q_f_index,
dst_q_f_index, dev_data->phys_dev_properties.queue_family_properties.size());
}
}
}
if (mem_barrier) {
skip_call |=
ValidateMaskBitsFromLayouts(dev_data, cmdBuffer, mem_barrier->srcAccessMask, mem_barrier->oldLayout, "Source");
skip_call |=
ValidateMaskBitsFromLayouts(dev_data, cmdBuffer, mem_barrier->dstAccessMask, mem_barrier->newLayout, "Dest");
if (mem_barrier->newLayout == VK_IMAGE_LAYOUT_UNDEFINED || mem_barrier->newLayout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Image Layout cannot be transitioned to UNDEFINED or "
"PREINITIALIZED.",
funcName);
}
auto image_data = getImageNode(dev_data, mem_barrier->image);
VkFormat format = VK_FORMAT_UNDEFINED;
uint32_t arrayLayers = 0, mipLevels = 0;
bool imageFound = false;
if (image_data) {
format = image_data->createInfo.format;
arrayLayers = image_data->createInfo.arrayLayers;
mipLevels = image_data->createInfo.mipLevels;
imageFound = true;
} else if (dev_data->device_extensions.wsi_enabled) {
auto imageswap_data = getSwapchainFromImage(dev_data, mem_barrier->image);
if (imageswap_data) {
auto swapchain_data = getSwapchainNode(dev_data, imageswap_data);
if (swapchain_data) {
format = swapchain_data->createInfo.imageFormat;
arrayLayers = swapchain_data->createInfo.imageArrayLayers;
mipLevels = 1;
imageFound = true;
}
}
}
if (imageFound) {
auto aspect_mask = mem_barrier->subresourceRange.aspectMask;
if (vk_format_is_depth_or_stencil(format)) {
if (vk_format_is_depth_and_stencil(format)) {
if (!(aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) && !(aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT)) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_BARRIER, "DS",
"%s: Image is a depth and stencil format and thus must "
"have either one or both of VK_IMAGE_ASPECT_DEPTH_BIT and "
"VK_IMAGE_ASPECT_STENCIL_BIT set.",
funcName);
}
} else if (vk_format_is_depth_only(format)) {
if (!(aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT)) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_BARRIER, "DS", "%s: Image is a depth-only format and thus must "
"have VK_IMAGE_ASPECT_DEPTH_BIT set.",
funcName);
}
} else { // stencil-only case
if (!(aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT)) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_BARRIER, "DS", "%s: Image is a stencil-only format and thus must "
"have VK_IMAGE_ASPECT_STENCIL_BIT set.",
funcName);
}
}
} else { // image is a color format
if (!(aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT)) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Image is a color format and thus must "
"have VK_IMAGE_ASPECT_COLOR_BIT set.",
funcName);
}
}
int layerCount = (mem_barrier->subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS)
? 1
: mem_barrier->subresourceRange.layerCount;
if ((mem_barrier->subresourceRange.baseArrayLayer + layerCount) > arrayLayers) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Subresource must have the sum of the "
"baseArrayLayer (%d) and layerCount (%d) be less "
"than or equal to the total number of layers (%d).",
funcName, mem_barrier->subresourceRange.baseArrayLayer, mem_barrier->subresourceRange.layerCount,
arrayLayers);
}
int levelCount = (mem_barrier->subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS)
? 1
: mem_barrier->subresourceRange.levelCount;
if ((mem_barrier->subresourceRange.baseMipLevel + levelCount) > mipLevels) {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Subresource must have the sum of the baseMipLevel "
"(%d) and levelCount (%d) be less than or equal to "
"the total number of levels (%d).",
funcName, mem_barrier->subresourceRange.baseMipLevel, mem_barrier->subresourceRange.levelCount,
mipLevels);
}
}
}
}
for (uint32_t i = 0; i < bufferBarrierCount; ++i) {
auto mem_barrier = &pBufferMemBarriers[i];
if (pCB->activeRenderPass) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Buffer Barriers cannot be used during a render pass.", funcName);
}
if (!mem_barrier)
continue;
// Validate buffer barrier queue family indices
if ((mem_barrier->srcQueueFamilyIndex != VK_QUEUE_FAMILY_IGNORED &&
mem_barrier->srcQueueFamilyIndex >= dev_data->phys_dev_properties.queue_family_properties.size()) ||
(mem_barrier->dstQueueFamilyIndex != VK_QUEUE_FAMILY_IGNORED &&
mem_barrier->dstQueueFamilyIndex >= dev_data->phys_dev_properties.queue_family_properties.size())) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_QUEUE_INDEX, "DS",
"%s: Buffer Barrier 0x%" PRIx64 " has QueueFamilyIndex greater "
"than the number of QueueFamilies (" PRINTF_SIZE_T_SPECIFIER ") for this device.",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->buffer),
dev_data->phys_dev_properties.queue_family_properties.size());
}
auto buffer_node = getBufferNode(dev_data, mem_barrier->buffer);
if (buffer_node) {
auto buffer_size = buffer_node->memSize;
if (mem_barrier->offset >= buffer_size) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS",
"%s: Buffer Barrier 0x%" PRIx64 " has offset 0x%" PRIx64 " which is not less than total size 0x%" PRIx64 ".",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->buffer),
reinterpret_cast<const uint64_t &>(mem_barrier->offset), reinterpret_cast<const uint64_t &>(buffer_size));
} else if (mem_barrier->size != VK_WHOLE_SIZE && (mem_barrier->offset + mem_barrier->size > buffer_size)) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS", "%s: Buffer Barrier 0x%" PRIx64 " has offset 0x%" PRIx64 " and size 0x%" PRIx64
" whose sum is greater than total size 0x%" PRIx64 ".",
funcName, reinterpret_cast<const uint64_t &>(mem_barrier->buffer),
reinterpret_cast<const uint64_t &>(mem_barrier->offset), reinterpret_cast<const uint64_t &>(mem_barrier->size),
reinterpret_cast<const uint64_t &>(buffer_size));
}
}
}
return skip_call;
}
bool validateEventStageMask(VkQueue queue, GLOBAL_CB_NODE *pCB, uint32_t eventCount, size_t firstEventIndex, VkPipelineStageFlags sourceStageMask) {
bool skip_call = false;
VkPipelineStageFlags stageMask = 0;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
for (uint32_t i = 0; i < eventCount; ++i) {
auto event = pCB->events[firstEventIndex + i];
auto queue_data = dev_data->queueMap.find(queue);
if (queue_data == dev_data->queueMap.end())
return false;
auto event_data = queue_data->second.eventToStageMap.find(event);
if (event_data != queue_data->second.eventToStageMap.end()) {
stageMask |= event_data->second;
} else {
auto global_event_data = getEventNode(dev_data, event);
if (!global_event_data) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT,
reinterpret_cast<const uint64_t &>(event), __LINE__, DRAWSTATE_INVALID_EVENT, "DS",
"Event 0x%" PRIx64 " cannot be waited on if it has never been set.",
reinterpret_cast<const uint64_t &>(event));
} else {
stageMask |= global_event_data->stageMask;
}
}
}
// TODO: Need to validate that host_bit is only set if set event is called
// but set event can be called at any time.
if (sourceStageMask != stageMask && sourceStageMask != (stageMask | VK_PIPELINE_STAGE_HOST_BIT)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_EVENT, "DS", "Submitting cmdbuffer with call to VkCmdWaitEvents "
"using srcStageMask 0x%X which must be the bitwise "
"OR of the stageMask parameters used in calls to "
"vkCmdSetEvent and VK_PIPELINE_STAGE_HOST_BIT if "
"used with vkSetEvent but instead is 0x%X.",
sourceStageMask, stageMask);
}
return skip_call;
}
VKAPI_ATTR void VKAPI_CALL
CmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags sourceStageMask,
VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
auto firstEventIndex = pCB->events.size();
for (uint32_t i = 0; i < eventCount; ++i) {
auto event_node = getEventNode(dev_data, pEvents[i]);
if (event_node) {
addCommandBufferBinding(&event_node->cb_bindings,
{reinterpret_cast<const uint64_t &>(pEvents[i]), VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT},
pCB);
event_node->cb_bindings.insert(pCB);
}
pCB->waitedEvents.insert(pEvents[i]);
pCB->events.push_back(pEvents[i]);
}
std::function<bool(VkQueue)> eventUpdate =
std::bind(validateEventStageMask, std::placeholders::_1, pCB, eventCount, firstEventIndex, sourceStageMask);
pCB->eventUpdates.push_back(eventUpdate);
if (pCB->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, pCB, CMD_WAITEVENTS, "vkCmdWaitEvents()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdWaitEvents()");
}
skip_call |= TransitionImageLayouts(commandBuffer, imageMemoryBarrierCount, pImageMemoryBarriers);
skip_call |=
ValidateBarriers("vkCmdWaitEvents", commandBuffer, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdWaitEvents(commandBuffer, eventCount, pEvents, sourceStageMask, dstStageMask,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
VKAPI_ATTR void VKAPI_CALL
CmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= addCmd(dev_data, pCB, CMD_PIPELINEBARRIER, "vkCmdPipelineBarrier()");
skip_call |= TransitionImageLayouts(commandBuffer, imageMemoryBarrierCount, pImageMemoryBarriers);
skip_call |=
ValidateBarriers("vkCmdPipelineBarrier", commandBuffer, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdPipelineBarrier(commandBuffer, srcStageMask, dstStageMask, dependencyFlags,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
bool setQueryState(VkQueue queue, VkCommandBuffer commandBuffer, QueryObject object, bool value) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
pCB->queryToStateMap[object] = value;
}
auto queue_data = dev_data->queueMap.find(queue);
if (queue_data != dev_data->queueMap.end()) {
queue_data->second.queryToStateMap[object] = value;
}
return false;
}
VKAPI_ATTR void VKAPI_CALL
CmdBeginQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t slot, VkFlags flags) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
QueryObject query = {queryPool, slot};
pCB->activeQueries.insert(query);
if (!pCB->startedQueries.count(query)) {
pCB->startedQueries.insert(query);
}
skip_call |= addCmd(dev_data, pCB, CMD_BEGINQUERY, "vkCmdBeginQuery()");
addCommandBufferBinding(&getQueryPoolNode(dev_data, queryPool)->cb_bindings,
{reinterpret_cast<uint64_t &>(queryPool), VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT}, pCB);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdBeginQuery(commandBuffer, queryPool, slot, flags);
}
VKAPI_ATTR void VKAPI_CALL CmdEndQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t slot) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
QueryObject query = {queryPool, slot};
if (!pCB->activeQueries.count(query)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_QUERY, "DS", "Ending a query before it was started: queryPool 0x%" PRIx64 ", index %d",
(uint64_t)(queryPool), slot);
} else {
pCB->activeQueries.erase(query);
}
std::function<bool(VkQueue)> queryUpdate = std::bind(setQueryState, std::placeholders::_1, commandBuffer, query, true);
pCB->queryUpdates.push_back(queryUpdate);
if (pCB->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, pCB, CMD_ENDQUERY, "VkCmdEndQuery()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdEndQuery()");
}
addCommandBufferBinding(&getQueryPoolNode(dev_data, queryPool)->cb_bindings,
{reinterpret_cast<uint64_t &>(queryPool), VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT}, pCB);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdEndQuery(commandBuffer, queryPool, slot);
}
VKAPI_ATTR void VKAPI_CALL
CmdResetQueryPool(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
for (uint32_t i = 0; i < queryCount; i++) {
QueryObject query = {queryPool, firstQuery + i};
pCB->waitedEventsBeforeQueryReset[query] = pCB->waitedEvents;
std::function<bool(VkQueue)> queryUpdate = std::bind(setQueryState, std::placeholders::_1, commandBuffer, query, false);
pCB->queryUpdates.push_back(queryUpdate);
}
if (pCB->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, pCB, CMD_RESETQUERYPOOL, "VkCmdResetQueryPool()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdResetQueryPool()");
}
skip_call |= insideRenderPass(dev_data, pCB, "vkCmdQueryPool");
addCommandBufferBinding(&getQueryPoolNode(dev_data, queryPool)->cb_bindings,
{reinterpret_cast<uint64_t &>(queryPool), VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT}, pCB);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdResetQueryPool(commandBuffer, queryPool, firstQuery, queryCount);
}
bool validateQuery(VkQueue queue, GLOBAL_CB_NODE *pCB, VkQueryPool queryPool, uint32_t queryCount, uint32_t firstQuery) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(pCB->commandBuffer), layer_data_map);
auto queue_data = dev_data->queueMap.find(queue);
if (queue_data == dev_data->queueMap.end())
return false;
for (uint32_t i = 0; i < queryCount; i++) {
QueryObject query = {queryPool, firstQuery + i};
auto query_data = queue_data->second.queryToStateMap.find(query);
bool fail = false;
if (query_data != queue_data->second.queryToStateMap.end()) {
if (!query_data->second) {
fail = true;
}
} else {
auto global_query_data = dev_data->queryToStateMap.find(query);
if (global_query_data != dev_data->queryToStateMap.end()) {
if (!global_query_data->second) {
fail = true;
}
} else {
fail = true;
}
}
if (fail) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_QUERY, "DS",
"Requesting a copy from query to buffer with invalid query: queryPool 0x%" PRIx64 ", index %d",
reinterpret_cast<uint64_t &>(queryPool), firstQuery + i);
}
}
return skip_call;
}
VKAPI_ATTR void VKAPI_CALL
CmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount,
VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize stride, VkQueryResultFlags flags) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto cb_node = getCBNode(dev_data, commandBuffer);
auto dst_buff_node = getBufferNode(dev_data, dstBuffer);
if (cb_node && dst_buff_node) {
skip_call |= ValidateMemoryIsBoundToBuffer(dev_data, dst_buff_node, "vkCmdCopyQueryPoolResults()");
// Update bindings between buffer and cmd buffer
AddCommandBufferBindingBuffer(dev_data, cb_node, dst_buff_node);
// Validate that DST buffer has correct usage flags set
skip_call |= ValidateBufferUsageFlags(dev_data, dst_buff_node, VK_BUFFER_USAGE_TRANSFER_DST_BIT, true,
"vkCmdCopyQueryPoolResults()", "VK_BUFFER_USAGE_TRANSFER_DST_BIT");
std::function<bool()> function = [=]() {
SetBufferMemoryValid(dev_data, dst_buff_node, true);
return false;
};
cb_node->validate_functions.push_back(function);
std::function<bool(VkQueue)> queryUpdate =
std::bind(validateQuery, std::placeholders::_1, cb_node, queryPool, queryCount, firstQuery);
cb_node->queryUpdates.push_back(queryUpdate);
if (cb_node->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, cb_node, CMD_COPYQUERYPOOLRESULTS, "vkCmdCopyQueryPoolResults()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyQueryPoolResults()");
}
skip_call |= insideRenderPass(dev_data, cb_node, "vkCmdCopyQueryPoolResults()");
addCommandBufferBinding(&getQueryPoolNode(dev_data, queryPool)->cb_bindings,
{reinterpret_cast<uint64_t &>(queryPool), VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT}, cb_node);
} else {
assert(0);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdCopyQueryPoolResults(commandBuffer, queryPool, firstQuery, queryCount, dstBuffer,
dstOffset, stride, flags);
}
VKAPI_ATTR void VKAPI_CALL CmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout,
VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size,
const void *pValues) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, pCB, CMD_PUSHCONSTANTS, "vkCmdPushConstants()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdPushConstants()");
}
}
skip_call |= validatePushConstantRange(dev_data, offset, size, "vkCmdPushConstants()");
if (0 == stageFlags) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "vkCmdPushConstants() call has no stageFlags set.");
}
// Check if push constant update is within any of the ranges with the same stage flags specified in pipeline layout.
auto pipeline_layout = getPipelineLayout(dev_data, layout);
// Coalesce adjacent/overlapping pipeline ranges before checking to see if incoming range is
// contained in the pipeline ranges.
// Build a {start, end} span list for ranges with matching stage flags.
const auto &ranges = pipeline_layout->push_constant_ranges;
struct span {
uint32_t start;
uint32_t end;
};
std::vector<span> spans;
spans.reserve(ranges.size());
for (const auto &iter : ranges) {
if (iter.stageFlags == stageFlags) {
spans.push_back({iter.offset, iter.offset + iter.size});
}
}
if (spans.size() == 0) {
// There were no ranges that matched the stageFlags.
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "vkCmdPushConstants() stageFlags = 0x%" PRIx32 " do not match "
"the stageFlags in any of the ranges in pipeline layout 0x%" PRIx64 ".",
(uint32_t)stageFlags, (uint64_t)layout);
} else {
// Sort span list by start value.
struct comparer {
bool operator()(struct span i, struct span j) { return i.start < j.start; }
} my_comparer;
std::sort(spans.begin(), spans.end(), my_comparer);
// Examine two spans at a time.
std::vector<span>::iterator current = spans.begin();
std::vector<span>::iterator next = current + 1;
while (next != spans.end()) {
if (current->end < next->start) {
// There is a gap; cannot coalesce. Move to the next two spans.
++current;
++next;
} else {
// Coalesce the two spans. The start of the next span
// is within the current span, so pick the larger of
// the end values to extend the current span.
