summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorLang Hames <lhames@gmail.com>2016-05-27 22:17:56 +0000
committerLang Hames <lhames@gmail.com>2016-05-27 22:17:56 +0000
commit7a2177551f344cc1f3a854ecb6e9ec89f6f9e070 (patch)
tree934d5708636f55f2313b7b5991eff6e5930c6376 /examples
parenta827bf1ce5e52dad48d448594901df2583a2046b (diff)
[Kaleidoscope] Remove the old Kaleidoscope/ORC tutorial series.
This code has been superseded by the new Building A JIT series. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271059 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'examples')
-rw-r--r--examples/Kaleidoscope/Orc/CMakeLists.txt4
-rw-r--r--examples/Kaleidoscope/Orc/fully_lazy/CMakeLists.txt13
-rw-r--r--examples/Kaleidoscope/Orc/fully_lazy/README.txt21
-rw-r--r--examples/Kaleidoscope/Orc/fully_lazy/toy.cpp1461
-rw-r--r--examples/Kaleidoscope/Orc/initial/CMakeLists.txt12
-rw-r--r--examples/Kaleidoscope/Orc/initial/README.txt13
-rw-r--r--examples/Kaleidoscope/Orc/initial/toy.cpp1356
-rw-r--r--examples/Kaleidoscope/Orc/lazy_codegen/CMakeLists.txt12
-rw-r--r--examples/Kaleidoscope/Orc/lazy_codegen/README.txt13
-rw-r--r--examples/Kaleidoscope/Orc/lazy_codegen/toy.cpp1361
-rw-r--r--examples/Kaleidoscope/Orc/lazy_irgen/CMakeLists.txt12
-rw-r--r--examples/Kaleidoscope/Orc/lazy_irgen/README.txt16
-rw-r--r--examples/Kaleidoscope/Orc/lazy_irgen/toy.cpp1390
13 files changed, 0 insertions, 5684 deletions
diff --git a/examples/Kaleidoscope/Orc/CMakeLists.txt b/examples/Kaleidoscope/Orc/CMakeLists.txt
deleted file mode 100644
index 5aa04543dc6..00000000000
--- a/examples/Kaleidoscope/Orc/CMakeLists.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-add_subdirectory(initial)
-add_subdirectory(lazy_codegen)
-add_subdirectory(lazy_irgen)
-add_subdirectory(fully_lazy)
diff --git a/examples/Kaleidoscope/Orc/fully_lazy/CMakeLists.txt b/examples/Kaleidoscope/Orc/fully_lazy/CMakeLists.txt
deleted file mode 100644
index abb0428a152..00000000000
--- a/examples/Kaleidoscope/Orc/fully_lazy/CMakeLists.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-set(LLVM_LINK_COMPONENTS
- Core
- ExecutionEngine
- Object
- OrcJIT
- RuntimeDyld
- Support
- native
- )
-
-add_kaleidoscope_chapter(Kaleidoscope-Orc-fully_lazy
- toy.cpp
- )
diff --git a/examples/Kaleidoscope/Orc/fully_lazy/README.txt b/examples/Kaleidoscope/Orc/fully_lazy/README.txt
deleted file mode 100644
index c0189319f2c..00000000000
--- a/examples/Kaleidoscope/Orc/fully_lazy/README.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-//===----------------------------------------------------------------------===/
-// Kaleidoscope with Orc - Lazy IRGen Version
-//===----------------------------------------------------------------------===//
-
-This version of Kaleidoscope with Orc demonstrates fully lazy IR-generation.
-Building on the lazy-irgen version of the tutorial, this version injects JIT
-callbacks to defer the bulk of IR-generation and code-generation of functions until
-they are first called.
-
-When a function definition is entered, a JIT callback is created and a stub
-function is built that will call the body of the function indirectly. The body of
-the function is *not* IRGen'd at this point. Instead, the function pointer for
-the indirect call is initialized to point at the JIT callback, and the compile
-action for the callback is initialized with a lambda that IRGens the body of the
-function and adds it to the JIT. The function pointer is updated by the JIT
-callback's update action to point at the newly emitted function body, so future
-calls to the stub will go straight to the body, not through the JIT.
-
-This directory contains a Makefile that allows the code to be built in a
-standalone manner, independent of the larger LLVM build infrastructure. To build
-the program you will need to have 'clang++' and 'llvm-config' in your path.
diff --git a/examples/Kaleidoscope/Orc/fully_lazy/toy.cpp b/examples/Kaleidoscope/Orc/fully_lazy/toy.cpp
deleted file mode 100644
index 705e485eab6..00000000000
--- a/examples/Kaleidoscope/Orc/fully_lazy/toy.cpp
+++ /dev/null
@@ -1,1461 +0,0 @@
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/ExecutionEngine/SectionMemoryManager.h"
-#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
-#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
-#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
-#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
-#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
-#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
-#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/TargetSelect.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cassert>
-#include <cctype>
-#include <cstdint>
-#include <cstdio>
-#include <cstdlib>
-#include <iomanip>
-#include <iostream>
-#include <map>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::orc;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10,
-
- // operators
- tok_binary = -11, tok_unary = -12,
-
- // var definition
- tok_var = -13
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- if (IdentifierStr == "var") return tok_var;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), nullptr);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-class IRGenContext;
-
-/// ExprAST - Base class for all expression nodes.
-struct ExprAST {
- virtual ~ExprAST() {}
- virtual Value *IRGen(IRGenContext &C) const = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-struct NumberExprAST : public ExprAST {
- NumberExprAST(double Val) : Val(Val) {}
- Value *IRGen(IRGenContext &C) const override;
-
- double Val;
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-struct VariableExprAST : public ExprAST {
- VariableExprAST(std::string Name) : Name(std::move(Name)) {}
- Value *IRGen(IRGenContext &C) const override;
-
- std::string Name;
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
- : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Opcode;
- std::unique_ptr<ExprAST> Operand;
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-struct BinaryExprAST : public ExprAST {
- BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
- : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Op;
- std::unique_ptr<ExprAST> LHS, RHS;
-};
-
-/// CallExprAST - Expression class for function calls.
-struct CallExprAST : public ExprAST {
- CallExprAST(std::string CalleeName,
- std::vector<std::unique_ptr<ExprAST>> Args)
- : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string CalleeName;
- std::vector<std::unique_ptr<ExprAST>> Args;
-};
-
-/// IfExprAST - Expression class for if/then/else.
-struct IfExprAST : public ExprAST {
- IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
- std::unique_ptr<ExprAST> Else)
- : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
- Value *IRGen(IRGenContext &C) const override;
-
- std::unique_ptr<ExprAST> Cond, Then, Else;
-};
-
-/// ForExprAST - Expression class for for/in.