// Then delete the next span and set next to the span after it.
current->end = max(current->end, next->end);
next = spans.erase(next);
}
}
// Now we can check if the incoming range is within any of the spans.
bool contained_in_a_range = false;
for (uint32_t i = 0; i < spans.size(); ++i) {
if ((offset >= spans[i].start) && ((uint64_t)offset + (uint64_t)size <= (uint64_t)spans[i].end)) {
contained_in_a_range = true;
break;
}
}
if (!contained_in_a_range) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_PUSH_CONSTANTS_ERROR, "DS", "vkCmdPushConstants() Push constant range [%d, %d) "
"with stageFlags = 0x%" PRIx32 " "
"not within flag-matching ranges in pipeline layout 0x%" PRIx64 ".",
offset, offset + size, (uint32_t)stageFlags, (uint64_t)layout);
}
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdPushConstants(commandBuffer, layout, stageFlags, offset, size, pValues);
}
VKAPI_ATTR void VKAPI_CALL
CmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t slot) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
QueryObject query = {queryPool, slot};
std::function<bool(VkQueue)> queryUpdate = std::bind(setQueryState, std::placeholders::_1, commandBuffer, query, true);
pCB->queryUpdates.push_back(queryUpdate);
if (pCB->state == CB_RECORDING) {
skip_call |= addCmd(dev_data, pCB, CMD_WRITETIMESTAMP, "vkCmdWriteTimestamp()");
} else {
skip_call |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdWriteTimestamp()");
}
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdWriteTimestamp(commandBuffer, pipelineStage, queryPool, slot);
}
static bool MatchUsage(layer_data *dev_data, uint32_t count, const VkAttachmentReference *attachments,
const VkFramebufferCreateInfo *fbci, VkImageUsageFlagBits usage_flag) {
bool skip_call = false;
for (uint32_t attach = 0; attach < count; attach++) {
if (attachments[attach].attachment != VK_ATTACHMENT_UNUSED) {
// Attachment counts are verified elsewhere, but prevent an invalid access
if (attachments[attach].attachment < fbci->attachmentCount) {
const VkImageView *image_view = &fbci->pAttachments[attachments[attach].attachment];
VkImageViewCreateInfo *ivci = getImageViewData(dev_data, *image_view);
if (ivci != nullptr) {
const VkImageCreateInfo *ici = &getImageNode(dev_data, ivci->image)->createInfo;
if (ici != nullptr) {
if ((ici->usage & usage_flag) == 0) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
(VkDebugReportObjectTypeEXT)0, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_USAGE, "DS",
"vkCreateFramebuffer: Framebuffer Attachment (%d) conflicts with the image's "
"IMAGE_USAGE flags (%s).",
attachments[attach].attachment, string_VkImageUsageFlagBits(usage_flag));
}
}
}
}
}
}
return skip_call;
}
// Validate VkFramebufferCreateInfo which includes:
// 1. attachmentCount equals renderPass attachmentCount
// 2. corresponding framebuffer and renderpass attachments have matching formats
// 3. corresponding framebuffer and renderpass attachments have matching sample counts
// 4. fb attachments only have a single mip level
// 5. fb attachment dimensions are each at least as large as the fb
// 6. fb attachments use idenity swizzle
// 7. fb attachments used by renderPass for color/input/ds have correct usage bit set
// 8. fb dimensions are within physical device limits
static bool ValidateFramebufferCreateInfo(layer_data *dev_data, const VkFramebufferCreateInfo *pCreateInfo) {
bool skip_call = false;
auto rp_node = getRenderPass(dev_data, pCreateInfo->renderPass);
if (rp_node) {
const VkRenderPassCreateInfo *rpci = rp_node->pCreateInfo;
if (rpci->attachmentCount != pCreateInfo->attachmentCount) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass), __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE, "DS",
"vkCreateFramebuffer(): VkFramebufferCreateInfo attachmentCount of %u does not match attachmentCount of %u of "
"renderPass (0x%" PRIxLEAST64 ") being used to create Framebuffer.",
pCreateInfo->attachmentCount, rpci->attachmentCount, reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass));
} else {
// attachmentCounts match, so make sure corresponding attachment details line up
const VkImageView *image_views = pCreateInfo->pAttachments;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
VkImageViewCreateInfo *ivci = getImageViewData(dev_data, image_views[i]);
if (ivci->format != rpci->pAttachments[i].format) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass), __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE,
"DS", "vkCreateFramebuffer(): VkFramebufferCreateInfo attachment #%u has format of %s that does not match "
"the format of "
"%s used by the corresponding attachment for renderPass (0x%" PRIxLEAST64 ").",
i, string_VkFormat(ivci->format), string_VkFormat(rpci->pAttachments[i].format),
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass));
}
const VkImageCreateInfo *ici = &getImageNode(dev_data, ivci->image)->createInfo;
if (ici->samples != rpci->pAttachments[i].samples) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass), __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE,
"DS", "vkCreateFramebuffer(): VkFramebufferCreateInfo attachment #%u has %s samples that do not match "
"the %s samples used by the corresponding attachment for renderPass (0x%" PRIxLEAST64 ").",
i, string_VkSampleCountFlagBits(ici->samples), string_VkSampleCountFlagBits(rpci->pAttachments[i].samples),
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass));
}
// Verify that view only has a single mip level
if (ivci->subresourceRange.levelCount != 1) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_INVALID_FRAMEBUFFER_CREATE_INFO, "DS",
"vkCreateFramebuffer(): VkFramebufferCreateInfo attachment #%u has mip levelCount of %u "
"but only a single mip level (levelCount == 1) is allowed when creating a Framebuffer.",
i, ivci->subresourceRange.levelCount);
}
const uint32_t mip_level = ivci->subresourceRange.baseMipLevel;
uint32_t mip_width = max(1u, ici->extent.width >> mip_level);
uint32_t mip_height = max(1u, ici->extent.height >> mip_level);
if ((ivci->subresourceRange.layerCount < pCreateInfo->layers) || (mip_width < pCreateInfo->width) ||
(mip_height < pCreateInfo->height)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
DRAWSTATE_INVALID_FRAMEBUFFER_CREATE_INFO, "DS",
"vkCreateFramebuffer(): VkFramebufferCreateInfo attachment #%u mip level %u has dimensions smaller "
"than the corresponding "
"framebuffer dimensions. Attachment dimensions must be at least as large. Here are the respective "
"dimensions for "
"attachment #%u, framebuffer:\n"
"width: %u, %u\n"
"height: %u, %u\n"
"layerCount: %u, %u\n",
i, ivci->subresourceRange.baseMipLevel, i, mip_width, pCreateInfo->width, mip_height,
pCreateInfo->height, ivci->subresourceRange.layerCount, pCreateInfo->layers);
}
if (((ivci->components.r != VK_COMPONENT_SWIZZLE_IDENTITY) && (ivci->components.r != VK_COMPONENT_SWIZZLE_R)) ||
((ivci->components.g != VK_COMPONENT_SWIZZLE_IDENTITY) && (ivci->components.g != VK_COMPONENT_SWIZZLE_G)) ||
((ivci->components.b != VK_COMPONENT_SWIZZLE_IDENTITY) && (ivci->components.b != VK_COMPONENT_SWIZZLE_B)) ||
((ivci->components.a != VK_COMPONENT_SWIZZLE_IDENTITY) && (ivci->components.a != VK_COMPONENT_SWIZZLE_A))) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
DRAWSTATE_INVALID_FRAMEBUFFER_CREATE_INFO, "DS",
"vkCreateFramebuffer(): VkFramebufferCreateInfo attachment #%u has non-identy swizzle. All framebuffer "
"attachments must have been created with the identity swizzle. Here are the actual swizzle values:\n"
"r swizzle = %s\n"
"g swizzle = %s\n"
"b swizzle = %s\n"
"a swizzle = %s\n",
i, string_VkComponentSwizzle(ivci->components.r), string_VkComponentSwizzle(ivci->components.g),
string_VkComponentSwizzle(ivci->components.b), string_VkComponentSwizzle(ivci->components.a));
}
}
}
// Verify correct attachment usage flags
for (uint32_t subpass = 0; subpass < rpci->subpassCount; subpass++) {
// Verify input attachments:
skip_call |= MatchUsage(dev_data, rpci->pSubpasses[subpass].inputAttachmentCount,
rpci->pSubpasses[subpass].pInputAttachments, pCreateInfo, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);
// Verify color attachments:
skip_call |= MatchUsage(dev_data, rpci->pSubpasses[subpass].colorAttachmentCount,
rpci->pSubpasses[subpass].pColorAttachments, pCreateInfo, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
// Verify depth/stencil attachments:
if (rpci->pSubpasses[subpass].pDepthStencilAttachment != nullptr) {
skip_call |= MatchUsage(dev_data, 1, rpci->pSubpasses[subpass].pDepthStencilAttachment, pCreateInfo,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
}
} else {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass), __LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"vkCreateFramebuffer(): Attempt to create framebuffer with invalid renderPass (0x%" PRIxLEAST64 ").",
reinterpret_cast<const uint64_t &>(pCreateInfo->renderPass));
}
// Verify FB dimensions are within physical device limits
if ((pCreateInfo->height > dev_data->phys_dev_properties.properties.limits.maxFramebufferHeight) ||
(pCreateInfo->width > dev_data->phys_dev_properties.properties.limits.maxFramebufferWidth) ||
(pCreateInfo->layers > dev_data->phys_dev_properties.properties.limits.maxFramebufferLayers)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0, __LINE__,
DRAWSTATE_INVALID_FRAMEBUFFER_CREATE_INFO, "DS",
"vkCreateFramebuffer(): Requested VkFramebufferCreateInfo dimensions exceed physical device limits. "
"Here are the respective dimensions: requested, device max:\n"
"width: %u, %u\n"
"height: %u, %u\n"
"layerCount: %u, %u\n",
pCreateInfo->width, dev_data->phys_dev_properties.properties.limits.maxFramebufferWidth,
pCreateInfo->height, dev_data->phys_dev_properties.properties.limits.maxFramebufferHeight,
pCreateInfo->layers, dev_data->phys_dev_properties.properties.limits.maxFramebufferLayers);
}
return skip_call;
}
// Validate VkFramebufferCreateInfo state prior to calling down chain to create Framebuffer object
// Return true if an error is encountered and callback returns true to skip call down chain
// false indicates that call down chain should proceed
static bool PreCallValidateCreateFramebuffer(layer_data *dev_data, const VkFramebufferCreateInfo *pCreateInfo) {
// TODO : Verify that renderPass FB is created with is compatible with FB
bool skip_call = false;
skip_call |= ValidateFramebufferCreateInfo(dev_data, pCreateInfo);
return skip_call;
}
// CreateFramebuffer state has been validated and call down chain completed so record new framebuffer object
static void PostCallRecordCreateFramebuffer(layer_data *dev_data, const VkFramebufferCreateInfo *pCreateInfo, VkFramebuffer fb) {
// Shadow create info and store in map
std::unique_ptr<FRAMEBUFFER_NODE> fb_node(
new FRAMEBUFFER_NODE(fb, pCreateInfo, dev_data->renderPassMap[pCreateInfo->renderPass]->pCreateInfo));
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
VkImageView view = pCreateInfo->pAttachments[i];
auto view_data = getImageViewData(dev_data, view);
if (!view_data) {
continue;
}
MT_FB_ATTACHMENT_INFO fb_info;
fb_info.mem = getImageNode(dev_data, view_data->image)->mem;
fb_info.image = view_data->image;
fb_node->attachments.push_back(fb_info);
}
dev_data->frameBufferMap[fb] = std::move(fb_node);
}
VKAPI_ATTR VkResult VKAPI_CALL CreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkFramebuffer *pFramebuffer) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
bool skip_call = PreCallValidateCreateFramebuffer(dev_data, pCreateInfo);
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result = dev_data->device_dispatch_table->CreateFramebuffer(device, pCreateInfo, pAllocator, pFramebuffer);
if (VK_SUCCESS == result) {
lock.lock();
PostCallRecordCreateFramebuffer(dev_data, pCreateInfo, *pFramebuffer);
lock.unlock();
}
return result;
}
static bool FindDependency(const int index, const int dependent, const std::vector<DAGNode> &subpass_to_node,
std::unordered_set<uint32_t> &processed_nodes) {
// If we have already checked this node we have not found a dependency path so return false.
if (processed_nodes.count(index))
return false;
processed_nodes.insert(index);
const DAGNode &node = subpass_to_node[index];
// Look for a dependency path. If one exists return true else recurse on the previous nodes.
if (std::find(node.prev.begin(), node.prev.end(), dependent) == node.prev.end()) {
for (auto elem : node.prev) {
if (FindDependency(elem, dependent, subpass_to_node, processed_nodes))
return true;
}
} else {
return true;
}
return false;
}
static bool CheckDependencyExists(const layer_data *my_data, const int subpass, const std::vector<uint32_t> &dependent_subpasses,
const std::vector<DAGNode> &subpass_to_node, bool &skip_call) {
bool result = true;
// Loop through all subpasses that share the same attachment and make sure a dependency exists
for (uint32_t k = 0; k < dependent_subpasses.size(); ++k) {
if (static_cast<uint32_t>(subpass) == dependent_subpasses[k])
continue;
const DAGNode &node = subpass_to_node[subpass];
// Check for a specified dependency between the two nodes. If one exists we are done.
auto prev_elem = std::find(node.prev.begin(), node.prev.end(), dependent_subpasses[k]);
auto next_elem = std::find(node.next.begin(), node.next.end(), dependent_subpasses[k]);
if (prev_elem == node.prev.end() && next_elem == node.next.end()) {
// If no dependency exits an implicit dependency still might. If not, throw an error.
std::unordered_set<uint32_t> processed_nodes;
if (!(FindDependency(subpass, dependent_subpasses[k], subpass_to_node, processed_nodes) ||
FindDependency(dependent_subpasses[k], subpass, subpass_to_node, processed_nodes))) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"A dependency between subpasses %d and %d must exist but one is not specified.", subpass,
dependent_subpasses[k]);
result = false;
}
}
}
return result;
}
static bool CheckPreserved(const layer_data *my_data, const VkRenderPassCreateInfo *pCreateInfo, const int index,
const uint32_t attachment, const std::vector<DAGNode> &subpass_to_node, int depth, bool &skip_call) {
const DAGNode &node = subpass_to_node[index];
// If this node writes to the attachment return true as next nodes need to preserve the attachment.
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[index];
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
if (attachment == subpass.pColorAttachments[j].attachment)
return true;
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
if (attachment == subpass.pDepthStencilAttachment->attachment)
return true;
}
bool result = false;
// Loop through previous nodes and see if any of them write to the attachment.
for (auto elem : node.prev) {
result |= CheckPreserved(my_data, pCreateInfo, elem, attachment, subpass_to_node, depth + 1, skip_call);
}
// If the attachment was written to by a previous node than this node needs to preserve it.
if (result && depth > 0) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[index];
bool has_preserved = false;
for (uint32_t j = 0; j < subpass.preserveAttachmentCount; ++j) {
if (subpass.pPreserveAttachments[j] == attachment) {
has_preserved = true;
break;
}
}
if (!has_preserved) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"Attachment %d is used by a later subpass and must be preserved in subpass %d.", attachment, index);
}
}
return result;
}
template <class T> bool isRangeOverlapping(T offset1, T size1, T offset2, T size2) {
return (((offset1 + size1) > offset2) && ((offset1 + size1) < (offset2 + size2))) ||
((offset1 > offset2) && (offset1 < (offset2 + size2)));
}
bool isRegionOverlapping(VkImageSubresourceRange range1, VkImageSubresourceRange range2) {
return (isRangeOverlapping(range1.baseMipLevel, range1.levelCount, range2.baseMipLevel, range2.levelCount) &&
isRangeOverlapping(range1.baseArrayLayer, range1.layerCount, range2.baseArrayLayer, range2.layerCount));
}
static bool ValidateDependencies(const layer_data *my_data, FRAMEBUFFER_NODE const * framebuffer,
RENDER_PASS_NODE const * renderPass) {
bool skip_call = false;
const safe_VkFramebufferCreateInfo *pFramebufferInfo = &framebuffer->createInfo;
const VkRenderPassCreateInfo *pCreateInfo = renderPass->pCreateInfo;
auto const & subpass_to_node = renderPass->subpassToNode;
std::vector<std::vector<uint32_t>> output_attachment_to_subpass(pCreateInfo->attachmentCount);
std::vector<std::vector<uint32_t>> input_attachment_to_subpass(pCreateInfo->attachmentCount);
std::vector<std::vector<uint32_t>> overlapping_attachments(pCreateInfo->attachmentCount);
// Find overlapping attachments
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
for (uint32_t j = i + 1; j < pCreateInfo->attachmentCount; ++j) {
VkImageView viewi = pFramebufferInfo->pAttachments[i];
VkImageView viewj = pFramebufferInfo->pAttachments[j];
if (viewi == viewj) {
overlapping_attachments[i].push_back(j);
overlapping_attachments[j].push_back(i);
continue;
}
auto view_data_i = getImageViewData(my_data, viewi);
auto view_data_j = getImageViewData(my_data, viewj);
if (!view_data_i || !view_data_j) {
continue;
}
if (view_data_i->image == view_data_j->image &&
isRegionOverlapping(view_data_i->subresourceRange, view_data_j->subresourceRange)) {
overlapping_attachments[i].push_back(j);
overlapping_attachments[j].push_back(i);
continue;
}
auto image_data_i = getImageNode(my_data, view_data_i->image);
auto image_data_j = getImageNode(my_data, view_data_j->image);
if (!image_data_i || !image_data_j) {
continue;
}
if (image_data_i->mem == image_data_j->mem && isRangeOverlapping(image_data_i->memOffset, image_data_i->memSize,
image_data_j->memOffset, image_data_j->memSize)) {
overlapping_attachments[i].push_back(j);
overlapping_attachments[j].push_back(i);
}
}
}
for (uint32_t i = 0; i < overlapping_attachments.size(); ++i) {
uint32_t attachment = i;
for (auto other_attachment : overlapping_attachments[i]) {
if (!(pCreateInfo->pAttachments[attachment].flags & VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS", "Attachment %d aliases attachment %d but doesn't "
"set VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT.",
attachment, other_attachment);
}
if (!(pCreateInfo->pAttachments[other_attachment].flags & VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS", "Attachment %d aliases attachment %d but doesn't "
"set VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT.",
other_attachment, attachment);
}
}
}
// Find for each attachment the subpasses that use them.