-struct ForExprAST : public ExprAST {
- ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
- std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
- std::unique_ptr<ExprAST> Body)
- : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
- Step(std::move(Step)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string VarName;
- std::unique_ptr<ExprAST> Start, End, Step, Body;
-};
-
-/// VarExprAST - Expression class for var/in
-struct VarExprAST : public ExprAST {
- typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
- typedef std::vector<Binding> BindingList;
-
- VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
- : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- BindingList VarBindings;
- std::unique_ptr<ExprAST> Body;
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
-struct PrototypeAST {
- PrototypeAST(std::string Name, std::vector<std::string> Args,
- bool IsOperator = false, unsigned Precedence = 0)
- : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
- Precedence(Precedence) {}
-
- Function *IRGen(IRGenContext &C) const;
- void CreateArgumentAllocas(Function *F, IRGenContext &C);
-
- bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
- bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size()-1];
- }
-
- std::string Name;
- std::vector<std::string> Args;
- bool IsOperator;
- unsigned Precedence; // Precedence if a binary op.
-};
-
-/// FunctionAST - This class represents a function definition itself.
-struct FunctionAST {
- FunctionAST(std::unique_ptr<PrototypeAST> Proto,
- std::unique_ptr<ExprAST> Body)
- : Proto(std::move(Proto)), Body(std::move(Body)) {}
-
- Function *IRGen(IRGenContext &C) const;
-
- std::unique_ptr<PrototypeAST> Proto;
- std::unique_ptr<ExprAST> Body;
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec <= 0) return -1;
- return TokPrec;
-}
-
-template <typename T>
-std::unique_ptr<T> ErrorU(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-template <typename T>
-T* ErrorP(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-static std::unique_ptr<ExprAST> ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return llvm::make_unique<VariableExprAST>(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector<std::unique_ptr<ExprAST>> Args;
- if (CurTok != ')') {
- while (true) {
- auto Arg = ParseExpression();
- if (!Arg) return nullptr;
- Args.push_back(std::move(Arg));
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
-}
-
-/// numberexpr ::= number
-static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
- auto Result = llvm::make_unique<NumberExprAST>(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static std::unique_ptr<ExprAST> ParseParenExpr() {
- getNextToken(); // eat (.
- auto V = ParseExpression();
- if (!V)
- return nullptr;
-
- if (CurTok != ')')
- return ErrorU<ExprAST>("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static std::unique_ptr<ExprAST> ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- auto Cond = ParseExpression();
- if (!Cond)
- return nullptr;
-
- if (CurTok != tok_then)
- return ErrorU<ExprAST>("expected then");
- getNextToken(); // eat the then
-
- auto Then = ParseExpression();
- if (!Then)
- return nullptr;
-
- if (CurTok != tok_else)
- return ErrorU<ExprAST>("expected else");
-
- getNextToken();
-
- auto Else = ParseExpression();
- if (!Else)
- return nullptr;
-
- return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
- std::move(Else));
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static std::unique_ptr<ForExprAST> ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return ErrorU<ForExprAST>("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return ErrorU<ForExprAST>("expected '=' after for");
- getNextToken(); // eat '='.
-
- auto Start = ParseExpression();
- if (!Start)
- return nullptr;
- if (CurTok != ',')
- return ErrorU<ForExprAST>("expected ',' after for start value");
- getNextToken();
-
- auto End = ParseExpression();
- if (!End)
- return nullptr;
-
- // The step value is optional.
- std::unique_ptr<ExprAST> Step;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (!Step)
- return nullptr;
- }
-
- if (CurTok != tok_in)
- return ErrorU<ForExprAST>("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (Body)
- return nullptr;
-
- return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
- std::move(Step), std::move(Body));
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static std::unique_ptr<VarExprAST> ParseVarExpr() {
- getNextToken(); // eat the var.
-
- VarExprAST::BindingList VarBindings;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier after var");
-
- while (true) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- std::unique_ptr<ExprAST> Init;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (!Init)
- return nullptr;
- }
-
- VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier list after var");
- }
-
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (!Body)
- return nullptr;
-
- return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-/// ::= varexpr
-static std::unique_ptr<ExprAST> ParsePrimary() {
- switch (CurTok) {
- default: return ErrorU<ExprAST>("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- case tok_var: return ParseVarExpr();
- }
-}
-
-/// unary
-/// ::= primary
-/// ::= '!' unary
-static std::unique_ptr<ExprAST> ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
-
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (auto Operand = ParseUnary())
- return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
- return nullptr;
-}
-
-/// binoprhs
-/// ::= ('+' unary)*
-static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
- std::unique_ptr<ExprAST> LHS) {
- // If this is a binop, find its precedence.
- while (true) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec < ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the unary expression after the binary operator.
- auto RHS = ParseUnary();
- if (!RHS)
- return nullptr;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
- if (!RHS)
- return nullptr;
- }
-
- // Merge LHS/RHS.
- LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
- }
-}
-
-/// expression
-/// ::= unary binoprhs
-///
-static std::unique_ptr<ExprAST> ParseExpression() {
- auto LHS = ParseUnary();
- if (!LHS)
- return nullptr;
-
- return ParseBinOpRHS(0, std::move(LHS));
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-/// ::= binary LETTER number? (id, id)
-/// ::= unary LETTER (id)
-static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
-
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
-
- switch (CurTok) {
- default:
- return ErrorU<PrototypeAST>("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
-
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal < 1 || NumVal > 100)
- return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
-
- if (CurTok != '(')
- return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
- std::vector<std::string> ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- // Verify right number of names for operator.
- if (Kind && ArgNames.size() != Kind)
- return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
- return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
- BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static std::unique_ptr<FunctionAST> ParseDefinition() {
- getNextToken(); // eat def.
- auto Proto = ParsePrototype();
- if (!Proto)
- return nullptr;
-
- if (auto Body = ParseExpression())
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
- return nullptr;
-}
-
-/// toplevelexpr ::= expression
-static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
- if (auto E = ParseExpression()) {
- // Make an anonymous proto.