unordered_set<uint32_t> attachmentIndices;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
attachmentIndices.clear();
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
uint32_t attachment = subpass.pInputAttachments[j].attachment;
if (attachment == VK_ATTACHMENT_UNUSED)
continue;
input_attachment_to_subpass[attachment].push_back(i);
for (auto overlapping_attachment : overlapping_attachments[attachment]) {
input_attachment_to_subpass[overlapping_attachment].push_back(i);
}
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
uint32_t attachment = subpass.pColorAttachments[j].attachment;
if (attachment == VK_ATTACHMENT_UNUSED)
continue;
output_attachment_to_subpass[attachment].push_back(i);
for (auto overlapping_attachment : overlapping_attachments[attachment]) {
output_attachment_to_subpass[overlapping_attachment].push_back(i);
}
attachmentIndices.insert(attachment);
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t attachment = subpass.pDepthStencilAttachment->attachment;
output_attachment_to_subpass[attachment].push_back(i);
for (auto overlapping_attachment : overlapping_attachments[attachment]) {
output_attachment_to_subpass[overlapping_attachment].push_back(i);
}
if (attachmentIndices.count(attachment)) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0,
0, __LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"Cannot use same attachment (%u) as both color and depth output in same subpass (%u).",
attachment, i);
}
}
}
// If there is a dependency needed make sure one exists
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
// If the attachment is an input then all subpasses that output must have a dependency relationship
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
uint32_t attachment = subpass.pInputAttachments[j].attachment;
if (attachment == VK_ATTACHMENT_UNUSED)
continue;
CheckDependencyExists(my_data, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
// If the attachment is an output then all subpasses that use the attachment must have a dependency relationship
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
uint32_t attachment = subpass.pColorAttachments[j].attachment;
if (attachment == VK_ATTACHMENT_UNUSED)
continue;
CheckDependencyExists(my_data, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
CheckDependencyExists(my_data, i, input_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
const uint32_t &attachment = subpass.pDepthStencilAttachment->attachment;
CheckDependencyExists(my_data, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
CheckDependencyExists(my_data, i, input_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
}
// Loop through implicit dependencies, if this pass reads make sure the attachment is preserved for all passes after it was
// written.
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
CheckPreserved(my_data, pCreateInfo, i, subpass.pInputAttachments[j].attachment, subpass_to_node, 0, skip_call);
}
}
return skip_call;
}
// ValidateLayoutVsAttachmentDescription is a general function where we can validate various state associated with the
// VkAttachmentDescription structs that are used by the sub-passes of a renderpass. Initial check is to make sure that
// READ_ONLY layout attachments don't have CLEAR as their loadOp.
static bool ValidateLayoutVsAttachmentDescription(debug_report_data *report_data, const VkImageLayout first_layout,
const uint32_t attachment,
const VkAttachmentDescription &attachment_description) {
bool skip_call = false;
// Verify that initial loadOp on READ_ONLY attachments is not CLEAR
if (attachment_description.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
if ((first_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL) ||
(first_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)) {
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
VkDebugReportObjectTypeEXT(0), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot clear attachment %d with invalid first layout %s.", attachment, string_VkImageLayout(first_layout));
}
}
return skip_call;
}
static bool ValidateLayouts(const layer_data *my_data, VkDevice device, const VkRenderPassCreateInfo *pCreateInfo) {
bool skip = false;
// Track when we're observing the first use of an attachment
std::vector<bool> attach_first_use(pCreateInfo->attachmentCount, true);
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
auto attach_index = subpass.pColorAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED)
continue;
switch (subpass.pColorAttachments[j].layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
/* This is ideal. */
break;
case VK_IMAGE_LAYOUT_GENERAL:
/* May not be optimal; TODO: reconsider this warning based on
* other constraints?
*/
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is GENERAL but should be COLOR_ATTACHMENT_OPTIMAL.");
break;
default:
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is %s but can only be COLOR_ATTACHMENT_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pColorAttachments[j].layout));
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(my_data->report_data, subpass.pColorAttachments[j].layout,
attach_index, pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
switch (subpass.pDepthStencilAttachment->layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
/* These are ideal. */
break;
case VK_IMAGE_LAYOUT_GENERAL:
/* May not be optimal; TODO: reconsider this warning based on
* other constraints? GENERAL can be better than doing a bunch
* of transitions.
*/
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"GENERAL layout for depth attachment may not give optimal performance.");
break;
default:
/* No other layouts are acceptable */
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for depth attachment is %s but can only be DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "
"DEPTH_STENCIL_READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pDepthStencilAttachment->layout));
}
auto attach_index = subpass.pDepthStencilAttachment->attachment;
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(my_data->report_data, subpass.pDepthStencilAttachment->layout,
attach_index, pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
auto attach_index = subpass.pInputAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED)
continue;
switch (subpass.pInputAttachments[j].layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
/* These are ideal. */
break;
case VK_IMAGE_LAYOUT_GENERAL:
/* May not be optimal. TODO: reconsider this warning based on
* other constraints.
*/
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is GENERAL but should be READ_ONLY_OPTIMAL.");
break;
default:
/* No other layouts are acceptable */
skip |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is %s but can only be READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pInputAttachments[j].layout));
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(my_data->report_data, subpass.pInputAttachments[j].layout,
attach_index, pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
}
return skip;
}
static bool CreatePassDAG(const layer_data *my_data, VkDevice device, const VkRenderPassCreateInfo *pCreateInfo,
std::vector<DAGNode> &subpass_to_node, std::vector<bool> &has_self_dependency) {
bool skip_call = false;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
DAGNode &subpass_node = subpass_to_node[i];
subpass_node.pass = i;
}
for (uint32_t i = 0; i < pCreateInfo->dependencyCount; ++i) {
const VkSubpassDependency &dependency = pCreateInfo->pDependencies[i];
if (dependency.srcSubpass > dependency.dstSubpass && dependency.srcSubpass != VK_SUBPASS_EXTERNAL &&
dependency.dstSubpass != VK_SUBPASS_EXTERNAL) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"Depedency graph must be specified such that an earlier pass cannot depend on a later pass.");
} else if (dependency.srcSubpass == VK_SUBPASS_EXTERNAL && dependency.dstSubpass == VK_SUBPASS_EXTERNAL) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS", "The src and dest subpasses cannot both be external.");
} else if (dependency.srcSubpass == dependency.dstSubpass) {
has_self_dependency[dependency.srcSubpass] = true;
}
if (dependency.dstSubpass != VK_SUBPASS_EXTERNAL) {
subpass_to_node[dependency.dstSubpass].prev.push_back(dependency.srcSubpass);
}
if (dependency.srcSubpass != VK_SUBPASS_EXTERNAL) {
subpass_to_node[dependency.srcSubpass].next.push_back(dependency.dstSubpass);
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkShaderModule *pShaderModule) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
/* Use SPIRV-Tools validator to try and catch any issues with the module itself */
spv_context ctx = spvContextCreate(SPV_ENV_VULKAN_1_0);
spv_const_binary_t binary { pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t) };
spv_diagnostic diag = nullptr;
auto result = spvValidate(ctx, &binary, &diag);
if (result != SPV_SUCCESS) {
skip_call |= log_msg(my_data->report_data,
result == SPV_WARNING ? VK_DEBUG_REPORT_WARNING_BIT_EXT : VK_DEBUG_REPORT_ERROR_BIT_EXT,
VkDebugReportObjectTypeEXT(0), 0,
__LINE__, SHADER_CHECKER_INCONSISTENT_SPIRV, "SC", "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult res = my_data->device_dispatch_table->CreateShaderModule(device, pCreateInfo, pAllocator, pShaderModule);
if (res == VK_SUCCESS) {
std::lock_guard<std::mutex> lock(global_lock);
my_data->shaderModuleMap[*pShaderModule] = unique_ptr<shader_module>(new shader_module(pCreateInfo));
}
return res;
}
static bool ValidateAttachmentIndex(layer_data *dev_data, uint32_t attachment, uint32_t attachment_count, const char *type) {
bool skip_call = false;
if (attachment >= attachment_count && attachment != VK_ATTACHMENT_UNUSED) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_ATTACHMENT_INDEX, "DS",
"CreateRenderPass: %s attachment %d cannot be greater than the total number of attachments %d.",
type, attachment, attachment_count);
}
return skip_call;
}
static bool IsPowerOfTwo(unsigned x) {
return x && !(x & (x-1));
}
static bool ValidateRenderpassAttachmentUsage(layer_data *dev_data, const VkRenderPassCreateInfo *pCreateInfo) {
bool skip_call = false;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
if (subpass.pipelineBindPoint != VK_PIPELINE_BIND_POINT_GRAPHICS) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"CreateRenderPass: Pipeline bind point for subpass %d must be VK_PIPELINE_BIND_POINT_GRAPHICS.", i);
}
for (uint32_t j = 0; j < subpass.preserveAttachmentCount; ++j) {
uint32_t attachment = subpass.pPreserveAttachments[j];
if (attachment == VK_ATTACHMENT_UNUSED) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_ATTACHMENT_INDEX, "DS",
"CreateRenderPass: Preserve attachment (%d) must not be VK_ATTACHMENT_UNUSED.", j);
} else {
skip_call |= ValidateAttachmentIndex(dev_data, attachment, pCreateInfo->attachmentCount, "Preserve");
}
}
auto subpass_performs_resolve = subpass.pResolveAttachments && std::any_of(
subpass.pResolveAttachments, subpass.pResolveAttachments + subpass.colorAttachmentCount,
[](VkAttachmentReference ref) { return ref.attachment != VK_ATTACHMENT_UNUSED; });
unsigned sample_count = 0;
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
uint32_t attachment;
if (subpass.pResolveAttachments) {
attachment = subpass.pResolveAttachments[j].attachment;
skip_call |= ValidateAttachmentIndex(dev_data, attachment, pCreateInfo->attachmentCount, "Resolve");
if (!skip_call && attachment != VK_ATTACHMENT_UNUSED &&
pCreateInfo->pAttachments[attachment].samples != VK_SAMPLE_COUNT_1_BIT) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"CreateRenderPass: Subpass %u requests multisample resolve into attachment %u, "
"which must have VK_SAMPLE_COUNT_1_BIT but has %s",
i, attachment, string_VkSampleCountFlagBits(pCreateInfo->pAttachments[attachment].samples));
}
}
attachment = subpass.pColorAttachments[j].attachment;
skip_call |= ValidateAttachmentIndex(dev_data, attachment, pCreateInfo->attachmentCount, "Color");
if (!skip_call && attachment != VK_ATTACHMENT_UNUSED) {
sample_count |= (unsigned)pCreateInfo->pAttachments[attachment].samples;
if (subpass_performs_resolve &&
pCreateInfo->pAttachments[attachment].samples == VK_SAMPLE_COUNT_1_BIT) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"CreateRenderPass: Subpass %u requests multisample resolve from attachment %u "
"which has VK_SAMPLE_COUNT_1_BIT",
i, attachment);
}
}
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t attachment = subpass.pDepthStencilAttachment->attachment;
skip_call |= ValidateAttachmentIndex(dev_data, attachment, pCreateInfo->attachmentCount, "Depth stencil");
if (!skip_call && attachment != VK_ATTACHMENT_UNUSED) {
sample_count |= (unsigned)pCreateInfo->pAttachments[attachment].samples;
}
}
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
uint32_t attachment = subpass.pInputAttachments[j].attachment;
skip_call |= ValidateAttachmentIndex(dev_data, attachment, pCreateInfo->attachmentCount, "Input");
}
if (sample_count && !IsPowerOfTwo(sample_count)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VkDebugReportObjectTypeEXT(0), 0,
__LINE__, DRAWSTATE_INVALID_RENDERPASS, "DS",
"CreateRenderPass: Subpass %u attempts to render to "
"attachments with inconsistent sample counts",
i);
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateRenderPass(VkDevice device, const VkRenderPassCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
skip_call |= ValidateLayouts(dev_data, device, pCreateInfo);
// TODO: As part of wrapping up the mem_tracker/core_validation merge the following routine should be consolidated with
// ValidateLayouts.
skip_call |= ValidateRenderpassAttachmentUsage(dev_data, pCreateInfo);
lock.unlock();
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VkResult result = dev_data->device_dispatch_table->CreateRenderPass(device, pCreateInfo, pAllocator, pRenderPass);
if (VK_SUCCESS == result) {
lock.lock();
std::vector<bool> has_self_dependency(pCreateInfo->subpassCount);
std::vector<DAGNode> subpass_to_node(pCreateInfo->subpassCount);
skip_call |= CreatePassDAG(dev_data, device, pCreateInfo, subpass_to_node, has_self_dependency);
// Shadow create info and store in map
VkRenderPassCreateInfo *localRPCI = new VkRenderPassCreateInfo(*pCreateInfo);
if (pCreateInfo->pAttachments) {
localRPCI->pAttachments = new VkAttachmentDescription[localRPCI->attachmentCount];
memcpy((void *)localRPCI->pAttachments, pCreateInfo->pAttachments,
localRPCI->attachmentCount * sizeof(VkAttachmentDescription));
}
if (pCreateInfo->pSubpasses) {
localRPCI->pSubpasses = new VkSubpassDescription[localRPCI->subpassCount];
memcpy((void *)localRPCI->pSubpasses, pCreateInfo->pSubpasses, localRPCI->subpassCount * sizeof(VkSubpassDescription));
for (uint32_t i = 0; i < localRPCI->subpassCount; i++) {
VkSubpassDescription *subpass = (VkSubpassDescription *)&localRPCI->pSubpasses[i];
const uint32_t attachmentCount = subpass->inputAttachmentCount +
subpass->colorAttachmentCount * (1 + (subpass->pResolveAttachments ? 1 : 0)) +
((subpass->pDepthStencilAttachment) ? 1 : 0) + subpass->preserveAttachmentCount;
VkAttachmentReference *attachments = new VkAttachmentReference[attachmentCount];
memcpy(attachments, subpass->pInputAttachments, sizeof(attachments[0]) * subpass->inputAttachmentCount);
subpass->pInputAttachments = attachments;
attachments += subpass->inputAttachmentCount;
memcpy(attachments, subpass->pColorAttachments, sizeof(attachments[0]) * subpass->colorAttachmentCount);
subpass->pColorAttachments = attachments;
attachments += subpass->colorAttachmentCount;
if (subpass->pResolveAttachments) {
memcpy(attachments, subpass->pResolveAttachments, sizeof(attachments[0]) * subpass->colorAttachmentCount);
subpass->pResolveAttachments = attachments;
attachments += subpass->colorAttachmentCount;
}
if (subpass->pDepthStencilAttachment) {
memcpy(attachments, subpass->pDepthStencilAttachment, sizeof(attachments[0]) * 1);
subpass->pDepthStencilAttachment = attachments;
attachments += 1;
}
memcpy(attachments, subpass->pPreserveAttachments, sizeof(attachments[0]) * subpass->preserveAttachmentCount);
subpass->pPreserveAttachments = &attachments->attachment;
}
}
if (pCreateInfo->pDependencies) {
localRPCI->pDependencies = new VkSubpassDependency[localRPCI->dependencyCount];
memcpy((void *)localRPCI->pDependencies, pCreateInfo->pDependencies,
localRPCI->dependencyCount * sizeof(VkSubpassDependency));
}
auto render_pass = new RENDER_PASS_NODE(localRPCI);
render_pass->renderPass = *pRenderPass;
render_pass->hasSelfDependency = has_self_dependency;
render_pass->subpassToNode = subpass_to_node;
#if MTMERGESOURCE
// MTMTODO : Merge with code from above to eliminate duplication
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
VkAttachmentDescription desc = pCreateInfo->pAttachments[i];
MT_PASS_ATTACHMENT_INFO pass_info;
pass_info.load_op = desc.loadOp;
pass_info.store_op = desc.storeOp;
pass_info.stencil_load_op = desc.stencilLoadOp;
pass_info.stencil_store_op = desc.stencilStoreOp;
pass_info.attachment = i;
render_pass->attachments.push_back(pass_info);
}
// TODO: Maybe fill list and then copy instead of locking
std::unordered_map<uint32_t, bool> &attachment_first_read = render_pass->attachment_first_read;
std::unordered_map<uint32_t, VkImageLayout> &attachment_first_layout = render_pass->attachment_first_layout;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
uint32_t attachment = subpass.pColorAttachments[j].attachment;
if (!attachment_first_read.count(attachment)) {
attachment_first_read.insert(std::make_pair(attachment, false));
attachment_first_layout.insert(std::make_pair(attachment, subpass.pColorAttachments[j].layout));
}
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t attachment = subpass.pDepthStencilAttachment->attachment;
if (!attachment_first_read.count(attachment)) {
attachment_first_read.insert(std::make_pair(attachment, false));
attachment_first_layout.insert(std::make_pair(attachment, subpass.pDepthStencilAttachment->layout));
}
}
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
uint32_t attachment = subpass.pInputAttachments[j].attachment;
if (!attachment_first_read.count(attachment)) {
attachment_first_read.insert(std::make_pair(attachment, true));
attachment_first_layout.insert(std::make_pair(attachment, subpass.pInputAttachments[j].layout));
}
}
}
#endif
dev_data->renderPassMap[*pRenderPass] = render_pass;
}
return result;
}
// Free the renderpass shadow
static void deleteRenderPasses(layer_data *my_data) {
for (auto renderPass : my_data->renderPassMap) {
const VkRenderPassCreateInfo *pRenderPassInfo = renderPass.second->pCreateInfo;
delete[] pRenderPassInfo->pAttachments;
if (pRenderPassInfo->pSubpasses) {
for (uint32_t i = 0; i < pRenderPassInfo->subpassCount; ++i) {
// Attachements are all allocated in a block, so just need to
// find the first non-null one to delete
if (pRenderPassInfo->pSubpasses[i].pInputAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pInputAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pColorAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pColorAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pResolveAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pResolveAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pPreserveAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pPreserveAttachments;
}
}
delete[] pRenderPassInfo->pSubpasses;
}
delete[] pRenderPassInfo->pDependencies;
delete pRenderPassInfo;
delete renderPass.second;
}
my_data->renderPassMap.clear();
}
static bool VerifyFramebufferAndRenderPassLayouts(layer_data *dev_data, GLOBAL_CB_NODE *pCB, const VkRenderPassBeginInfo *pRenderPassBegin) {
bool skip_call = false;
const VkRenderPassCreateInfo *pRenderPassInfo = dev_data->renderPassMap[pRenderPassBegin->renderPass]->pCreateInfo;
const safe_VkFramebufferCreateInfo framebufferInfo = dev_data->frameBufferMap[pRenderPassBegin->framebuffer]->createInfo;
if (pRenderPassInfo->attachmentCount != framebufferInfo.attachmentCount) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS", "You cannot start a render pass using a framebuffer "
"with a different number of attachments.");
}
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView &image_view = framebufferInfo.pAttachments[i];
auto image_data = getImageViewData(dev_data, image_view);
assert(image_data);
const VkImage &image = image_data->image;
const VkImageSubresourceRange &subRange = image_data->subresourceRange;
IMAGE_CMD_BUF_LAYOUT_NODE newNode = {pRenderPassInfo->pAttachments[i].initialLayout,
pRenderPassInfo->pAttachments[i].initialLayout};
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindLayout(pCB, image, sub, node)) {
SetLayout(pCB, image, sub, newNode);
continue;
}
if (newNode.layout != VK_IMAGE_LAYOUT_UNDEFINED &&
newNode.layout != node.layout) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using attachment %u "
"where the render pass initial layout is %s and the previous "
"known layout of the attachment is %s. The layouts must match, or "
"the render pass initial layout for the attachment must be "
"VK_IMAGE_LAYOUT_UNDEFINED",
i, string_VkImageLayout(newNode.layout), string_VkImageLayout(node.layout));
}
}
}
}
return skip_call;
}
static void TransitionAttachmentRefLayout(layer_data *dev_data, GLOBAL_CB_NODE *pCB,
FRAMEBUFFER_NODE *pFramebuffer,
VkAttachmentReference ref)
{
if (ref.attachment != VK_ATTACHMENT_UNUSED) {
auto image_view = pFramebuffer->createInfo.pAttachments[ref.attachment];
SetLayout(dev_data, pCB, image_view, ref.layout);
}
}
static void TransitionSubpassLayouts(layer_data *dev_data, GLOBAL_CB_NODE *pCB, const VkRenderPassBeginInfo *pRenderPassBegin,
const int subpass_index) {
auto renderPass = getRenderPass(dev_data, pRenderPassBegin->renderPass);
if (!renderPass)
return;
auto framebuffer = getFramebuffer(dev_data, pRenderPassBegin->framebuffer);
if (!framebuffer)
return;
const VkSubpassDescription &subpass = renderPass->pCreateInfo->pSubpasses[subpass_index];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
TransitionAttachmentRefLayout(dev_data, pCB, framebuffer, subpass.pInputAttachments[j]);
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
TransitionAttachmentRefLayout(dev_data, pCB, framebuffer, subpass.pColorAttachments[j]);
}
if (subpass.pDepthStencilAttachment) {
TransitionAttachmentRefLayout(dev_data, pCB, framebuffer, *subpass.pDepthStencilAttachment);
}
}
static bool validatePrimaryCommandBuffer(const layer_data *my_data, const GLOBAL_CB_NODE *pCB, const std::string &cmd_name) {
bool skip_call = false;
if (pCB->createInfo.level != VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_COMMAND_BUFFER, "DS", "Cannot execute command %s on a secondary command buffer.",
cmd_name.c_str());
}
return skip_call;
}
static void TransitionFinalSubpassLayouts(layer_data *dev_data, GLOBAL_CB_NODE *pCB, const VkRenderPassBeginInfo *pRenderPassBegin) {
auto renderPass = getRenderPass(dev_data, pRenderPassBegin->renderPass);
if (!renderPass)
return;
const VkRenderPassCreateInfo *pRenderPassInfo = renderPass->pCreateInfo;
auto framebuffer = getFramebuffer(dev_data, pRenderPassBegin->framebuffer);
if (!framebuffer)
return;
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
auto image_view = framebuffer->createInfo.pAttachments[i];
SetLayout(dev_data, pCB, image_view, pRenderPassInfo->pAttachments[i].finalLayout);
}
}
static bool VerifyRenderAreaBounds(const layer_data *my_data, const VkRenderPassBeginInfo *pRenderPassBegin) {
bool skip_call = false;
const safe_VkFramebufferCreateInfo *pFramebufferInfo = &getFramebuffer(my_data, pRenderPassBegin->framebuffer)->createInfo;
if (pRenderPassBegin->renderArea.offset.x < 0 ||
(pRenderPassBegin->renderArea.offset.x + pRenderPassBegin->renderArea.extent.width) > pFramebufferInfo->width ||
pRenderPassBegin->renderArea.offset.y < 0 ||
(pRenderPassBegin->renderArea.offset.y + pRenderPassBegin->renderArea.extent.height) > pFramebufferInfo->height) {
skip_call |= static_cast<bool>(log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDER_AREA, "CORE",
"Cannot execute a render pass with renderArea not within the bound of the "
"framebuffer. RenderArea: x %d, y %d, width %d, height %d. Framebuffer: width %d, "
"height %d.",
pRenderPassBegin->renderArea.offset.x, pRenderPassBegin->renderArea.offset.y, pRenderPassBegin->renderArea.extent.width,
pRenderPassBegin->renderArea.extent.height, pFramebufferInfo->width, pFramebufferInfo->height));
}
return skip_call;
}
// If this is a stencil format, make sure the stencil[Load|Store]Op flag is checked, while if it is a depth/color attachment the
// [load|store]Op flag must be checked
// TODO: The memory valid flag in DEVICE_MEM_INFO should probably be split to track the validity of stencil memory separately.
template <typename T> static bool FormatSpecificLoadAndStoreOpSettings(VkFormat format, T color_depth_op, T stencil_op, T op) {
if (color_depth_op != op && stencil_op != op) {
return false;
}
bool check_color_depth_load_op = !vk_format_is_stencil_only(format);
bool check_stencil_load_op = vk_format_is_depth_and_stencil(format) || !check_color_depth_load_op;
return (((check_color_depth_load_op == true) && (color_depth_op == op)) ||
((check_stencil_load_op == true) && (stencil_op == op)));
}
VKAPI_ATTR void VKAPI_CALL
CmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin, VkSubpassContents contents) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
auto renderPass = pRenderPassBegin ? getRenderPass(dev_data, pRenderPassBegin->renderPass) : nullptr;
auto framebuffer = pRenderPassBegin ? getFramebuffer(dev_data, pRenderPassBegin->framebuffer) : nullptr;
if (pCB) {
if (renderPass) {
uint32_t clear_op_size = 0; // Make sure pClearValues is at least as large as last LOAD_OP_CLEAR
pCB->activeFramebuffer = pRenderPassBegin->framebuffer;
for (size_t i = 0; i < renderPass->attachments.size(); ++i) {
MT_FB_ATTACHMENT_INFO &fb_info = framebuffer->attachments[i];
VkFormat format = renderPass->pCreateInfo->pAttachments[renderPass->attachments[i].attachment].format;
if (FormatSpecificLoadAndStoreOpSettings(format, renderPass->attachments[i].load_op,
renderPass->attachments[i].stencil_load_op,
VK_ATTACHMENT_LOAD_OP_CLEAR)) {
clear_op_size = static_cast<uint32_t>(i) + 1;
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, getImageNode(dev_data, fb_info.image), true);
return false;
};
pCB->validate_functions.push_back(function);
} else if (FormatSpecificLoadAndStoreOpSettings(format, renderPass->attachments[i].load_op,
renderPass->attachments[i].stencil_load_op,
VK_ATTACHMENT_LOAD_OP_DONT_CARE)) {
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, getImageNode(dev_data, fb_info.image), false);
return false;
};
pCB->validate_functions.push_back(function);
} else if (FormatSpecificLoadAndStoreOpSettings(format, renderPass->attachments[i].load_op,
renderPass->attachments[i].stencil_load_op,
VK_ATTACHMENT_LOAD_OP_LOAD)) {
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(dev_data, getImageNode(dev_data, fb_info.image),
"vkCmdBeginRenderPass()");
};
pCB->validate_functions.push_back(function);
}
if (renderPass->attachment_first_read[renderPass->attachments[i].attachment]) {
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(dev_data, getImageNode(dev_data, fb_info.image),
"vkCmdBeginRenderPass()");
};
pCB->validate_functions.push_back(function);
}
}
if (clear_op_size > pRenderPassBegin->clearValueCount) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
reinterpret_cast<uint64_t &>(renderPass), __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE, "DS",
"In vkCmdBeginRenderPass() the VkRenderPassBeginInfo struct has a clearValueCount of %u but there must "
"be at least %u "
"entries in pClearValues array to account for the highest index attachment in renderPass 0x%" PRIx64
" that uses VK_ATTACHMENT_LOAD_OP_CLEAR is %u. Note that the pClearValues array "
"is indexed by attachment number so even if some pClearValues entries between 0 and %u correspond to "
"attachments that aren't cleared they will be ignored.",
pRenderPassBegin->clearValueCount, clear_op_size, reinterpret_cast<uint64_t &>(renderPass),
clear_op_size, clear_op_size - 1);
}
skip_call |= VerifyRenderAreaBounds(dev_data, pRenderPassBegin);
skip_call |= VerifyFramebufferAndRenderPassLayouts(dev_data, pCB, pRenderPassBegin);
skip_call |= insideRenderPass(dev_data, pCB, "vkCmdBeginRenderPass");
skip_call |= ValidateDependencies(dev_data, framebuffer, renderPass);
skip_call |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdBeginRenderPass");
skip_call |= addCmd(dev_data, pCB, CMD_BEGINRENDERPASS, "vkCmdBeginRenderPass()");
pCB->activeRenderPass = renderPass;
// This is a shallow copy as that is all that is needed for now
pCB->activeRenderPassBeginInfo = *pRenderPassBegin;
pCB->activeSubpass = 0;
pCB->activeSubpassContents = contents;
pCB->framebuffers.insert(pRenderPassBegin->framebuffer);
// Connect this framebuffer to this cmdBuffer
framebuffer->cb_bindings.insert(pCB);
// transition attachments to the correct layouts for the first subpass
TransitionSubpassLayouts(dev_data, pCB, &pCB->activeRenderPassBeginInfo, pCB->activeSubpass);
} else {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS", "You cannot use a NULL RenderPass object in vkCmdBeginRenderPass()");
}
}
lock.unlock();
if (!skip_call) {
dev_data->device_dispatch_table->CmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
}
}
VKAPI_ATTR void VKAPI_CALL CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
skip_call |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdNextSubpass");
skip_call |= addCmd(dev_data, pCB, CMD_NEXTSUBPASS, "vkCmdNextSubpass()");
pCB->activeSubpass++;
pCB->activeSubpassContents = contents;
TransitionSubpassLayouts(dev_data, pCB, &pCB->activeRenderPassBeginInfo, pCB->activeSubpass);
skip_call |= outsideRenderPass(dev_data, pCB, "vkCmdNextSubpass");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdNextSubpass(commandBuffer, contents);
}
VKAPI_ATTR void VKAPI_CALL CmdEndRenderPass(VkCommandBuffer commandBuffer) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
RENDER_PASS_NODE* pRPNode = pCB->activeRenderPass;
auto framebuffer = getFramebuffer(dev_data, pCB->activeFramebuffer);
if (pRPNode) {
for (size_t i = 0; i < pRPNode->attachments.size(); ++i) {
MT_FB_ATTACHMENT_INFO &fb_info = framebuffer->attachments[i];
VkFormat format = pRPNode->pCreateInfo->pAttachments[pRPNode->attachments[i].attachment].format;
if (FormatSpecificLoadAndStoreOpSettings(format, pRPNode->attachments[i].store_op,
pRPNode->attachments[i].stencil_store_op, VK_ATTACHMENT_STORE_OP_STORE)) {
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, getImageNode(dev_data, fb_info.image), true);
return false;
};
pCB->validate_functions.push_back(function);
} else if (FormatSpecificLoadAndStoreOpSettings(format, pRPNode->attachments[i].store_op,
pRPNode->attachments[i].stencil_store_op,
VK_ATTACHMENT_STORE_OP_DONT_CARE)) {
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, getImageNode(dev_data, fb_info.image), false);
return false;
};
pCB->validate_functions.push_back(function);
}
}
}
skip_call |= outsideRenderPass(dev_data, pCB, "vkCmdEndRenderpass");
skip_call |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdEndRenderPass");
skip_call |= addCmd(dev_data, pCB, CMD_ENDRENDERPASS, "vkCmdEndRenderPass()");
TransitionFinalSubpassLayouts(dev_data, pCB, &pCB->activeRenderPassBeginInfo);
pCB->activeRenderPass = nullptr;
pCB->activeSubpass = 0;
pCB->activeFramebuffer = VK_NULL_HANDLE;
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdEndRenderPass(commandBuffer);
}
static bool logInvalidAttachmentMessage(layer_data *dev_data, VkCommandBuffer secondaryBuffer, uint32_t primaryAttach,
uint32_t secondaryAttach, const char *msg) {
return log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid Secondary Cmd Buffer 0x%" PRIx64 " which has a render pass "
"that is not compatible with the Primary Cmd Buffer current render pass. "
"Attachment %u is not compatible with %u: %s",
reinterpret_cast<uint64_t &>(secondaryBuffer), primaryAttach, secondaryAttach, msg);
}
static bool validateAttachmentCompatibility(layer_data *dev_data, VkCommandBuffer primaryBuffer,
VkRenderPassCreateInfo const *primaryPassCI, uint32_t primaryAttach,
VkCommandBuffer secondaryBuffer, VkRenderPassCreateInfo const *secondaryPassCI,
uint32_t secondaryAttach, bool is_multi) {
bool skip_call = false;
if (primaryPassCI->attachmentCount <= primaryAttach) {
primaryAttach = VK_ATTACHMENT_UNUSED;
}
if (secondaryPassCI->attachmentCount <= secondaryAttach) {
secondaryAttach = VK_ATTACHMENT_UNUSED;
}
if (primaryAttach == VK_ATTACHMENT_UNUSED && secondaryAttach == VK_ATTACHMENT_UNUSED) {
return skip_call;
}
if (primaryAttach == VK_ATTACHMENT_UNUSED) {
skip_call |= logInvalidAttachmentMessage(dev_data, secondaryBuffer, primaryAttach, secondaryAttach,
"The first is unused while the second is not.");
return skip_call;
}
if (secondaryAttach == VK_ATTACHMENT_UNUSED) {
skip_call |= logInvalidAttachmentMessage(dev_data, secondaryBuffer, primaryAttach, secondaryAttach,
"The second is unused while the first is not.");
return skip_call;
}
if (primaryPassCI->pAttachments[primaryAttach].format != secondaryPassCI->pAttachments[secondaryAttach].format) {
skip_call |=
logInvalidAttachmentMessage(dev_data, secondaryBuffer, primaryAttach, secondaryAttach, "They have different formats.");
}
if (primaryPassCI->pAttachments[primaryAttach].samples != secondaryPassCI->pAttachments[secondaryAttach].samples) {
skip_call |=
logInvalidAttachmentMessage(dev_data, secondaryBuffer, primaryAttach, secondaryAttach, "They have different samples.");
}
if (is_multi && primaryPassCI->pAttachments[primaryAttach].flags != secondaryPassCI->pAttachments[secondaryAttach].flags) {
skip_call |=
logInvalidAttachmentMessage(dev_data, secondaryBuffer, primaryAttach, secondaryAttach, "They have different flags.");
}
return skip_call;
}
static bool validateSubpassCompatibility(layer_data *dev_data, VkCommandBuffer primaryBuffer,
VkRenderPassCreateInfo const *primaryPassCI, VkCommandBuffer secondaryBuffer,
VkRenderPassCreateInfo const *secondaryPassCI, const int subpass, bool is_multi) {
bool skip_call = false;
const VkSubpassDescription &primary_desc = primaryPassCI->pSubpasses[subpass];
const VkSubpassDescription &secondary_desc = secondaryPassCI->pSubpasses[subpass];
uint32_t maxInputAttachmentCount = std::max(primary_desc.inputAttachmentCount, secondary_desc.inputAttachmentCount);
for (uint32_t i = 0; i < maxInputAttachmentCount; ++i) {
uint32_t primary_input_attach = VK_ATTACHMENT_UNUSED, secondary_input_attach = VK_ATTACHMENT_UNUSED;
if (i < primary_desc.inputAttachmentCount) {
primary_input_attach = primary_desc.pInputAttachments[i].attachment;
}
if (i < secondary_desc.inputAttachmentCount) {
secondary_input_attach = secondary_desc.pInputAttachments[i].attachment;
}
skip_call |= validateAttachmentCompatibility(dev_data, primaryBuffer, primaryPassCI, primary_input_attach, secondaryBuffer,
secondaryPassCI, secondary_input_attach, is_multi);
}
uint32_t maxColorAttachmentCount = std::max(primary_desc.colorAttachmentCount, secondary_desc.colorAttachmentCount);
for (uint32_t i = 0; i < maxColorAttachmentCount; ++i) {
uint32_t primary_color_attach = VK_ATTACHMENT_UNUSED, secondary_color_attach = VK_ATTACHMENT_UNUSED;
if (i < primary_desc.colorAttachmentCount) {
primary_color_attach = primary_desc.pColorAttachments[i].attachment;
}
if (i < secondary_desc.colorAttachmentCount) {
secondary_color_attach = secondary_desc.pColorAttachments[i].attachment;
}
skip_call |= validateAttachmentCompatibility(dev_data, primaryBuffer, primaryPassCI, primary_color_attach, secondaryBuffer,
secondaryPassCI, secondary_color_attach, is_multi);
uint32_t primary_resolve_attach = VK_ATTACHMENT_UNUSED, secondary_resolve_attach = VK_ATTACHMENT_UNUSED;
if (i < primary_desc.colorAttachmentCount && primary_desc.pResolveAttachments) {
primary_resolve_attach = primary_desc.pResolveAttachments[i].attachment;
}
if (i < secondary_desc.colorAttachmentCount && secondary_desc.pResolveAttachments) {
secondary_resolve_attach = secondary_desc.pResolveAttachments[i].attachment;
}
skip_call |= validateAttachmentCompatibility(dev_data, primaryBuffer, primaryPassCI, primary_resolve_attach,
secondaryBuffer, secondaryPassCI, secondary_resolve_attach, is_multi);
}
uint32_t primary_depthstencil_attach = VK_ATTACHMENT_UNUSED, secondary_depthstencil_attach = VK_ATTACHMENT_UNUSED;
if (primary_desc.pDepthStencilAttachment) {
primary_depthstencil_attach = primary_desc.pDepthStencilAttachment[0].attachment;
}
if (secondary_desc.pDepthStencilAttachment) {
secondary_depthstencil_attach = secondary_desc.pDepthStencilAttachment[0].attachment;
}
skip_call |= validateAttachmentCompatibility(dev_data, primaryBuffer, primaryPassCI, primary_depthstencil_attach,
secondaryBuffer, secondaryPassCI, secondary_depthstencil_attach, is_multi);
return skip_call;
}
// Verify that given renderPass CreateInfo for primary and secondary command buffers are compatible.