- auto Proto =
- llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
- }
- return nullptr;
-}
-
-/// external ::= 'extern' prototype
-static std::unique_ptr<PrototypeAST> ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-// FIXME: Obviously we can do better than this
-std::string GenerateUniqueName(const std::string &Root) {
- static int i = 0;
- std::ostringstream NameStream;
- NameStream << Root << ++i;
- return NameStream.str();
-}
-
-std::string MakeLegalFunctionName(std::string Name)
-{
- std::string NewName;
- assert(!Name.empty() && "Base name must not be empty");
-
- // Start with what we have
- NewName = Name;
-
- // Look for a numberic first character
- if (NewName.find_first_of("0123456789") == 0) {
- NewName.insert(0, 1, 'n');
- }
-
- // Replace illegal characters with their ASCII equivalent
- std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
- size_t pos;
- while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
- std::ostringstream NumStream;
- NumStream << (int)NewName.at(pos);
- NewName = NewName.replace(pos, 1, NumStream.str());
- }
-
- return NewName;
-}
-
-class SessionContext {
-public:
- SessionContext(LLVMContext &C)
- : Context(C), TM(EngineBuilder().selectTarget()) {}
- LLVMContext& getLLVMContext() const { return Context; }
- TargetMachine& getTarget() { return *TM; }
- void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
- PrototypeAST* getPrototypeAST(const std::string &Name);
-
-private:
- typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
- LLVMContext &Context;
- std::unique_ptr<TargetMachine> TM;
-
- PrototypeMap Prototypes;
-};
-
-void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
- Prototypes[P->Name] = std::move(P);
-}
-
-PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
- PrototypeMap::iterator I = Prototypes.find(Name);
- if (I != Prototypes.end())
- return I->second.get();
- return nullptr;
-}
-
-class IRGenContext {
-public:
- IRGenContext(SessionContext &S)
- : Session(S),
- M(new Module(GenerateUniqueName("jit_module_"),
- Session.getLLVMContext())),
- Builder(Session.getLLVMContext()) {
- M->setDataLayout(Session.getTarget().createDataLayout());
- }
-
- SessionContext& getSession() { return Session; }
- Module& getM() const { return *M; }
- std::unique_ptr<Module> takeM() { return std::move(M); }
- IRBuilder<>& getBuilder() { return Builder; }
- LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
- Function* getPrototype(const std::string &Name);
-
- std::map<std::string, AllocaInst*> NamedValues;
-
-private:
- SessionContext &Session;
- std::unique_ptr<Module> M;
- IRBuilder<> Builder;
-};
-
-Function* IRGenContext::getPrototype(const std::string &Name) {
- if (Function *ExistingProto = M->getFunction(Name))
- return ExistingProto;
- if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
- return ProtoAST->IRGen(*this);
- return nullptr;
-}
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &VarName) {
- IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
- TheFunction->getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(TheFunction->getContext()),
- nullptr, VarName);
-}
-
-Value *NumberExprAST::IRGen(IRGenContext &C) const {
- return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::IRGen(IRGenContext &C) const {
- // Look this variable up in the function.
- Value *V = C.NamedValues[Name];
-
- if (!V)
- return ErrorP<Value>("Unknown variable name '" + Name + "'");
-
- // Load the value.
- return C.getBuilder().CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::IRGen(IRGenContext &C) const {
- if (Value *OperandV = Operand->IRGen(C)) {
- std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
- if (Function *F = C.getPrototype(FnName))
- return C.getBuilder().CreateCall(F, OperandV, "unop");
- return ErrorP<Value>("Unknown unary operator");
- }
-
- // Could not codegen operand - return null.
- return nullptr;
-}
-
-Value *BinaryExprAST::IRGen(IRGenContext &C) const {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
- // Codegen the RHS.
- Value *Val = RHS->IRGen(C);
- if (!Val) return nullptr;
-
- // Look up the name.
- if (auto Variable = C.NamedValues[LHSVar.Name]) {
- C.getBuilder().CreateStore(Val, Variable);
- return Val;
- }
- return ErrorP<Value>("Unknown variable name");
- }
-
- Value *L = LHS->IRGen(C);
- Value *R = RHS->IRGen(C);
- if (!L || !R) return nullptr;
-
- switch (Op) {
- case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
- case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
- case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
- case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
- case '<':
- L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(C.getLLVMContext()),
- "booltmp");
- default: break;
- }
-
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
- if (Function *F = C.getPrototype(FnName)) {
- Value *Ops[] = { L, R };
- return C.getBuilder().CreateCall(F, Ops, "binop");
- }
-
- return ErrorP<Value>("Unknown binary operator");
-}
-
-Value *CallExprAST::IRGen(IRGenContext &C) const {
- // Look up the name in the global module table.
- if (auto CalleeF = C.getPrototype(CalleeName)) {
- // If argument mismatch error.
- if (CalleeF->arg_size() != Args.size())
- return ErrorP<Value>("Incorrect # arguments passed");
-
- std::vector<Value*> ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]->IRGen(C));
- if (!ArgsV.back()) return nullptr;
- }
-
- return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
- }
-
- return ErrorP<Value>("Unknown function referenced");
-}
-
-Value *IfExprAST::IRGen(IRGenContext &C) const {
- Value *CondV = Cond->IRGen(C);
- if (!CondV) return nullptr;
-
- // Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
- ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
- CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
- C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- C.getBuilder().SetInsertPoint(ThenBB);
-
- Value *ThenV = Then->IRGen(C);
- if (!ThenV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = C.getBuilder().GetInsertBlock();
-
- // Emit else block.
- TheFunction->getBasicBlockList().push_back(ElseBB);
- C.getBuilder().SetInsertPoint(ElseBB);
-
- Value *ElseV = Else->IRGen(C);
- if (!ElseV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = C.getBuilder().GetInsertBlock();
-
- // Emit merge block.
- TheFunction->getBasicBlockList().push_back(MergeBB);
- C.getBuilder().SetInsertPoint(MergeBB);
- PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(C.getLLVMContext()),
- 2, "iftmp");
-
- PN->addIncoming(ThenV, ThenBB);
- PN->addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::IRGen(IRGenContext &C) const {
- // Output this as:
- // var = alloca double
- // ...
- // start = startexpr
- // store start -> var
- // goto loop
- // loop:
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // endcond = endexpr
- //
- // curvar = load var
- // nextvar = curvar + step
- // store nextvar -> var
- // br endcond, loop, endloop
- // outloop:
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start->IRGen(C);
- if (!StartVal) return nullptr;
-
- // Store the value into the alloca.
- C.getBuilder().CreateStore(StartVal, Alloca);
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- BasicBlock *LoopBB =
- BasicBlock::Create(C.getLLVMContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- C.getBuilder().CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- C.getBuilder().SetInsertPoint(LoopBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- AllocaInst *OldVal = C.NamedValues[VarName];
- C.NamedValues[VarName] = Alloca;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (!Body->IRGen(C))
- return nullptr;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step->IRGen(C);
- if (!StepVal) return nullptr;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(C.getLLVMContext(), APFloat(1.0));
- }
-
- // Compute the end condition.
- Value *EndCond = End->IRGen(C);
- if (!EndCond) return nullptr;
-
- // Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
- Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
- C.getBuilder().CreateStore(NextVar, Alloca);
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(
- EndCond, ConstantFP::get(C.getLLVMContext(), APFloat(0.0)), "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *AfterBB =
- BasicBlock::Create(C.getLLVMContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- C.getBuilder().SetInsertPoint(AfterBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- C.NamedValues[VarName] = OldVal;
- else
- C.NamedValues.erase(VarName);
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(C.getLLVMContext()));
-}
-
-Value *VarExprAST::IRGen(IRGenContext &C) const {
- std::vector<AllocaInst *> OldBindings;
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
- auto &VarName = VarBindings[i].first;
- auto &Init = VarBindings[i].second;
-
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init->IRGen(C);
- if (!InitVal) return nullptr;
- } else // If not specified, use 0.0.
- InitVal = ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- C.getBuilder().CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(C.NamedValues[VarName]);
-
- // Remember this binding.
- C.NamedValues[VarName] = Alloca;
- }
-
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body->IRGen(C);
- if (!BodyVal) return nullptr;
-
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
- C.NamedValues[VarBindings[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-
-Function *PrototypeAST::IRGen(IRGenContext &C) const {
- std::string FnName = MakeLegalFunctionName(Name);
-
- // Make the function type: double(double,double) etc.