// This function deals directly with the CreateInfo, there are overloaded versions below that can take the renderPass handle and
// will then feed into this function
static bool validateRenderPassCompatibility(layer_data *dev_data, VkCommandBuffer primaryBuffer,
VkRenderPassCreateInfo const *primaryPassCI, VkCommandBuffer secondaryBuffer,
VkRenderPassCreateInfo const *secondaryPassCI) {
bool skip_call = false;
if (primaryPassCI->subpassCount != secondaryPassCI->subpassCount) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid secondary Cmd Buffer 0x%" PRIx64
" that has a subpassCount of %u that is incompatible with the primary Cmd Buffer 0x%" PRIx64
" that has a subpassCount of %u.",
reinterpret_cast<uint64_t &>(secondaryBuffer), secondaryPassCI->subpassCount,
reinterpret_cast<uint64_t &>(primaryBuffer), primaryPassCI->subpassCount);
} else {
for (uint32_t i = 0; i < primaryPassCI->subpassCount; ++i) {
skip_call |= validateSubpassCompatibility(dev_data, primaryBuffer, primaryPassCI, secondaryBuffer, secondaryPassCI, i,
primaryPassCI->subpassCount > 1);
}
}
return skip_call;
}
static bool validateFramebuffer(layer_data *dev_data, VkCommandBuffer primaryBuffer, const GLOBAL_CB_NODE *pCB,
VkCommandBuffer secondaryBuffer, const GLOBAL_CB_NODE *pSubCB) {
bool skip_call = false;
if (!pSubCB->beginInfo.pInheritanceInfo) {
return skip_call;
}
VkFramebuffer primary_fb = pCB->activeFramebuffer;
VkFramebuffer secondary_fb = pSubCB->beginInfo.pInheritanceInfo->framebuffer;
if (secondary_fb != VK_NULL_HANDLE) {
if (primary_fb != secondary_fb) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_FRAMEBUFFER_INCOMPATIBLE, "DS",
"vkCmdExecuteCommands() called w/ invalid secondary Cmd Buffer 0x%" PRIx64
" which has a framebuffer 0x%" PRIx64
" that is not the same as the primaryCB's current active framebuffer 0x%" PRIx64 ".",
reinterpret_cast<uint64_t &>(secondaryBuffer), reinterpret_cast<uint64_t &>(secondary_fb),
reinterpret_cast<uint64_t &>(primary_fb));
}
auto fb = getFramebuffer(dev_data, secondary_fb);
if (!fb) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS", "vkCmdExecuteCommands() called w/ invalid Cmd Buffer 0x%p "
"which has invalid framebuffer 0x%" PRIx64 ".",
(void *)secondaryBuffer, (uint64_t)(secondary_fb));
return skip_call;
}
auto cb_renderpass = getRenderPass(dev_data, pSubCB->beginInfo.pInheritanceInfo->renderPass);
if (cb_renderpass->renderPass != fb->createInfo.renderPass) {
skip_call |= validateRenderPassCompatibility(dev_data, secondaryBuffer, fb->renderPassCreateInfo.ptr(), secondaryBuffer,
cb_renderpass->pCreateInfo);
}
}
return skip_call;
}
static bool validateSecondaryCommandBufferState(layer_data *dev_data, GLOBAL_CB_NODE *pCB, GLOBAL_CB_NODE *pSubCB) {
bool skip_call = false;
unordered_set<int> activeTypes;
for (auto queryObject : pCB->activeQueries) {
auto queryPoolData = dev_data->queryPoolMap.find(queryObject.pool);
if (queryPoolData != dev_data->queryPoolMap.end()) {
if (queryPoolData->second.createInfo.queryType == VK_QUERY_TYPE_PIPELINE_STATISTICS &&
pSubCB->beginInfo.pInheritanceInfo) {
VkQueryPipelineStatisticFlags cmdBufStatistics = pSubCB->beginInfo.pInheritanceInfo->pipelineStatistics;
if ((cmdBufStatistics & queryPoolData->second.createInfo.pipelineStatistics) != cmdBufStatistics) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid Cmd Buffer 0x%p "
"which has invalid active query pool 0x%" PRIx64 ". Pipeline statistics is being queried so the command "
"buffer must have all bits set on the queryPool.",
reinterpret_cast<void *>(pCB->commandBuffer), reinterpret_cast<const uint64_t &>(queryPoolData->first));
}
}
activeTypes.insert(queryPoolData->second.createInfo.queryType);
}
}
for (auto queryObject : pSubCB->startedQueries) {
auto queryPoolData = dev_data->queryPoolMap.find(queryObject.pool);
if (queryPoolData != dev_data->queryPoolMap.end() && activeTypes.count(queryPoolData->second.createInfo.queryType)) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid Cmd Buffer 0x%p "
"which has invalid active query pool 0x%" PRIx64 "of type %d but a query of that type has been started on "
"secondary Cmd Buffer 0x%p.",
reinterpret_cast<void *>(pCB->commandBuffer), reinterpret_cast<const uint64_t &>(queryPoolData->first),
queryPoolData->second.createInfo.queryType, reinterpret_cast<void *>(pSubCB->commandBuffer));
}
}
auto primary_pool = getCommandPoolNode(dev_data, pCB->createInfo.commandPool);
auto secondary_pool = getCommandPoolNode(dev_data, pSubCB->createInfo.commandPool);
if (primary_pool && secondary_pool && (primary_pool->queueFamilyIndex != secondary_pool->queueFamilyIndex)) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(pSubCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_QUEUE_FAMILY, "DS",
"vkCmdExecuteCommands(): Primary command buffer 0x%" PRIxLEAST64
" created in queue family %d has secondary command buffer 0x%" PRIxLEAST64 " created in queue family %d.",
reinterpret_cast<uint64_t>(pCB->commandBuffer), primary_pool->queueFamilyIndex,
reinterpret_cast<uint64_t>(pSubCB->commandBuffer), secondary_pool->queueFamilyIndex);
}
return skip_call;
}
VKAPI_ATTR void VKAPI_CALL
CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBuffersCount, const VkCommandBuffer *pCommandBuffers) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
GLOBAL_CB_NODE *pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
GLOBAL_CB_NODE *pSubCB = NULL;
for (uint32_t i = 0; i < commandBuffersCount; i++) {
pSubCB = getCBNode(dev_data, pCommandBuffers[i]);
if (!pSubCB) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid Cmd Buffer 0x%p in element %u of pCommandBuffers array.",
(void *)pCommandBuffers[i], i);
} else if (VK_COMMAND_BUFFER_LEVEL_PRIMARY == pSubCB->createInfo.level) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ Primary Cmd Buffer 0x%p in element %u of pCommandBuffers "
"array. All cmd buffers in pCommandBuffers array must be secondary.",
(void *)pCommandBuffers[i], i);
} else if (pCB->activeRenderPass) { // Secondary CB w/i RenderPass must have *CONTINUE_BIT set
auto secondary_rp_node = getRenderPass(dev_data, pSubCB->beginInfo.pInheritanceInfo->renderPass);
if (!(pSubCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)pCommandBuffers[i], __LINE__, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkCmdExecuteCommands(): Secondary Command Buffer (0x%p) executed within render pass (0x%" PRIxLEAST64
") must have had vkBeginCommandBuffer() called w/ VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT set.",
(void *)pCommandBuffers[i], (uint64_t)pCB->activeRenderPass->renderPass);
} else {
// Make sure render pass is compatible with parent command buffer pass if has continue
if (pCB->activeRenderPass->renderPass != secondary_rp_node->renderPass) {
skip_call |= validateRenderPassCompatibility(dev_data, commandBuffer, pCB->activeRenderPass->pCreateInfo,
pCommandBuffers[i], secondary_rp_node->pCreateInfo);
}
// If framebuffer for secondary CB is not NULL, then it must match active FB from primaryCB
skip_call |= validateFramebuffer(dev_data, commandBuffer, pCB, pCommandBuffers[i], pSubCB);
}
string errorString = "";
// secondaryCB must have been created w/ RP compatible w/ primaryCB active renderpass
if ((pCB->activeRenderPass->renderPass != secondary_rp_node->renderPass) &&
!verify_renderpass_compatibility(dev_data, pCB->activeRenderPass->pCreateInfo, secondary_rp_node->pCreateInfo,
errorString)) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)pCommandBuffers[i], __LINE__, DRAWSTATE_RENDERPASS_INCOMPATIBLE, "DS",
"vkCmdExecuteCommands(): Secondary Command Buffer (0x%p) w/ render pass (0x%" PRIxLEAST64
") is incompatible w/ primary command buffer (0x%p) w/ render pass (0x%" PRIxLEAST64 ") due to: %s",
(void *)pCommandBuffers[i], (uint64_t)pSubCB->beginInfo.pInheritanceInfo->renderPass, (void *)commandBuffer,
(uint64_t)pCB->activeRenderPass->renderPass, errorString.c_str());
}
}
// TODO(mlentine): Move more logic into this method
skip_call |= validateSecondaryCommandBufferState(dev_data, pCB, pSubCB);
skip_call |= validateCommandBufferState(dev_data, pSubCB);
// Secondary cmdBuffers are considered pending execution starting w/
// being recorded
if (!(pSubCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
if (dev_data->globalInFlightCmdBuffers.find(pSubCB->commandBuffer) != dev_data->globalInFlightCmdBuffers.end()) {
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_CB_SIMULTANEOUS_USE, "DS",
"Attempt to simultaneously execute CB 0x%" PRIxLEAST64 " w/o VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT "
"set!",
(uint64_t)(pCB->commandBuffer));
}
if (pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
// Warn that non-simultaneous secondary cmd buffer renders primary non-simultaneous
skip_call |= log_msg(
dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)(pCommandBuffers[i]), __LINE__, DRAWSTATE_INVALID_CB_SIMULTANEOUS_USE, "DS",
"vkCmdExecuteCommands(): Secondary Command Buffer (0x%" PRIxLEAST64
") does not have VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT set and will cause primary command buffer "
"(0x%" PRIxLEAST64 ") to be treated as if it does not have VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT "
"set, even though it does.",
(uint64_t)(pCommandBuffers[i]), (uint64_t)(pCB->commandBuffer));
pCB->beginInfo.flags &= ~VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
}
}
if (!pCB->activeQueries.empty() && !dev_data->phys_dev_properties.features.inheritedQueries) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(pCommandBuffers[i]), __LINE__, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands(): Secondary Command Buffer "
"(0x%" PRIxLEAST64 ") cannot be submitted with a query in "
"flight and inherited queries not "
"supported on this device.",
reinterpret_cast<uint64_t>(pCommandBuffers[i]));
}
pSubCB->primaryCommandBuffer = pCB->commandBuffer;
pCB->secondaryCommandBuffers.insert(pSubCB->commandBuffer);
dev_data->globalInFlightCmdBuffers.insert(pSubCB->commandBuffer);
for (auto &function : pSubCB->queryUpdates) {
pCB->queryUpdates.push_back(function);
}
}
skip_call |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdExecuteComands");
skip_call |= addCmd(dev_data, pCB, CMD_EXECUTECOMMANDS, "vkCmdExecuteComands()");
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->CmdExecuteCommands(commandBuffer, commandBuffersCount, pCommandBuffers);
}
// For any image objects that overlap mapped memory, verify that their layouts are PREINIT or GENERAL
static bool ValidateMapImageLayouts(VkDevice device, DEVICE_MEM_INFO const *mem_info, VkDeviceSize offset,
VkDeviceSize end_offset) {
bool skip_call = false;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// Iterate over all bound image ranges and verify that for any that overlap the
// map ranges, the layouts are VK_IMAGE_LAYOUT_PREINITIALIZED or VK_IMAGE_LAYOUT_GENERAL
// TODO : This can be optimized if we store ranges based on starting address and early exit when we pass our range
for (auto image_handle : mem_info->bound_images) {
auto img_it = mem_info->bound_ranges.find(image_handle);
if (img_it != mem_info->bound_ranges.end()) {
if (rangesIntersect(dev_data, &img_it->second, offset, end_offset)) {
std::vector<VkImageLayout> layouts;
if (FindLayouts(dev_data, VkImage(image_handle), layouts)) {
for (auto layout : layouts) {
if (layout != VK_IMAGE_LAYOUT_PREINITIALIZED && layout != VK_IMAGE_LAYOUT_GENERAL) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Cannot map an image with layout %s. Only "
"GENERAL or PREINITIALIZED are supported.",
string_VkImageLayout(layout));
}
}
}
}
}
}
return skip_call;
}
VKAPI_ATTR VkResult VKAPI_CALL
MapMemory(VkDevice device, VkDeviceMemory mem, VkDeviceSize offset, VkDeviceSize size, VkFlags flags, void **ppData) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
std::unique_lock<std::mutex> lock(global_lock);
DEVICE_MEM_INFO *mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
// TODO : This could me more fine-grained to track just region that is valid
mem_info->global_valid = true;
auto end_offset = (VK_WHOLE_SIZE == size) ? mem_info->alloc_info.allocationSize - 1 : offset + size - 1;
skip_call |= ValidateMapImageLayouts(device, mem_info, offset, end_offset);
// TODO : Do we need to create new "bound_range" for the mapped range?
SetMemRangesValid(dev_data, mem_info, offset, end_offset);
if ((dev_data->phys_dev_mem_props.memoryTypes[mem_info->alloc_info.memoryTypeIndex].propertyFlags &
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
skip_call =
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)mem, __LINE__, MEMTRACK_INVALID_STATE, "MEM",
"Mapping Memory without VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT set: mem obj 0x%" PRIxLEAST64, (uint64_t)mem);
}
}
skip_call |= ValidateMapMemRange(dev_data, mem, offset, size);
lock.unlock();
if (!skip_call) {
result = dev_data->device_dispatch_table->MapMemory(device, mem, offset, size, flags, ppData);
if (VK_SUCCESS == result) {
lock.lock();
// TODO : What's the point of this range? See comment on creating new "bound_range" above, which may replace this
storeMemRanges(dev_data, mem, offset, size);
initializeAndTrackMemory(dev_data, mem, offset, size, ppData);
lock.unlock();
}
}
return result;
}
VKAPI_ATTR void VKAPI_CALL UnmapMemory(VkDevice device, VkDeviceMemory mem) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
skip_call |= deleteMemRanges(my_data, mem);
lock.unlock();
if (!skip_call) {
my_data->device_dispatch_table->UnmapMemory(device, mem);
}
}
static bool validateMemoryIsMapped(layer_data *my_data, const char *funcName, uint32_t memRangeCount,
const VkMappedMemoryRange *pMemRanges) {
bool skip_call = false;
for (uint32_t i = 0; i < memRangeCount; ++i) {
auto mem_info = getMemObjInfo(my_data, pMemRanges[i].memory);
if (mem_info) {
if (mem_info->mem_range.offset > pMemRanges[i].offset) {
skip_call |=
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pMemRanges[i].memory, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"%s: Flush/Invalidate offset (" PRINTF_SIZE_T_SPECIFIER ") is less than Memory Object's offset "
"(" PRINTF_SIZE_T_SPECIFIER ").",
funcName, static_cast<size_t>(pMemRanges[i].offset), static_cast<size_t>(mem_info->mem_range.offset));
}
const uint64_t my_dataTerminus = (mem_info->mem_range.size == VK_WHOLE_SIZE)
? mem_info->alloc_info.allocationSize
: (mem_info->mem_range.offset + mem_info->mem_range.size);
if (pMemRanges[i].size != VK_WHOLE_SIZE && (my_dataTerminus < (pMemRanges[i].offset + pMemRanges[i].size))) {
skip_call |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pMemRanges[i].memory, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"%s: Flush/Invalidate upper-bound (" PRINTF_SIZE_T_SPECIFIER ") exceeds the Memory Object's upper-bound "
"(" PRINTF_SIZE_T_SPECIFIER ").",
funcName, static_cast<size_t>(pMemRanges[i].offset + pMemRanges[i].size), static_cast<size_t>(my_dataTerminus));
}
}
}
return skip_call;
}
static bool ValidateAndCopyNoncoherentMemoryToDriver(layer_data *my_data, uint32_t memRangeCount,
const VkMappedMemoryRange *pMemRanges) {
bool skip_call = false;
for (uint32_t i = 0; i < memRangeCount; ++i) {
auto mem_info = getMemObjInfo(my_data, pMemRanges[i].memory);
if (mem_info) {
if (mem_info->shadow_copy) {
VkDeviceSize size = (mem_info->mem_range.size != VK_WHOLE_SIZE)
? mem_info->mem_range.size
: (mem_info->alloc_info.allocationSize - pMemRanges[i].offset);
char *data = static_cast<char *>(mem_info->shadow_copy);
for (uint64_t j = 0; j < mem_info->shadow_pad_size; ++j) {
if (data[j] != NoncoherentMemoryFillValue) {
skip_call |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pMemRanges[i].memory, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"Memory underflow was detected on mem obj 0x%" PRIxLEAST64, (uint64_t)pMemRanges[i].memory);
}
}
for (uint64_t j = (size + mem_info->shadow_pad_size); j < (2 * mem_info->shadow_pad_size + size); ++j) {
if (data[j] != NoncoherentMemoryFillValue) {
skip_call |= log_msg(
my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
(uint64_t)pMemRanges[i].memory, __LINE__, MEMTRACK_INVALID_MAP, "MEM",
"Memory overflow was detected on mem obj 0x%" PRIxLEAST64, (uint64_t)pMemRanges[i].memory);
}
}
memcpy(mem_info->p_driver_data, static_cast<void *>(data + mem_info->shadow_pad_size), (size_t)(size));
}
}
}
return skip_call;
}
static void CopyNoncoherentMemoryFromDriver(layer_data *my_data, uint32_t memory_range_count,
const VkMappedMemoryRange *mem_ranges) {
for (uint32_t i = 0; i < memory_range_count; ++i) {
auto mem_info = getMemObjInfo(my_data, mem_ranges[i].memory);
if (mem_info && mem_info->shadow_copy) {
VkDeviceSize size = (mem_info->mem_range.size != VK_WHOLE_SIZE)
? mem_info->mem_range.size
: (mem_info->alloc_info.allocationSize - mem_ranges[i].offset);
char *data = static_cast<char *>(mem_info->shadow_copy);
memcpy(data + mem_info->shadow_pad_size, mem_info->p_driver_data, (size_t)(size));
}
}
}
VkResult VKAPI_CALL
FlushMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange *pMemRanges) {
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
bool skip_call = false;
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
skip_call |= ValidateAndCopyNoncoherentMemoryToDriver(my_data, memRangeCount, pMemRanges);
skip_call |= validateMemoryIsMapped(my_data, "vkFlushMappedMemoryRanges", memRangeCount, pMemRanges);
lock.unlock();
if (!skip_call) {
result = my_data->device_dispatch_table->FlushMappedMemoryRanges(device, memRangeCount, pMemRanges);
}
return result;
}
VkResult VKAPI_CALL
InvalidateMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange *pMemRanges) {
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
bool skip_call = false;
layer_data *my_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
skip_call |= validateMemoryIsMapped(my_data, "vkInvalidateMappedMemoryRanges", memRangeCount, pMemRanges);
lock.unlock();
if (!skip_call) {
result = my_data->device_dispatch_table->InvalidateMappedMemoryRanges(device, memRangeCount, pMemRanges);
// Update our shadow copy with modified driver data
CopyNoncoherentMemoryFromDriver(my_data, memRangeCount, pMemRanges);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL BindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem, VkDeviceSize memoryOffset) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto image_node = getImageNode(dev_data, image);
if (image_node) {
// Track objects tied to memory
uint64_t image_handle = reinterpret_cast<uint64_t &>(image);
skip_call = set_mem_binding(dev_data, mem, image_handle, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, "vkBindImageMemory");
VkMemoryRequirements memRequirements;
lock.unlock();
dev_data->device_dispatch_table->GetImageMemoryRequirements(device, image, &memRequirements);
lock.lock();
// Track and validate bound memory range information
auto mem_info = getMemObjInfo(dev_data, mem);
if (mem_info) {
skip_call |= InsertImageMemoryRange(dev_data, image, mem_info, memoryOffset, memRequirements,
image_node->createInfo.tiling == VK_IMAGE_TILING_LINEAR);
skip_call |= ValidateMemoryTypes(dev_data, mem_info, memRequirements.memoryTypeBits, "vkBindImageMemory");
}
print_mem_list(dev_data);
lock.unlock();
if (!skip_call) {
result = dev_data->device_dispatch_table->BindImageMemory(device, image, mem, memoryOffset);
lock.lock();
image_node->mem = mem;
image_node->memOffset = memoryOffset;
image_node->memSize = memRequirements.size;
lock.unlock();
}
} else {
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
reinterpret_cast<const uint64_t &>(image), __LINE__, MEMTRACK_INVALID_OBJECT, "MT",
"vkBindImageMemory: Cannot find invalid image 0x%" PRIx64 ", has it already been deleted?",
reinterpret_cast<const uint64_t &>(image));
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL SetEvent(VkDevice device, VkEvent event) {
bool skip_call = false;
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
auto event_node = getEventNode(dev_data, event);
if (event_node) {
event_node->needsSignaled = false;
event_node->stageMask = VK_PIPELINE_STAGE_HOST_BIT;
if (event_node->write_in_use) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT,
reinterpret_cast<const uint64_t &>(event), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"Cannot call vkSetEvent() on event 0x%" PRIxLEAST64 " that is already in use by a command buffer.",
reinterpret_cast<const uint64_t &>(event));
}
}
lock.unlock();
// Host setting event is visible to all queues immediately so update stageMask for any queue that's seen this event
// TODO : For correctness this needs separate fix to verify that app doesn't make incorrect assumptions about the
// ordering of this command in relation to vkCmd[Set|Reset]Events (see GH297)
for (auto queue_data : dev_data->queueMap) {
auto event_entry = queue_data.second.eventToStageMap.find(event);
if (event_entry != queue_data.second.eventToStageMap.end()) {
event_entry->second |= VK_PIPELINE_STAGE_HOST_BIT;
}
}
if (!skip_call)
result = dev_data->device_dispatch_table->SetEvent(device, event);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo, VkFence fence) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
VkResult result = VK_ERROR_VALIDATION_FAILED_EXT;
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto pFence = getFenceNode(dev_data, fence);
auto pQueue = getQueueNode(dev_data, queue);
// First verify that fence is not in use
skip_call |= ValidateFenceForSubmit(dev_data, pFence);
if (pFence) {
SubmitFence(pQueue, pFence, bindInfoCount);
}
for (uint32_t bindIdx = 0; bindIdx < bindInfoCount; ++bindIdx) {
const VkBindSparseInfo &bindInfo = pBindInfo[bindIdx];
// Track objects tied to memory
for (uint32_t j = 0; j < bindInfo.bufferBindCount; j++) {
for (uint32_t k = 0; k < bindInfo.pBufferBinds[j].bindCount; k++) {
if (set_sparse_mem_binding(dev_data, bindInfo.pBufferBinds[j].pBinds[k].memory,
(uint64_t)bindInfo.pBufferBinds[j].buffer, VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
"vkQueueBindSparse"))
skip_call = true;
}
}
for (uint32_t j = 0; j < bindInfo.imageOpaqueBindCount; j++) {
for (uint32_t k = 0; k < bindInfo.pImageOpaqueBinds[j].bindCount; k++) {
if (set_sparse_mem_binding(dev_data, bindInfo.pImageOpaqueBinds[j].pBinds[k].memory,
(uint64_t)bindInfo.pImageOpaqueBinds[j].image, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
"vkQueueBindSparse"))
skip_call = true;
}
}
for (uint32_t j = 0; j < bindInfo.imageBindCount; j++) {
for (uint32_t k = 0; k < bindInfo.pImageBinds[j].bindCount; k++) {
if (set_sparse_mem_binding(dev_data, bindInfo.pImageBinds[j].pBinds[k].memory,
(uint64_t)bindInfo.pImageBinds[j].image, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
"vkQueueBindSparse"))
skip_call = true;
}
}
std::vector<SEMAPHORE_WAIT> semaphore_waits;
std::vector<VkSemaphore> semaphore_signals;
for (uint32_t i = 0; i < bindInfo.waitSemaphoreCount; ++i) {
VkSemaphore semaphore = bindInfo.pWaitSemaphores[i];
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
if (pSemaphore) {
if (pSemaphore->signaled) {
if (pSemaphore->signaler.first != VK_NULL_HANDLE) {
semaphore_waits.push_back({semaphore, pSemaphore->signaler.first, pSemaphore->signaler.second});
pSemaphore->in_use.fetch_add(1);
}
pSemaphore->signaler.first = VK_NULL_HANDLE;
pSemaphore->signaled = false;
} else {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<const uint64_t &>(semaphore), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"vkQueueBindSparse: Queue 0x%" PRIx64 " is waiting on semaphore 0x%" PRIx64
" that has no way to be signaled.",
reinterpret_cast<const uint64_t &>(queue), reinterpret_cast<const uint64_t &>(semaphore));
}
}
}
for (uint32_t i = 0; i < bindInfo.signalSemaphoreCount; ++i) {
VkSemaphore semaphore = bindInfo.pSignalSemaphores[i];
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
if (pSemaphore) {
if (pSemaphore->signaled) {
skip_call =
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<const uint64_t &>(semaphore), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"vkQueueBindSparse: Queue 0x%" PRIx64 " is signaling semaphore 0x%" PRIx64
", but that semaphore is already signaled.",
reinterpret_cast<const uint64_t &>(queue), reinterpret_cast<const uint64_t &>(semaphore));
}
else {
pSemaphore->signaler.first = queue;
pSemaphore->signaler.second = pQueue->seq + pQueue->submissions.size() + 1;
pSemaphore->signaled = true;
pSemaphore->in_use.fetch_add(1);
semaphore_signals.push_back(semaphore);
}
}
}
pQueue->submissions.emplace_back(std::vector<VkCommandBuffer>(),
semaphore_waits,
semaphore_signals,
bindIdx == bindInfoCount - 1 ? fence : VK_NULL_HANDLE);
}
if (pFence && !bindInfoCount) {
// No work to do, just dropping a fence in the queue by itself.
pQueue->submissions.emplace_back(std::vector<VkCommandBuffer>(),
std::vector<SEMAPHORE_WAIT>(),
std::vector<VkSemaphore>(),
fence);
}
print_mem_list(dev_data);
lock.unlock();
if (!skip_call)
return dev_data->device_dispatch_table->QueueBindSparse(queue, bindInfoCount, pBindInfo, fence);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSemaphore *pSemaphore) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateSemaphore(device, pCreateInfo, pAllocator, pSemaphore);
if (result == VK_SUCCESS) {
std::lock_guard<std::mutex> lock(global_lock);
SEMAPHORE_NODE* sNode = &dev_data->semaphoreMap[*pSemaphore];
sNode->signaler.first = VK_NULL_HANDLE;
sNode->signaler.second = 0;
sNode->signaled = false;
sNode->in_use.store(0);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateEvent(VkDevice device, const VkEventCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkEvent *pEvent) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateEvent(device, pCreateInfo, pAllocator, pEvent);
if (result == VK_SUCCESS) {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->eventMap[*pEvent].needsSignaled = false;
dev_data->eventMap[*pEvent].in_use.store(0);
dev_data->eventMap[*pEvent].write_in_use = 0;
dev_data->eventMap[*pEvent].stageMask = VkPipelineStageFlags(0);
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkSwapchainKHR *pSwapchain) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
dev_data->device_extensions.swapchainMap[*pSwapchain] = unique_ptr<SWAPCHAIN_NODE>(new SWAPCHAIN_NODE(pCreateInfo));
}
return result;
}
VKAPI_ATTR void VKAPI_CALL
DestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto swapchain_data = getSwapchainNode(dev_data, swapchain);
if (swapchain_data) {
if (swapchain_data->images.size() > 0) {
for (auto swapchain_image : swapchain_data->images) {
auto image_sub = dev_data->imageSubresourceMap.find(swapchain_image);
if (image_sub != dev_data->imageSubresourceMap.end()) {
for (auto imgsubpair : image_sub->second) {
auto image_item = dev_data->imageLayoutMap.find(imgsubpair);
if (image_item != dev_data->imageLayoutMap.end()) {
dev_data->imageLayoutMap.erase(image_item);
}
}
dev_data->imageSubresourceMap.erase(image_sub);
}
skip_call =
clear_object_binding(dev_data, (uint64_t)swapchain_image, VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT);
dev_data->imageMap.erase(swapchain_image);
}
}
dev_data->device_extensions.swapchainMap.erase(swapchain);
}
lock.unlock();
if (!skip_call)
dev_data->device_dispatch_table->DestroySwapchainKHR(device, swapchain, pAllocator);
}
VKAPI_ATTR VkResult VKAPI_CALL
GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pCount, VkImage *pSwapchainImages) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->GetSwapchainImagesKHR(device, swapchain, pCount, pSwapchainImages);
if (result == VK_SUCCESS && pSwapchainImages != NULL) {
// This should never happen and is checked by param checker.