- std::vector<Type *> Doubles(Args.size(),
- Type::getDoubleTy(C.getLLVMContext()));
- FunctionType *FT =
- FunctionType::get(Type::getDoubleTy(C.getLLVMContext()), Doubles, false);
- Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
- &C.getM());
-
- // If F conflicted, there was already something named 'FnName'. If it has a
- // body, don't allow redefinition or reextern.
- if (F->getName() != FnName) {
- // Delete the one we just made and get the existing one.
- F->eraseFromParent();
- F = C.getM().getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F->empty()) {
- ErrorP<Function>("redefinition of function");
- return nullptr;
- }
-
- // If F took a different number of args, reject.
- if (F->arg_size() != Args.size()) {
- ErrorP<Function>("redefinition of function with different # args");
- return nullptr;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
- ++AI, ++Idx)
- AI->setName(Args[Idx]);
-
- return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
- Function::arg_iterator AI = F->arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- C.getBuilder().CreateStore(&*AI, Alloca);
-
- // Add arguments to variable symbol table.
- C.NamedValues[Args[Idx]] = Alloca;
- }
-}
-
-Function *FunctionAST::IRGen(IRGenContext &C) const {
- C.NamedValues.clear();
-
- Function *TheFunction = Proto->IRGen(C);
- if (!TheFunction)
- return nullptr;
-
- // If this is an operator, install it.
- if (Proto->isBinaryOp())
- BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(C.getLLVMContext(), "entry", TheFunction);
- C.getBuilder().SetInsertPoint(BB);
-
- // Add all arguments to the symbol table and create their allocas.
- Proto->CreateArgumentAllocas(TheFunction, C);
-
- if (Value *RetVal = Body->IRGen(C)) {
- // Finish off the function.
- C.getBuilder().CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction->eraseFromParent();
-
- if (Proto->isBinaryOp())
- BinopPrecedence.erase(Proto->getOperatorName());
- return nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
- const FunctionAST &F) {
- IRGenContext C(S);
- auto LF = F.IRGen(C);
- if (!LF)
- return nullptr;
-#ifndef MINIMAL_STDERR_OUTPUT
- fprintf(stderr, "Read function definition:");
- LF->dump();
-#endif
- return C.takeM();
-}
-
-template <typename T>
-static std::vector<T> singletonSet(T t) {
- std::vector<T> Vec;
- Vec.push_back(std::move(t));
- return Vec;
-}
-
-static void EarthShatteringKaboom() {
- fprintf(stderr, "Earth shattering kaboom.");
- exit(1);
-}
-
-class KaleidoscopeJIT {
-public:
- typedef ObjectLinkingLayer<> ObjLayerT;
- typedef IRCompileLayer<ObjLayerT> CompileLayerT;
- typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
- typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
-
- KaleidoscopeJIT(SessionContext &Session)
- : Session(Session),
- CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
- LazyEmitLayer(CompileLayer),
- CompileCallbacks(reinterpret_cast<uintptr_t>(EarthShatteringKaboom)) {}
-
- std::string mangle(const std::string &Name) {
- std::string MangledName;
- {
- raw_string_ostream MangledNameStream(MangledName);
- Mangler::getNameWithPrefix(MangledNameStream, Name,
- Session.getTarget().createDataLayout());
- }
- return MangledName;
- }
-
- void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
- std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
- FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
- }
-
- ModuleHandleT addModule(std::unique_ptr<Module> M) {
- // We need a memory manager to allocate memory and resolve symbols for this
- // new module. Create one that resolves symbols by looking back into the
- // JIT.
- auto Resolver = createLambdaResolver(
- [&](const std::string &Name) {
- // First try to find 'Name' within the JIT.
- if (auto Symbol = findSymbol(Name))
- return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
- Symbol.getFlags());
-
- // If we don't already have a definition of 'Name' then search
- // the ASTs.
- return searchFunctionASTs(Name);
- },
- [](const std::string &S) { return nullptr; } );
-
- return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
- make_unique<SectionMemoryManager>(),
- std::move(Resolver));
- }
-
- void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
-
- JITSymbol findSymbol(const std::string &Name) {
- return LazyEmitLayer.findSymbol(Name, false);
- }
-
- JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
- return LazyEmitLayer.findSymbolIn(H, Name, false);
- }
-
- JITSymbol findUnmangledSymbol(const std::string &Name) {
- return findSymbol(mangle(Name));
- }
-
- JITSymbol findUnmangledSymbolIn(ModuleHandleT H, const std::string &Name) {
- return findSymbolIn(H, mangle(Name));
- }
-
-private:
- // This method searches the FunctionDefs map for a definition of 'Name'. If it
- // finds one it generates a stub for it and returns the address of the stub.
- RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
- auto DefI = FunctionDefs.find(Name);
- if (DefI == FunctionDefs.end())
- return nullptr;
-
- // Return the address of the stub.
- // Take the FunctionAST out of the map.
- auto FnAST = std::move(DefI->second);
- FunctionDefs.erase(DefI);
-
- // IRGen the AST, add it to the JIT, and return the address for it.
- auto H = irGenStub(std::move(FnAST));
- auto Sym = findSymbolIn(H, Name);
- return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
- }
-
- // This method will take the AST for a function definition and IR-gen a stub
- // for that function that will, on first call, IR-gen the actual body of the
- // function.
- ModuleHandleT irGenStub(std::unique_ptr<FunctionAST> FnAST) {
- // Step 1) IRGen a prototype for the stub. This will have the same type as
- // the function.
- IRGenContext C(Session);
- Function *F = FnAST->Proto->IRGen(C);
-
- // Step 2) Get a compile callback that can be used to compile the body of
- // the function. The resulting CallbackInfo type will let us set the
- // compile and update actions for the callback, and get a pointer to
- // the jit trampoline that we need to call to trigger those actions.
- auto CallbackInfo = CompileCallbacks.getCompileCallback();
-
- // Step 3) Create a stub that will indirectly call the body of this
- // function once it is compiled. Initially, set the function
- // pointer for the indirection to point at the trampoline.
- std::string BodyPtrName = (F->getName() + "$address").str();
- GlobalVariable *FunctionBodyPointer =
- createImplPointer(*F->getType(), *F->getParent(), BodyPtrName,
- createIRTypedAddress(*F->getFunctionType(),
- CallbackInfo.getAddress()));
- makeStub(*F, *FunctionBodyPointer);
-
- // Step 4) Add the module containing the stub to the JIT.
- auto StubH = addModule(C.takeM());
-
- // Step 5) Set the compile and update actions.
- //
- // The compile action will IRGen the function and add it to the JIT, then
- // request its address, which will trigger codegen. Since we don't need the
- // AST after this, we pass ownership of the AST into the compile action:
- // compile actions (and update actions) are deleted after they're run, so
- // this will free the AST for us.
- //
- // The update action will update FunctionBodyPointer to point at the newly
- // compiled function.
- std::shared_ptr<FunctionAST> Fn = std::move(FnAST);
- CallbackInfo.setCompileAction([this, Fn, BodyPtrName, StubH]() {
- auto H = addModule(IRGen(Session, *Fn));
- auto BodySym = findUnmangledSymbolIn(H, Fn->Proto->Name);
- auto BodyPtrSym = findUnmangledSymbolIn(StubH, BodyPtrName);
- assert(BodySym && "Missing function body.");
- assert(BodyPtrSym && "Missing function pointer.");
- auto BodyAddr = BodySym.getAddress();
- auto BodyPtr = reinterpret_cast<void*>(
- static_cast<uintptr_t>(BodyPtrSym.getAddress()));
- memcpy(BodyPtr, &BodyAddr, sizeof(uintptr_t));
- return BodyAddr;
- });
-
- return StubH;
- }
-
- SessionContext &Session;
- SectionMemoryManager CCMgrMemMgr;
- ObjLayerT ObjectLayer;
- CompileLayerT CompileLayer;
- LazyEmitLayerT LazyEmitLayer;
-
- std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
-
- LocalJITCompileCallbackManager<OrcX86_64_SysV> CompileCallbacks;
-};
-
-static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
- if (auto F = ParseDefinition()) {
- S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
- J.addFunctionAST(std::move(F));
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern(SessionContext &S) {
- if (auto P = ParseExtern())
- S.addPrototypeAST(std::move(P));
- else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
- // Evaluate a top-level expression into an anonymous function.
- if (auto F = ParseTopLevelExpr()) {
- IRGenContext C(S);
- if (auto ExprFunc = F->IRGen(C)) {
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "Expression function:\n";
- ExprFunc->dump();
-#endif
- // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
- // this module as soon as we've executed Function ExprFunc.
- auto H = J.addModule(C.takeM());
-
- // Get the address of the JIT'd function in memory.
- auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
-#ifdef MINIMAL_STDERR_OUTPUT
- FP();
-#else
- std::cerr << "Evaluated to " << FP() << "\n";
-#endif
-
- // Remove the function.
- J.removeModule(H);
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- LLVMContext TheContext;
- SessionContext S(TheContext);
- KaleidoscopeJIT J(S);
-
- while (true) {
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); continue; // ignore top-level semicolons.
- case tok_def: HandleDefinition(S, J); break;
- case tok_extern: HandleExtern(S); break;
- default: HandleTopLevelExpression(S, J); break;
- }
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
-double printd(double X) {
- printf("%f", X);
- return 0;
-}
-
-extern "C"
-double printlf() {
- printf("\n");
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- InitializeNativeTargetAsmPrinter();
- InitializeNativeTargetAsmParser();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['='] = 2;
- BinopPrecedence['<'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['/'] = 40;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- getNextToken();
-
- std::cerr << std::fixed;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- return 0;
-}
diff --git a/examples/Kaleidoscope/Orc/initial/CMakeLists.txt b/examples/Kaleidoscope/Orc/initial/CMakeLists.txt
deleted file mode 100644
index 4f21e1c6221..00000000000
--- a/examples/Kaleidoscope/Orc/initial/CMakeLists.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-set(LLVM_LINK_COMPONENTS
- Core
- ExecutionEngine
- Object
- RuntimeDyld
- Support
- native
- )
-
-add_kaleidoscope_chapter(Kaleidoscope-Orc-initial
- toy.cpp
- )
diff --git a/examples/Kaleidoscope/Orc/initial/README.txt b/examples/Kaleidoscope/Orc/initial/README.txt
deleted file mode 100644
index 5f4cbbfe3d2..00000000000
--- a/examples/Kaleidoscope/Orc/initial/README.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-//===----------------------------------------------------------------------===/
-// Kaleidoscope with Orc - Initial Version
-//===----------------------------------------------------------------------===//
-
-This version of Kaleidoscope with Orc demonstrates fully eager compilation. When
-a function definition or top-level expression is entered it is immediately
-translated (IRGen'd) to LLVM IR and added to the JIT, where it is code-gen'd to
-native code and either stored (for function definitions) or executed (for
-top-level expressions).
-
-This directory contain a Makefile that allow the code to be built in a
-standalone manner, independent of the larger LLVM build infrastructure. To build
-the program you will need to have 'clang++' and 'llvm-config' in your path.
diff --git a/examples/Kaleidoscope/Orc/initial/toy.cpp b/examples/Kaleidoscope/Orc/initial/toy.cpp
deleted file mode 100644
index 21f59fc1730..00000000000
--- a/examples/Kaleidoscope/Orc/initial/toy.cpp
+++ /dev/null
@@ -1,1356 +0,0 @@
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/ExecutionEngine/SectionMemoryManager.h"
-#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
-#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
-#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
-#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/TargetSelect.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cassert>
-#include <cctype>
-#include <cstdint>
-#include <cstdio>
-#include <cstdlib>
-#include <iomanip>
-#include <iostream>
-#include <map>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::orc;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10,
-
- // operators
- tok_binary = -11, tok_unary = -12,
-
- // var definition
- tok_var = -13
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- if (IdentifierStr == "var") return tok_var;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), nullptr);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-class IRGenContext;
-
-/// ExprAST - Base class for all expression nodes.
-struct ExprAST {
- virtual ~ExprAST() {}
- virtual Value *IRGen(IRGenContext &C) const = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-struct NumberExprAST : public ExprAST {
- NumberExprAST(double Val) : Val(Val) {}
- Value *IRGen(IRGenContext &C) const override;
-
- double Val;
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-struct VariableExprAST : public ExprAST {
- VariableExprAST(std::string Name) : Name(std::move(Name)) {}
- Value *IRGen(IRGenContext &C) const override;
-
- std::string Name;
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
- : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Opcode;
- std::unique_ptr<ExprAST> Operand;
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-struct BinaryExprAST : public ExprAST {
- BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
- : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Op;
- std::unique_ptr<ExprAST> LHS, RHS;
-};
-
-/// CallExprAST - Expression class for function calls.
-struct CallExprAST : public ExprAST {
- CallExprAST(std::string CalleeName,
- std::vector<std::unique_ptr<ExprAST>> Args)
- : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string CalleeName;
- std::vector<std::unique_ptr<ExprAST>> Args;
-};
-
-/// IfExprAST - Expression class for if/then/else.
-struct IfExprAST : public ExprAST {
- IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
- std::unique_ptr<ExprAST> Else)
- : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::unique_ptr<ExprAST> Cond, Then, Else;
-};
-
-/// ForExprAST - Expression class for for/in.
-struct ForExprAST : public ExprAST {
- ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
- std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
- std::unique_ptr<ExprAST> Body)
- : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
- Step(std::move(Step)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string VarName;
- std::unique_ptr<ExprAST> Start, End, Step, Body;
-};
-
-/// VarExprAST - Expression class for var/in
-struct VarExprAST : public ExprAST {
- typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
- typedef std::vector<Binding> BindingList;
-
- VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
- : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- BindingList VarBindings;
- std::unique_ptr<ExprAST> Body;
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
-struct PrototypeAST {
- PrototypeAST(std::string Name, std::vector<std::string> Args,
- bool IsOperator = false, unsigned Precedence = 0)
- : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
- Precedence(Precedence) {}
-
- Function *IRGen(IRGenContext &C) const;
- void CreateArgumentAllocas(Function *F, IRGenContext &C);
-
- bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
- bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size()-1];
- }
-
- std::string Name;
- std::vector<std::string> Args;
- bool IsOperator;
- unsigned Precedence; // Precedence if a binary op.