if (!pCount)
return result;
std::lock_guard<std::mutex> lock(global_lock);
const size_t count = *pCount;
auto swapchain_node = getSwapchainNode(dev_data, swapchain);
if (swapchain_node && !swapchain_node->images.empty()) {
// TODO : Not sure I like the memcmp here, but it works
const bool mismatch = (swapchain_node->images.size() != count ||
memcmp(&swapchain_node->images[0], pSwapchainImages, sizeof(swapchain_node->images[0]) * count));
if (mismatch) {
// TODO: Verify against Valid Usage section of extension
log_msg(dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT,
(uint64_t)swapchain, __LINE__, MEMTRACK_NONE, "SWAP_CHAIN",
"vkGetSwapchainInfoKHR(0x%" PRIx64
", VK_SWAP_CHAIN_INFO_TYPE_PERSISTENT_IMAGES_KHR) returned mismatching data",
(uint64_t)(swapchain));
}
}
for (uint32_t i = 0; i < *pCount; ++i) {
IMAGE_LAYOUT_NODE image_layout_node;
image_layout_node.layout = VK_IMAGE_LAYOUT_UNDEFINED;
image_layout_node.format = swapchain_node->createInfo.imageFormat;
// Add imageMap entries for each swapchain image
VkImageCreateInfo image_ci = {};
image_ci.mipLevels = 1;
image_ci.arrayLayers = swapchain_node->createInfo.imageArrayLayers;
image_ci.usage = swapchain_node->createInfo.imageUsage;
image_ci.format = swapchain_node->createInfo.imageFormat;
image_ci.samples = VK_SAMPLE_COUNT_1_BIT;
image_ci.extent.width = swapchain_node->createInfo.imageExtent.width;
image_ci.extent.height = swapchain_node->createInfo.imageExtent.height;
image_ci.sharingMode = swapchain_node->createInfo.imageSharingMode;
dev_data->imageMap[pSwapchainImages[i]] = unique_ptr<IMAGE_NODE>(new IMAGE_NODE(pSwapchainImages[i], &image_ci));
auto &image_node = dev_data->imageMap[pSwapchainImages[i]];
image_node->valid = false;
image_node->mem = MEMTRACKER_SWAP_CHAIN_IMAGE_KEY;
swapchain_node->images.push_back(pSwapchainImages[i]);
ImageSubresourcePair subpair = {pSwapchainImages[i], false, VkImageSubresource()};
dev_data->imageSubresourceMap[pSwapchainImages[i]].push_back(subpair);
dev_data->imageLayoutMap[subpair] = image_layout_node;
dev_data->device_extensions.imageToSwapchainMap[pSwapchainImages[i]] = swapchain;
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
bool skip_call = false;
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < pPresentInfo->waitSemaphoreCount; ++i) {
auto pSemaphore = getSemaphoreNode(dev_data, pPresentInfo->pWaitSemaphores[i]);
if (pSemaphore && !pSemaphore->signaled) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0, __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"Queue 0x%" PRIx64 " is waiting on semaphore 0x%" PRIx64 " that has no way to be signaled.",
reinterpret_cast<uint64_t &>(queue), reinterpret_cast<const uint64_t &>(pPresentInfo->pWaitSemaphores[i]));
}
}
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; ++i) {
auto swapchain_data = getSwapchainNode(dev_data, pPresentInfo->pSwapchains[i]);
if (swapchain_data && pPresentInfo->pImageIndices[i] < swapchain_data->images.size()) {
VkImage image = swapchain_data->images[pPresentInfo->pImageIndices[i]];
skip_call |= ValidateImageMemoryIsValid(dev_data, getImageNode(dev_data, image), "vkQueuePresentKHR()");
vector<VkImageLayout> layouts;
if (FindLayouts(dev_data, image, layouts)) {
for (auto layout : layouts) {
if (layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR) {
skip_call |=
log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT,
reinterpret_cast<uint64_t &>(queue), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Images passed to present must be in layout "
"VK_IMAGE_LAYOUT_PRESENT_SRC_KHR but is in %s",
string_VkImageLayout(layout));
}
}
}
}
}
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VkResult result = dev_data->device_dispatch_table->QueuePresentKHR(queue, pPresentInfo);
if (result != VK_ERROR_VALIDATION_FAILED_EXT) {
// Semaphore waits occur before error generation, if the call reached
// the ICD. (Confirm?)
for (uint32_t i = 0; i < pPresentInfo->waitSemaphoreCount; ++i) {
auto pSemaphore = getSemaphoreNode(dev_data, pPresentInfo->pWaitSemaphores[i]);
if (pSemaphore) {
pSemaphore->signaler.first = VK_NULL_HANDLE;
pSemaphore->signaled = false;
}
}
// Note: even though presentation is directed to a queue, there is no
// direct ordering between QP and subsequent work, so QP (and its
// semaphore waits) /never/ participate in any completion proof.
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL CreateSharedSwapchainsKHR(VkDevice device, uint32_t swapchainCount,
const VkSwapchainCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchains) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
std::unique_lock<std::mutex> lock(global_lock);
VkResult result =
dev_data->device_dispatch_table->CreateSharedSwapchainsKHR(device, swapchainCount, pCreateInfos, pAllocator, pSwapchains);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL AcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout,
VkSemaphore semaphore, VkFence fence, uint32_t *pImageIndex) {
layer_data *dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = false;
std::unique_lock<std::mutex> lock(global_lock);
auto pSemaphore = getSemaphoreNode(dev_data, semaphore);
if (pSemaphore && pSemaphore->signaled) {
skip_call |= log_msg(dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
reinterpret_cast<const uint64_t &>(semaphore), __LINE__, DRAWSTATE_QUEUE_FORWARD_PROGRESS, "DS",
"vkAcquireNextImageKHR: Semaphore must not be currently signaled or in a wait state");
}
auto pFence = getFenceNode(dev_data, fence);
if (pFence) {
skip_call |= ValidateFenceForSubmit(dev_data, pFence);
}
lock.unlock();
if (skip_call)
return VK_ERROR_VALIDATION_FAILED_EXT;
VkResult result =
dev_data->device_dispatch_table->AcquireNextImageKHR(device, swapchain, timeout, semaphore, fence, pImageIndex);
lock.lock();
if (result == VK_SUCCESS || result == VK_SUBOPTIMAL_KHR) {
if (pFence) {
pFence->state = FENCE_INFLIGHT;
pFence->signaler.first = VK_NULL_HANDLE; // ANI isn't on a queue, so this can't participate in a completion proof.
}
// A successful call to AcquireNextImageKHR counts as a signal operation on semaphore
if (pSemaphore) {
pSemaphore->signaled = true;
pSemaphore->signaler.first = VK_NULL_HANDLE;
}
}
lock.unlock();
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices) {
bool skip_call = false;
layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
if (my_data->instance_state) {
// For this instance, flag when vkEnumeratePhysicalDevices goes to QUERY_COUNT and then QUERY_DETAILS
if (NULL == pPhysicalDevices) {
my_data->instance_state->vkEnumeratePhysicalDevicesState = QUERY_COUNT;
} else {
if (UNCALLED == my_data->instance_state->vkEnumeratePhysicalDevicesState) {
// Flag warning here. You can call this without having queried the count, but it may not be
// robust on platforms with multiple physical devices.
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
0, __LINE__, DEVLIMITS_MISSING_QUERY_COUNT, "DL",
"Call sequence has vkEnumeratePhysicalDevices() w/ non-NULL pPhysicalDevices. You should first "
"call vkEnumeratePhysicalDevices() w/ NULL pPhysicalDevices to query pPhysicalDeviceCount.");
} // TODO : Could also flag a warning if re-calling this function in QUERY_DETAILS state
else if (my_data->instance_state->physical_devices_count != *pPhysicalDeviceCount) {
// Having actual count match count from app is not a requirement, so this can be a warning
skip_call |= log_msg(my_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_COUNT_MISMATCH, "DL",
"Call to vkEnumeratePhysicalDevices() w/ pPhysicalDeviceCount value %u, but actual count "
"supported by this instance is %u.",
*pPhysicalDeviceCount, my_data->instance_state->physical_devices_count);
}
my_data->instance_state->vkEnumeratePhysicalDevicesState = QUERY_DETAILS;
}
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VkResult result =
my_data->instance_dispatch_table->EnumeratePhysicalDevices(instance, pPhysicalDeviceCount, pPhysicalDevices);
if (NULL == pPhysicalDevices) {
my_data->instance_state->physical_devices_count = *pPhysicalDeviceCount;
} else { // Save physical devices
for (uint32_t i = 0; i < *pPhysicalDeviceCount; i++) {
layer_data *phy_dev_data = get_my_data_ptr(get_dispatch_key(pPhysicalDevices[i]), layer_data_map);
phy_dev_data->physical_device_state = unique_ptr<PHYSICAL_DEVICE_STATE>(new PHYSICAL_DEVICE_STATE());
// Init actual features for each physical device
my_data->instance_dispatch_table->GetPhysicalDeviceFeatures(pPhysicalDevices[i],
&phy_dev_data->physical_device_features);
}
}
return result;
} else {
log_msg(my_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, 0, __LINE__,
DEVLIMITS_INVALID_INSTANCE, "DL", "Invalid instance (0x%" PRIxLEAST64 ") passed into vkEnumeratePhysicalDevices().",
(uint64_t)instance);
}
return VK_ERROR_VALIDATION_FAILED_EXT;
}
VKAPI_ATTR void VKAPI_CALL
GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount,
VkQueueFamilyProperties *pQueueFamilyProperties) {
bool skip_call = false;
layer_data *phy_dev_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map);
if (phy_dev_data->physical_device_state) {
if (NULL == pQueueFamilyProperties) {
phy_dev_data->physical_device_state->vkGetPhysicalDeviceQueueFamilyPropertiesState = QUERY_COUNT;
}
else {
// Verify that for each physical device, this function is called first with NULL pQueueFamilyProperties ptr in order to
// get count
if (UNCALLED == phy_dev_data->physical_device_state->vkGetPhysicalDeviceQueueFamilyPropertiesState) {
skip_call |= log_msg(phy_dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_MISSING_QUERY_COUNT, "DL",
"Call sequence has vkGetPhysicalDeviceQueueFamilyProperties() w/ non-NULL "
"pQueueFamilyProperties. You should first call vkGetPhysicalDeviceQueueFamilyProperties() w/ "
"NULL pQueueFamilyProperties to query pCount.");
}
// Then verify that pCount that is passed in on second call matches what was returned
if (phy_dev_data->physical_device_state->queueFamilyPropertiesCount != *pCount) {
// TODO: this is not a requirement of the Valid Usage section for vkGetPhysicalDeviceQueueFamilyProperties, so
// provide as warning
skip_call |= log_msg(phy_dev_data->report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0, __LINE__, DEVLIMITS_COUNT_MISMATCH, "DL",
"Call to vkGetPhysicalDeviceQueueFamilyProperties() w/ pCount value %u, but actual count "
"supported by this physicalDevice is %u.",
*pCount, phy_dev_data->physical_device_state->queueFamilyPropertiesCount);
}
phy_dev_data->physical_device_state->vkGetPhysicalDeviceQueueFamilyPropertiesState = QUERY_DETAILS;
}
if (skip_call) {
return;
}
phy_dev_data->instance_dispatch_table->GetPhysicalDeviceQueueFamilyProperties(physicalDevice, pCount,
pQueueFamilyProperties);
if (NULL == pQueueFamilyProperties) {
phy_dev_data->physical_device_state->queueFamilyPropertiesCount = *pCount;
}
else { // Save queue family properties
phy_dev_data->queue_family_properties.reserve(*pCount);
for (uint32_t i = 0; i < *pCount; i++) {
phy_dev_data->queue_family_properties.emplace_back(new VkQueueFamilyProperties(pQueueFamilyProperties[i]));
}
}
return;
}
else {
log_msg(phy_dev_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, 0,
__LINE__, DEVLIMITS_INVALID_PHYSICAL_DEVICE, "DL",
"Invalid physicalDevice (0x%" PRIxLEAST64 ") passed into vkGetPhysicalDeviceQueueFamilyProperties().",
(uint64_t)physicalDevice);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDebugReportCallbackEXT *pMsgCallback) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
VkResult res = pTable->CreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator, pMsgCallback);
if (VK_SUCCESS == res) {
std::lock_guard<std::mutex> lock(global_lock);
res = layer_create_msg_callback(my_data->report_data, false, pCreateInfo, pAllocator, pMsgCallback);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL DestroyDebugReportCallbackEXT(VkInstance instance,
VkDebugReportCallbackEXT msgCallback,
const VkAllocationCallbacks *pAllocator) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
pTable->DestroyDebugReportCallbackEXT(instance, msgCallback, pAllocator);
std::lock_guard<std::mutex> lock(global_lock);
layer_destroy_msg_callback(my_data->report_data, msgCallback, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
DebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objType, uint64_t object,
size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
my_data->instance_dispatch_table->DebugReportMessageEXT(instance, flags, objType, object, location, msgCode, pLayerPrefix,
pMsg);
}
VKAPI_ATTR VkResult VKAPI_CALL
EnumerateInstanceLayerProperties(uint32_t *pCount, VkLayerProperties *pProperties) {
return util_GetLayerProperties(1, &global_layer, pCount, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL
EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount, VkLayerProperties *pProperties) {
return util_GetLayerProperties(1, &global_layer, pCount, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL
EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) {
if (pLayerName && !strcmp(pLayerName, global_layer.layerName))
return util_GetExtensionProperties(1, instance_extensions, pCount, pProperties);
return VK_ERROR_LAYER_NOT_PRESENT;
}
VKAPI_ATTR VkResult VKAPI_CALL EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pCount,
VkExtensionProperties *pProperties) {
if (pLayerName && !strcmp(pLayerName, global_layer.layerName))
return util_GetExtensionProperties(0, NULL, pCount, pProperties);
assert(physicalDevice);
dispatch_key key = get_dispatch_key(physicalDevice);
layer_data *my_data = get_my_data_ptr(key, layer_data_map);
return my_data->instance_dispatch_table->EnumerateDeviceExtensionProperties(physicalDevice, NULL, pCount, pProperties);
}
static PFN_vkVoidFunction
intercept_core_instance_command(const char *name);
static PFN_vkVoidFunction
intercept_core_device_command(const char *name);
static PFN_vkVoidFunction
intercept_khr_swapchain_command(const char *name, VkDevice dev);
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetDeviceProcAddr(VkDevice dev, const char *funcName) {
PFN_vkVoidFunction proc = intercept_core_device_command(funcName);
if (proc)
return proc;
assert(dev);
proc = intercept_khr_swapchain_command(funcName, dev);
if (proc)
return proc;
layer_data *dev_data;
dev_data = get_my_data_ptr(get_dispatch_key(dev), layer_data_map);
VkLayerDispatchTable *pTable = dev_data->device_dispatch_table;
{
if (pTable->GetDeviceProcAddr == NULL)
return NULL;
return pTable->GetDeviceProcAddr(dev, funcName);
}
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetInstanceProcAddr(VkInstance instance, const char *funcName) {
PFN_vkVoidFunction proc = intercept_core_instance_command(funcName);
if (!proc)
proc = intercept_core_device_command(funcName);
if (!proc)
proc = intercept_khr_swapchain_command(funcName, VK_NULL_HANDLE);
if (proc)
return proc;
assert(instance);
layer_data *my_data;
my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