-};
-
-/// FunctionAST - This class represents a function definition itself.
-struct FunctionAST {
- FunctionAST(std::unique_ptr<PrototypeAST> Proto,
- std::unique_ptr<ExprAST> Body)
- : Proto(std::move(Proto)), Body(std::move(Body)) {}
-
- Function *IRGen(IRGenContext &C) const;
-
- std::unique_ptr<PrototypeAST> Proto;
- std::unique_ptr<ExprAST> Body;
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec <= 0) return -1;
- return TokPrec;
-}
-
-template <typename T>
-std::unique_ptr<T> ErrorU(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-template <typename T>
-T* ErrorP(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-static std::unique_ptr<ExprAST> ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return llvm::make_unique<VariableExprAST>(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector<std::unique_ptr<ExprAST>> Args;
- if (CurTok != ')') {
- while (true) {
- auto Arg = ParseExpression();
- if (!Arg) return nullptr;
- Args.push_back(std::move(Arg));
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
-}
-
-/// numberexpr ::= number
-static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
- auto Result = llvm::make_unique<NumberExprAST>(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static std::unique_ptr<ExprAST> ParseParenExpr() {
- getNextToken(); // eat (.
- auto V = ParseExpression();
- if (!V)
- return nullptr;
-
- if (CurTok != ')')
- return ErrorU<ExprAST>("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static std::unique_ptr<ExprAST> ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- auto Cond = ParseExpression();
- if (!Cond)
- return nullptr;
-
- if (CurTok != tok_then)
- return ErrorU<ExprAST>("expected then");
- getNextToken(); // eat the then
-
- auto Then = ParseExpression();
- if (!Then)
- return nullptr;
-
- if (CurTok != tok_else)
- return ErrorU<ExprAST>("expected else");
-
- getNextToken();
-
- auto Else = ParseExpression();
- if (!Else)
- return nullptr;
-
- return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
- std::move(Else));
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static std::unique_ptr<ForExprAST> ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return ErrorU<ForExprAST>("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return ErrorU<ForExprAST>("expected '=' after for");
- getNextToken(); // eat '='.
-
- auto Start = ParseExpression();
- if (!Start)
- return nullptr;
- if (CurTok != ',')
- return ErrorU<ForExprAST>("expected ',' after for start value");
- getNextToken();
-
- auto End = ParseExpression();
- if (!End)
- return nullptr;
-
- // The step value is optional.
- std::unique_ptr<ExprAST> Step;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (!Step)
- return nullptr;
- }
-
- if (CurTok != tok_in)
- return ErrorU<ForExprAST>("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (Body)
- return nullptr;
-
- return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
- std::move(Step), std::move(Body));
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static std::unique_ptr<VarExprAST> ParseVarExpr() {
- getNextToken(); // eat the var.
-
- VarExprAST::BindingList VarBindings;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier after var");
-
- while (true) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- std::unique_ptr<ExprAST> Init;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (!Init)
- return nullptr;
- }
-
- VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier list after var");
- }
-
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (!Body)
- return nullptr;
-
- return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-/// ::= varexpr
-static std::unique_ptr<ExprAST> ParsePrimary() {
- switch (CurTok) {
- default: return ErrorU<ExprAST>("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- case tok_var: return ParseVarExpr();
- }
-}
-
-/// unary
-/// ::= primary
-/// ::= '!' unary
-static std::unique_ptr<ExprAST> ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
-
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (auto Operand = ParseUnary())
- return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
- return nullptr;
-}
-
-/// binoprhs
-/// ::= ('+' unary)*
-static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
- std::unique_ptr<ExprAST> LHS) {
- // If this is a binop, find its precedence.
- while (true) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec < ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the unary expression after the binary operator.
- auto RHS = ParseUnary();
- if (!RHS)
- return nullptr;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
- if (!RHS)
- return nullptr;
- }
-
- // Merge LHS/RHS.
- LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
- }
-}
-
-/// expression
-/// ::= unary binoprhs
-///
-static std::unique_ptr<ExprAST> ParseExpression() {
- auto LHS = ParseUnary();
- if (!LHS)
- return nullptr;
-
- return ParseBinOpRHS(0, std::move(LHS));
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-/// ::= binary LETTER number? (id, id)
-/// ::= unary LETTER (id)
-static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
-
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
-
- switch (CurTok) {
- default:
- return ErrorU<PrototypeAST>("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
-
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal < 1 || NumVal > 100)
- return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
-
- if (CurTok != '(')
- return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
- std::vector<std::string> ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- // Verify right number of names for operator.
- if (Kind && ArgNames.size() != Kind)
- return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
- return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
- BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static std::unique_ptr<FunctionAST> ParseDefinition() {
- getNextToken(); // eat def.
- auto Proto = ParsePrototype();
- if (!Proto)
- return nullptr;
-
- if (auto Body = ParseExpression())
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
- return nullptr;
-}
-
-/// toplevelexpr ::= expression
-static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
- if (auto E = ParseExpression()) {
- // Make an anonymous proto.
- auto Proto =
- llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
- }
- return nullptr;
-}
-
-/// external ::= 'extern' prototype
-static std::unique_ptr<PrototypeAST> ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-// FIXME: Obviously we can do better than this
-std::string GenerateUniqueName(const std::string &Root) {
- static int i = 0;
- std::ostringstream NameStream;
- NameStream << Root << ++i;
- return NameStream.str();
-}
-
-std::string MakeLegalFunctionName(std::string Name)
-{
- std::string NewName;
- assert(!Name.empty() && "Base name must not be empty");
-
- // Start with what we have
- NewName = Name;
-
- // Look for a numberic first character
- if (NewName.find_first_of("0123456789") == 0) {
- NewName.insert(0, 1, 'n');
- }
-
- // Replace illegal characters with their ASCII equivalent
- std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
- size_t pos;
- while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
- std::ostringstream NumStream;
- NumStream << (int)NewName.at(pos);
- NewName = NewName.replace(pos, 1, NumStream.str());
- }
-
- return NewName;
-}
-
-class SessionContext {
-public:
- SessionContext(LLVMContext &C)
- : Context(C), TM(EngineBuilder().selectTarget()) {}
- LLVMContext& getLLVMContext() const { return Context; }
- TargetMachine& getTarget() { return *TM; }
- void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
- PrototypeAST* getPrototypeAST(const std::string &Name);
-
-private:
- typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
- LLVMContext &Context;
- std::unique_ptr<TargetMachine> TM;
-
- PrototypeMap Prototypes;
-};
-
-void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
- Prototypes[P->Name] = std::move(P);
-}
-
-PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
- PrototypeMap::iterator I = Prototypes.find(Name);
- if (I != Prototypes.end())
- return I->second.get();
- return nullptr;
-}
-
-class IRGenContext {
-public:
- IRGenContext(SessionContext &S)
- : Session(S),
- M(new Module(GenerateUniqueName("jit_module_"),
- Session.getLLVMContext())),
- Builder(Session.getLLVMContext()) {
- M->setDataLayout(Session.getTarget().createDataLayout());
- }
-
- SessionContext& getSession() { return Session; }
- Module& getM() const { return *M; }
- std::unique_ptr<Module> takeM() { return std::move(M); }
- IRBuilder<>& getBuilder() { return Builder; }
- LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
- Function* getPrototype(const std::string &Name);
-
- std::map<std::string, AllocaInst*> NamedValues;
-
-private:
- SessionContext &Session;
- std::unique_ptr<Module> M;
- IRBuilder<> Builder;
-};
-
-Function* IRGenContext::getPrototype(const std::string &Name) {
- if (Function *ExistingProto = M->getFunction(Name))
- return ExistingProto;
- if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
- return ProtoAST->IRGen(*this);
- return nullptr;
-}
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &VarName) {
- IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
- TheFunction->getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(TheFunction->getContext()),
- nullptr, VarName);
-}
-
-Value *NumberExprAST::IRGen(IRGenContext &C) const {
- return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::IRGen(IRGenContext &C) const {
- // Look this variable up in the function.