proc = debug_report_get_instance_proc_addr(my_data->report_data, funcName);
if (proc)
return proc;
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
if (pTable->GetInstanceProcAddr == NULL)
return NULL;
return pTable->GetInstanceProcAddr(instance, funcName);
}
static PFN_vkVoidFunction
intercept_core_instance_command(const char *name) {
static const struct {
const char *name;
PFN_vkVoidFunction proc;
} core_instance_commands[] = {
{ "vkGetInstanceProcAddr", reinterpret_cast<PFN_vkVoidFunction>(GetInstanceProcAddr) },
{ "vkGetDeviceProcAddr", reinterpret_cast<PFN_vkVoidFunction>(GetDeviceProcAddr) },
{ "vkCreateInstance", reinterpret_cast<PFN_vkVoidFunction>(CreateInstance) },
{ "vkCreateDevice", reinterpret_cast<PFN_vkVoidFunction>(CreateDevice) },
{ "vkEnumeratePhysicalDevices", reinterpret_cast<PFN_vkVoidFunction>(EnumeratePhysicalDevices) },
{ "vkGetPhysicalDeviceQueueFamilyProperties", reinterpret_cast<PFN_vkVoidFunction>(GetPhysicalDeviceQueueFamilyProperties) },
{ "vkDestroyInstance", reinterpret_cast<PFN_vkVoidFunction>(DestroyInstance) },
{ "vkEnumerateInstanceLayerProperties", reinterpret_cast<PFN_vkVoidFunction>(EnumerateInstanceLayerProperties) },
{ "vkEnumerateDeviceLayerProperties", reinterpret_cast<PFN_vkVoidFunction>(EnumerateDeviceLayerProperties) },
{ "vkEnumerateInstanceExtensionProperties", reinterpret_cast<PFN_vkVoidFunction>(EnumerateInstanceExtensionProperties) },
{ "vkEnumerateDeviceExtensionProperties", reinterpret_cast<PFN_vkVoidFunction>(EnumerateDeviceExtensionProperties) },
};
for (size_t i = 0; i < ARRAY_SIZE(core_instance_commands); i++) {
if (!strcmp(core_instance_commands[i].name, name))
return core_instance_commands[i].proc;
}
return nullptr;
}
static PFN_vkVoidFunction
intercept_core_device_command(const char *name) {
static const struct {
const char *name;
PFN_vkVoidFunction proc;
} core_device_commands[] = {
{"vkGetDeviceProcAddr", reinterpret_cast<PFN_vkVoidFunction>(GetDeviceProcAddr)},
{"vkQueueSubmit", reinterpret_cast<PFN_vkVoidFunction>(QueueSubmit)},
{"vkWaitForFences", reinterpret_cast<PFN_vkVoidFunction>(WaitForFences)},
{"vkGetFenceStatus", reinterpret_cast<PFN_vkVoidFunction>(GetFenceStatus)},
{"vkQueueWaitIdle", reinterpret_cast<PFN_vkVoidFunction>(QueueWaitIdle)},
{"vkDeviceWaitIdle", reinterpret_cast<PFN_vkVoidFunction>(DeviceWaitIdle)},
{"vkGetDeviceQueue", reinterpret_cast<PFN_vkVoidFunction>(GetDeviceQueue)},
{"vkDestroyInstance", reinterpret_cast<PFN_vkVoidFunction>(DestroyInstance)},
{"vkDestroyDevice", reinterpret_cast<PFN_vkVoidFunction>(DestroyDevice)},
{"vkDestroyFence", reinterpret_cast<PFN_vkVoidFunction>(DestroyFence)},
{"vkResetFences", reinterpret_cast<PFN_vkVoidFunction>(ResetFences)},
{"vkDestroySemaphore", reinterpret_cast<PFN_vkVoidFunction>(DestroySemaphore)},
{"vkDestroyEvent", reinterpret_cast<PFN_vkVoidFunction>(DestroyEvent)},
{"vkDestroyQueryPool", reinterpret_cast<PFN_vkVoidFunction>(DestroyQueryPool)},
{"vkDestroyBuffer", reinterpret_cast<PFN_vkVoidFunction>(DestroyBuffer)},
{"vkDestroyBufferView", reinterpret_cast<PFN_vkVoidFunction>(DestroyBufferView)},
{"vkDestroyImage", reinterpret_cast<PFN_vkVoidFunction>(DestroyImage)},
{"vkDestroyImageView", reinterpret_cast<PFN_vkVoidFunction>(DestroyImageView)},
{"vkDestroyShaderModule", reinterpret_cast<PFN_vkVoidFunction>(DestroyShaderModule)},
{"vkDestroyPipeline", reinterpret_cast<PFN_vkVoidFunction>(DestroyPipeline)},
{"vkDestroyPipelineLayout", reinterpret_cast<PFN_vkVoidFunction>(DestroyPipelineLayout)},
{"vkDestroySampler", reinterpret_cast<PFN_vkVoidFunction>(DestroySampler)},
{"vkDestroyDescriptorSetLayout", reinterpret_cast<PFN_vkVoidFunction>(DestroyDescriptorSetLayout)},
{"vkDestroyDescriptorPool", reinterpret_cast<PFN_vkVoidFunction>(DestroyDescriptorPool)},
{"vkDestroyFramebuffer", reinterpret_cast<PFN_vkVoidFunction>(DestroyFramebuffer)},
{"vkDestroyRenderPass", reinterpret_cast<PFN_vkVoidFunction>(DestroyRenderPass)},
{"vkCreateBuffer", reinterpret_cast<PFN_vkVoidFunction>(CreateBuffer)},
{"vkCreateBufferView", reinterpret_cast<PFN_vkVoidFunction>(CreateBufferView)},
{"vkCreateImage", reinterpret_cast<PFN_vkVoidFunction>(CreateImage)},
{"vkCreateImageView", reinterpret_cast<PFN_vkVoidFunction>(CreateImageView)},
{"vkCreateFence", reinterpret_cast<PFN_vkVoidFunction>(CreateFence)},
{"vkCreatePipelineCache", reinterpret_cast<PFN_vkVoidFunction>(CreatePipelineCache)},
{"vkDestroyPipelineCache", reinterpret_cast<PFN_vkVoidFunction>(DestroyPipelineCache)},
{"vkGetPipelineCacheData", reinterpret_cast<PFN_vkVoidFunction>(GetPipelineCacheData)},
{"vkMergePipelineCaches", reinterpret_cast<PFN_vkVoidFunction>(MergePipelineCaches)},
{"vkCreateGraphicsPipelines", reinterpret_cast<PFN_vkVoidFunction>(CreateGraphicsPipelines)},
{"vkCreateComputePipelines", reinterpret_cast<PFN_vkVoidFunction>(CreateComputePipelines)},
{"vkCreateSampler", reinterpret_cast<PFN_vkVoidFunction>(CreateSampler)},
{"vkCreateDescriptorSetLayout", reinterpret_cast<PFN_vkVoidFunction>(CreateDescriptorSetLayout)},
{"vkCreatePipelineLayout", reinterpret_cast<PFN_vkVoidFunction>(CreatePipelineLayout)},
{"vkCreateDescriptorPool", reinterpret_cast<PFN_vkVoidFunction>(CreateDescriptorPool)},
{"vkResetDescriptorPool", reinterpret_cast<PFN_vkVoidFunction>(ResetDescriptorPool)},
{"vkAllocateDescriptorSets", reinterpret_cast<PFN_vkVoidFunction>(AllocateDescriptorSets)},
{"vkFreeDescriptorSets", reinterpret_cast<PFN_vkVoidFunction>(FreeDescriptorSets)},
{"vkUpdateDescriptorSets", reinterpret_cast<PFN_vkVoidFunction>(UpdateDescriptorSets)},
{"vkCreateCommandPool", reinterpret_cast<PFN_vkVoidFunction>(CreateCommandPool)},
{"vkDestroyCommandPool", reinterpret_cast<PFN_vkVoidFunction>(DestroyCommandPool)},
{"vkResetCommandPool", reinterpret_cast<PFN_vkVoidFunction>(ResetCommandPool)},
{"vkCreateQueryPool", reinterpret_cast<PFN_vkVoidFunction>(CreateQueryPool)},
{"vkAllocateCommandBuffers", reinterpret_cast<PFN_vkVoidFunction>(AllocateCommandBuffers)},
{"vkFreeCommandBuffers", reinterpret_cast<PFN_vkVoidFunction>(FreeCommandBuffers)},
{"vkBeginCommandBuffer", reinterpret_cast<PFN_vkVoidFunction>(BeginCommandBuffer)},
{"vkEndCommandBuffer", reinterpret_cast<PFN_vkVoidFunction>(EndCommandBuffer)},
{"vkResetCommandBuffer", reinterpret_cast<PFN_vkVoidFunction>(ResetCommandBuffer)},
{"vkCmdBindPipeline", reinterpret_cast<PFN_vkVoidFunction>(CmdBindPipeline)},
{"vkCmdSetViewport", reinterpret_cast<PFN_vkVoidFunction>(CmdSetViewport)},
{"vkCmdSetScissor", reinterpret_cast<PFN_vkVoidFunction>(CmdSetScissor)},
{"vkCmdSetLineWidth", reinterpret_cast<PFN_vkVoidFunction>(CmdSetLineWidth)},
{"vkCmdSetDepthBias", reinterpret_cast<PFN_vkVoidFunction>(CmdSetDepthBias)},
{"vkCmdSetBlendConstants", reinterpret_cast<PFN_vkVoidFunction>(CmdSetBlendConstants)},
{"vkCmdSetDepthBounds", reinterpret_cast<PFN_vkVoidFunction>(CmdSetDepthBounds)},
{"vkCmdSetStencilCompareMask", reinterpret_cast<PFN_vkVoidFunction>(CmdSetStencilCompareMask)},
{"vkCmdSetStencilWriteMask", reinterpret_cast<PFN_vkVoidFunction>(CmdSetStencilWriteMask)},
{"vkCmdSetStencilReference", reinterpret_cast<PFN_vkVoidFunction>(CmdSetStencilReference)},
{"vkCmdBindDescriptorSets", reinterpret_cast<PFN_vkVoidFunction>(CmdBindDescriptorSets)},
{"vkCmdBindVertexBuffers", reinterpret_cast<PFN_vkVoidFunction>(CmdBindVertexBuffers)},
{"vkCmdBindIndexBuffer", reinterpret_cast<PFN_vkVoidFunction>(CmdBindIndexBuffer)},
{"vkCmdDraw", reinterpret_cast<PFN_vkVoidFunction>(CmdDraw)},
{"vkCmdDrawIndexed", reinterpret_cast<PFN_vkVoidFunction>(CmdDrawIndexed)},
{"vkCmdDrawIndirect", reinterpret_cast<PFN_vkVoidFunction>(CmdDrawIndirect)},
{"vkCmdDrawIndexedIndirect", reinterpret_cast<PFN_vkVoidFunction>(CmdDrawIndexedIndirect)},
{"vkCmdDispatch", reinterpret_cast<PFN_vkVoidFunction>(CmdDispatch)},
{"vkCmdDispatchIndirect", reinterpret_cast<PFN_vkVoidFunction>(CmdDispatchIndirect)},
{"vkCmdCopyBuffer", reinterpret_cast<PFN_vkVoidFunction>(CmdCopyBuffer)},
{"vkCmdCopyImage", reinterpret_cast<PFN_vkVoidFunction>(CmdCopyImage)},
{"vkCmdBlitImage", reinterpret_cast<PFN_vkVoidFunction>(CmdBlitImage)},
{"vkCmdCopyBufferToImage", reinterpret_cast<PFN_vkVoidFunction>(CmdCopyBufferToImage)},
{"vkCmdCopyImageToBuffer", reinterpret_cast<PFN_vkVoidFunction>(CmdCopyImageToBuffer)},
{"vkCmdUpdateBuffer", reinterpret_cast<PFN_vkVoidFunction>(CmdUpdateBuffer)},
{"vkCmdFillBuffer", reinterpret_cast<PFN_vkVoidFunction>(CmdFillBuffer)},
{"vkCmdClearColorImage", reinterpret_cast<PFN_vkVoidFunction>(CmdClearColorImage)},
{"vkCmdClearDepthStencilImage", reinterpret_cast<PFN_vkVoidFunction>(CmdClearDepthStencilImage)},
{"vkCmdClearAttachments", reinterpret_cast<PFN_vkVoidFunction>(CmdClearAttachments)},
{"vkCmdResolveImage", reinterpret_cast<PFN_vkVoidFunction>(CmdResolveImage)},
{"vkCmdSetEvent", reinterpret_cast<PFN_vkVoidFunction>(CmdSetEvent)},
{"vkCmdResetEvent", reinterpret_cast<PFN_vkVoidFunction>(CmdResetEvent)},
{"vkCmdWaitEvents", reinterpret_cast<PFN_vkVoidFunction>(CmdWaitEvents)},
{"vkCmdPipelineBarrier", reinterpret_cast<PFN_vkVoidFunction>(CmdPipelineBarrier)},
{"vkCmdBeginQuery", reinterpret_cast<PFN_vkVoidFunction>(CmdBeginQuery)},
{"vkCmdEndQuery", reinterpret_cast<PFN_vkVoidFunction>(CmdEndQuery)},
{"vkCmdResetQueryPool", reinterpret_cast<PFN_vkVoidFunction>(CmdResetQueryPool)},
{"vkCmdCopyQueryPoolResults", reinterpret_cast<PFN_vkVoidFunction>(CmdCopyQueryPoolResults)},
{"vkCmdPushConstants", reinterpret_cast<PFN_vkVoidFunction>(CmdPushConstants)},
{"vkCmdWriteTimestamp", reinterpret_cast<PFN_vkVoidFunction>(CmdWriteTimestamp)},
{"vkCreateFramebuffer", reinterpret_cast<PFN_vkVoidFunction>(CreateFramebuffer)},
{"vkCreateShaderModule", reinterpret_cast<PFN_vkVoidFunction>(CreateShaderModule)},
{"vkCreateRenderPass", reinterpret_cast<PFN_vkVoidFunction>(CreateRenderPass)},
{"vkCmdBeginRenderPass", reinterpret_cast<PFN_vkVoidFunction>(CmdBeginRenderPass)},
{"vkCmdNextSubpass", reinterpret_cast<PFN_vkVoidFunction>(CmdNextSubpass)},
{"vkCmdEndRenderPass", reinterpret_cast<PFN_vkVoidFunction>(CmdEndRenderPass)},
{"vkCmdExecuteCommands", reinterpret_cast<PFN_vkVoidFunction>(CmdExecuteCommands)},
{"vkSetEvent", reinterpret_cast<PFN_vkVoidFunction>(SetEvent)},
{"vkMapMemory", reinterpret_cast<PFN_vkVoidFunction>(MapMemory)},
{"vkUnmapMemory", reinterpret_cast<PFN_vkVoidFunction>(UnmapMemory)},
{"vkFlushMappedMemoryRanges", reinterpret_cast<PFN_vkVoidFunction>(FlushMappedMemoryRanges)},
{"vkInvalidateMappedMemoryRanges", reinterpret_cast<PFN_vkVoidFunction>(InvalidateMappedMemoryRanges)},
{"vkAllocateMemory", reinterpret_cast<PFN_vkVoidFunction>(AllocateMemory)},
{"vkFreeMemory", reinterpret_cast<PFN_vkVoidFunction>(FreeMemory)},
{"vkBindBufferMemory", reinterpret_cast<PFN_vkVoidFunction>(BindBufferMemory)},
{"vkGetBufferMemoryRequirements", reinterpret_cast<PFN_vkVoidFunction>(GetBufferMemoryRequirements)},
{"vkGetImageMemoryRequirements", reinterpret_cast<PFN_vkVoidFunction>(GetImageMemoryRequirements)},
{"vkGetQueryPoolResults", reinterpret_cast<PFN_vkVoidFunction>(GetQueryPoolResults)},
{"vkBindImageMemory", reinterpret_cast<PFN_vkVoidFunction>(BindImageMemory)},
{"vkQueueBindSparse", reinterpret_cast<PFN_vkVoidFunction>(QueueBindSparse)},
{"vkCreateSemaphore", reinterpret_cast<PFN_vkVoidFunction>(CreateSemaphore)},
{"vkCreateEvent", reinterpret_cast<PFN_vkVoidFunction>(CreateEvent)},
};
for (size_t i = 0; i < ARRAY_SIZE(core_device_commands); i++) {
if (!strcmp(core_device_commands[i].name, name))
return core_device_commands[i].proc;
}
return nullptr;
}
static PFN_vkVoidFunction
intercept_khr_swapchain_command(const char *name, VkDevice dev) {
static const struct {
const char *name;
PFN_vkVoidFunction proc;
} khr_swapchain_commands[] = {
{ "vkCreateSwapchainKHR", reinterpret_cast<PFN_vkVoidFunction>(CreateSwapchainKHR) },
{ "vkDestroySwapchainKHR", reinterpret_cast<PFN_vkVoidFunction>(DestroySwapchainKHR) },
{ "vkGetSwapchainImagesKHR", reinterpret_cast<PFN_vkVoidFunction>(GetSwapchainImagesKHR) },
{ "vkAcquireNextImageKHR", reinterpret_cast<PFN_vkVoidFunction>(AcquireNextImageKHR) },
{ "vkQueuePresentKHR", reinterpret_cast<PFN_vkVoidFunction>(QueuePresentKHR) },
};
layer_data *dev_data = nullptr;
if (dev) {
dev_data = get_my_data_ptr(get_dispatch_key(dev), layer_data_map);
if (!dev_data->device_extensions.wsi_enabled)
return nullptr;
}
for (size_t i = 0; i < ARRAY_SIZE(khr_swapchain_commands); i++) {
if (!strcmp(khr_swapchain_commands[i].name, name))
return khr_swapchain_commands[i].proc;
}
if (dev_data) {
if (!dev_data->device_extensions.wsi_display_swapchain_enabled)
return nullptr;
}
if (!strcmp("vkCreateSharedSwapchainsKHR", name))
return reinterpret_cast<PFN_vkVoidFunction>(CreateSharedSwapchainsKHR);
return nullptr;
}
} // namespace core_validation
// vk_layer_logging.h expects these to be defined
VKAPI_ATTR VkResult VKAPI_CALL
vkCreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDebugReportCallbackEXT *pMsgCallback) {
return core_validation::CreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator, pMsgCallback);
}
VKAPI_ATTR void VKAPI_CALL
vkDestroyDebugReportCallbackEXT(VkInstance instance,
VkDebugReportCallbackEXT msgCallback,
const VkAllocationCallbacks *pAllocator) {
core_validation::DestroyDebugReportCallbackEXT(instance, msgCallback, pAllocator);
}
VKAPI_ATTR void VKAPI_CALL
vkDebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objType, uint64_t object,
size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg) {
core_validation::DebugReportMessageEXT(instance, flags, objType, object, location, msgCode, pLayerPrefix, pMsg);
}
// loader-layer interface v0, just wrappers since there is only a layer
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL
vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pCount, VkExtensionProperties *pProperties) {
return core_validation::EnumerateInstanceExtensionProperties(pLayerName, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL
vkEnumerateInstanceLayerProperties(uint32_t *pCount, VkLayerProperties *pProperties) {
return core_validation::EnumerateInstanceLayerProperties(pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL
vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount, VkLayerProperties *pProperties) {
// the layer command handles VK_NULL_HANDLE just fine internally
assert(physicalDevice == VK_NULL_HANDLE);
return core_validation::EnumerateDeviceLayerProperties(VK_NULL_HANDLE, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pCount,
VkExtensionProperties *pProperties) {
// the layer command handles VK_NULL_HANDLE just fine internally
assert(physicalDevice == VK_NULL_HANDLE);
return core_validation::EnumerateDeviceExtensionProperties(VK_NULL_HANDLE, pLayerName, pCount, pProperties);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev, const char *funcName) {
return core_validation::GetDeviceProcAddr(dev, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *funcName) {
return core_validation::GetInstanceProcAddr(instance, funcName);
}
|