- Value *V = C.NamedValues[Name];
-
- if (!V)
- return ErrorP<Value>("Unknown variable name '" + Name + "'");
-
- // Load the value.
- return C.getBuilder().CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::IRGen(IRGenContext &C) const {
- if (Value *OperandV = Operand->IRGen(C)) {
- std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
- if (Function *F = C.getPrototype(FnName))
- return C.getBuilder().CreateCall(F, OperandV, "unop");
- return ErrorP<Value>("Unknown unary operator");
- }
-
- // Could not codegen operand - return null.
- return nullptr;
-}
-
-Value *BinaryExprAST::IRGen(IRGenContext &C) const {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
- // Codegen the RHS.
- Value *Val = RHS->IRGen(C);
- if (!Val) return nullptr;
-
- // Look up the name.
- if (auto Variable = C.NamedValues[LHSVar.Name]) {
- C.getBuilder().CreateStore(Val, Variable);
- return Val;
- }
- return ErrorP<Value>("Unknown variable name");
- }
-
- Value *L = LHS->IRGen(C);
- Value *R = RHS->IRGen(C);
- if (!L || !R) return nullptr;
-
- switch (Op) {
- case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
- case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
- case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
- case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
- case '<':
- L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(C.getLLVMContext()),
- "booltmp");
- default: break;
- }
-
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
- if (Function *F = C.getPrototype(FnName)) {
- Value *Ops[] = { L, R };
- return C.getBuilder().CreateCall(F, Ops, "binop");
- }
-
- return ErrorP<Value>("Unknown binary operator");
-}
-
-Value *CallExprAST::IRGen(IRGenContext &C) const {
- // Look up the name in the global module table.
- if (auto CalleeF = C.getPrototype(CalleeName)) {
- // If argument mismatch error.
- if (CalleeF->arg_size() != Args.size())
- return ErrorP<Value>("Incorrect # arguments passed");
-
- std::vector<Value*> ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]->IRGen(C));
- if (!ArgsV.back()) return nullptr;
- }
-
- return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
- }
-
- return ErrorP<Value>("Unknown function referenced");
-}
-
-Value *IfExprAST::IRGen(IRGenContext &C) const {
- Value *CondV = Cond->IRGen(C);
- if (!CondV) return nullptr;
-
- // Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
- ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
- CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
- C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- C.getBuilder().SetInsertPoint(ThenBB);
-
- Value *ThenV = Then->IRGen(C);
- if (!ThenV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = C.getBuilder().GetInsertBlock();
-
- // Emit else block.
- TheFunction->getBasicBlockList().push_back(ElseBB);
- C.getBuilder().SetInsertPoint(ElseBB);
-
- Value *ElseV = Else->IRGen(C);
- if (!ElseV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = C.getBuilder().GetInsertBlock();
-
- // Emit merge block.
- TheFunction->getBasicBlockList().push_back(MergeBB);
- C.getBuilder().SetInsertPoint(MergeBB);
- PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(C.getLLVMContext()),
- 2, "iftmp");
-
- PN->addIncoming(ThenV, ThenBB);
- PN->addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::IRGen(IRGenContext &C) const {
- // Output this as:
- // var = alloca double
- // ...
- // start = startexpr
- // store start -> var
- // goto loop
- // loop:
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // endcond = endexpr
- //
- // curvar = load var
- // nextvar = curvar + step
- // store nextvar -> var
- // br endcond, loop, endloop
- // outloop:
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start->IRGen(C);
- if (!StartVal) return nullptr;
-
- // Store the value into the alloca.
- C.getBuilder().CreateStore(StartVal, Alloca);
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- BasicBlock *LoopBB =
- BasicBlock::Create(C.getLLVMContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- C.getBuilder().CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- C.getBuilder().SetInsertPoint(LoopBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- AllocaInst *OldVal = C.NamedValues[VarName];
- C.NamedValues[VarName] = Alloca;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (!Body->IRGen(C))
- return nullptr;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step->IRGen(C);
- if (!StepVal) return nullptr;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(C.getLLVMContext(), APFloat(1.0));
- }
-
- // Compute the end condition.
- Value *EndCond = End->IRGen(C);
- if (!EndCond) return nullptr;
-
- // Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
- Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
- C.getBuilder().CreateStore(NextVar, Alloca);
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(
- EndCond, ConstantFP::get(C.getLLVMContext(), APFloat(0.0)), "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *AfterBB =
- BasicBlock::Create(C.getLLVMContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- C.getBuilder().SetInsertPoint(AfterBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- C.NamedValues[VarName] = OldVal;
- else
- C.NamedValues.erase(VarName);
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(C.getLLVMContext()));
-}
-
-Value *VarExprAST::IRGen(IRGenContext &C) const {
- std::vector<AllocaInst *> OldBindings;
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
- auto &VarName = VarBindings[i].first;
- auto &Init = VarBindings[i].second;
-
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init->IRGen(C);
- if (!InitVal) return nullptr;
- } else // If not specified, use 0.0.
- InitVal = ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- C.getBuilder().CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(C.NamedValues[VarName]);
-
- // Remember this binding.
- C.NamedValues[VarName] = Alloca;
- }
-
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body->IRGen(C);
- if (!BodyVal) return nullptr;
-
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
- C.NamedValues[VarBindings[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-
-Function *PrototypeAST::IRGen(IRGenContext &C) const {
- std::string FnName = MakeLegalFunctionName(Name);
-
- // Make the function type: double(double,double) etc.
- std::vector<Type *> Doubles(Args.size(),
- Type::getDoubleTy(C.getLLVMContext()));
- FunctionType *FT =
- FunctionType::get(Type::getDoubleTy(C.getLLVMContext()), Doubles, false);
- Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
- &C.getM());
-
- // If F conflicted, there was already something named 'FnName'. If it has a
- // body, don't allow redefinition or reextern.
- if (F->getName() != FnName) {
- // Delete the one we just made and get the existing one.
- F->eraseFromParent();
- F = C.getM().getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F->empty()) {
- ErrorP<Function>("redefinition of function");
- return nullptr;
- }
-
- // If F took a different number of args, reject.
- if (F->arg_size() != Args.size()) {
- ErrorP<Function>("redefinition of function with different # args");
- return nullptr;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
- ++AI, ++Idx)
- AI->setName(Args[Idx]);
-
- return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
- Function::arg_iterator AI = F->arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- C.getBuilder().CreateStore(&*AI, Alloca);
-
- // Add arguments to variable symbol table.
- C.NamedValues[Args[Idx]] = Alloca;
- }
-}
-
-Function *FunctionAST::IRGen(IRGenContext &C) const {
- C.NamedValues.clear();
-
- Function *TheFunction = Proto->IRGen(C);
- if (!TheFunction)
- return nullptr;
-
- // If this is an operator, install it.
- if (Proto->isBinaryOp())
- BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(C.getLLVMContext(), "entry", TheFunction);
- C.getBuilder().SetInsertPoint(BB);
-
- // Add all arguments to the symbol table and create their allocas.
- Proto->CreateArgumentAllocas(TheFunction, C);
-
- if (Value *RetVal = Body->IRGen(C)) {
- // Finish off the function.
- C.getBuilder().CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction->eraseFromParent();
-
- if (Proto->isBinaryOp())
- BinopPrecedence.erase(Proto->getOperatorName());
- return nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
- const FunctionAST &F) {
- IRGenContext C(S);
- auto LF = F.IRGen(C);
- if (!LF)
- return nullptr;
-#ifndef MINIMAL_STDERR_OUTPUT
- fprintf(stderr, "Read function definition:");
- LF->dump();
-#endif
- return C.takeM();
-}
-
-template <typename T>
-static std::vector<T> singletonSet(T t) {
- std::vector<T> Vec;
- Vec.push_back(std::move(t));
- return Vec;
-}
-
-class KaleidoscopeJIT {
-public:
- typedef ObjectLinkingLayer<> ObjLayerT;
- typedef IRCompileLayer<ObjLayerT> CompileLayerT;
- typedef CompileLayerT::ModuleSetHandleT ModuleHandleT;
-
- KaleidoscopeJIT(SessionContext &Session)
- : DL(Session.getTarget().createDataLayout()),
- CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())) {}
-
- std::string mangle(const std::string &Name) {
- std::string MangledName;
- {
- raw_string_ostream MangledNameStream(MangledName);
- Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
- }
- return MangledName;
- }
-
- ModuleHandleT addModule(std::unique_ptr<Module> M) {
- // We need a memory manager to allocate memory and resolve symbols for this
- // new module. Create one that resolves symbols by looking back into the
- // JIT.
- auto Resolver = createLambdaResolver(
- [&](const std::string &Name) {
- if (auto Sym = findSymbol(Name))
- return RuntimeDyld::SymbolInfo(Sym.getAddress(),
- Sym.getFlags());
- return RuntimeDyld::SymbolInfo(nullptr);
- },
- [](const std::string &S) { return nullptr; }
- );
- return CompileLayer.addModuleSet(singletonSet(std::move(M)),
- make_unique<SectionMemoryManager>(),
- std::move(Resolver));
- }
-
- void removeModule(ModuleHandleT H) { CompileLayer.removeModuleSet(H); }
-
- JITSymbol findSymbol(const std::string &Name) {
- return CompileLayer.findSymbol(Name, true);
- }
-
- JITSymbol findUnmangledSymbol(const std::string Name) {
- return findSymbol(mangle(Name));
- }
-
-private:
- const DataLayout DL;
- ObjLayerT ObjectLayer;
- CompileLayerT CompileLayer;
-};
-
-static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
- if (auto F = ParseDefinition()) {
- if (auto M = IRGen(S, *F)) {
- S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
- J.addModule(std::move(M));
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern(SessionContext &S) {
- if (auto P = ParseExtern())
- S.addPrototypeAST(std::move(P));
- else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
- // Evaluate a top-level expression into an anonymous function.
- if (auto F = ParseTopLevelExpr()) {
- IRGenContext C(S);
- if (auto ExprFunc = F->IRGen(C)) {
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "Expression function:\n";
- ExprFunc->dump();
-#endif
- // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
- // this module as soon as we've executed Function ExprFunc.
- auto H = J.addModule(C.takeM());
-
- // Get the address of the JIT'd function in memory.
- auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
-#ifdef MINIMAL_STDERR_OUTPUT
- FP();
-#else
- std::cerr << "Evaluated to " << FP() << "\n";
-#endif
-
- // Remove the function.
- J.removeModule(H);
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- LLVMContext TheContext;
- SessionContext S(TheContext);
- KaleidoscopeJIT J(S);
-
- while (true) {
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); continue; // ignore top-level semicolons.
- case tok_def: HandleDefinition(S, J); break;
- case tok_extern: HandleExtern(S); break;
- default: HandleTopLevelExpression(S, J); break;
- }
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
-double printd(double X) {
- printf("%f", X);
- return 0;
-}
-
-extern "C"
-double printlf() {
- printf("\n");
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- InitializeNativeTargetAsmPrinter();
- InitializeNativeTargetAsmParser();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['='] = 2;
- BinopPrecedence['<'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['/'] = 40;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- getNextToken();
-
- std::cerr << std::fixed;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- return 0;
-}
diff --git a/examples/Kaleidoscope/Orc/lazy_codegen/CMakeLists.txt b/examples/Kaleidoscope/Orc/lazy_codegen/CMakeLists.txt
deleted file mode 100644
index faad3420c6a..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_codegen/CMakeLists.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-set(LLVM_LINK_COMPONENTS
- Core
- ExecutionEngine
- Object
- RuntimeDyld
- Support
- native
- )
-
-add_kaleidoscope_chapter(Kaleidoscope-Orc-lazy_codegen
- toy.cpp
- )
diff --git a/examples/Kaleidoscope/Orc/lazy_codegen/README.txt b/examples/Kaleidoscope/Orc/lazy_codegen/README.txt
deleted file mode 100644
index 9d62a914327..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_codegen/README.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-//===----------------------------------------------------------------------===/
-// Kaleidoscope with Orc - Initial Version
-//===----------------------------------------------------------------------===//
-
-This version of Kaleidoscope with Orc demonstrates lazy code-generation.
-Unlike the first Kaleidoscope-Orc tutorial, where code-gen was performed as soon
-as modules were added to the JIT, this tutorial adds a LazyEmittingLayer to defer
-code-generation until modules are actually referenced. All IR-generation is still
-performed up-front.
-
-This directory contain a Makefile that allow the code to be built in a
-standalone manner, independent of the larger LLVM build infrastructure. To build
-the program you will need to have 'clang++' and 'llvm-config' in your path.
diff --git a/examples/Kaleidoscope/Orc/lazy_codegen/toy.cpp b/examples/Kaleidoscope/Orc/lazy_codegen/toy.cpp
deleted file mode 100644
index b71733c2dc8..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_codegen/toy.cpp
+++ /dev/null
@@ -1,1361 +0,0 @@
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/ExecutionEngine/SectionMemoryManager.h"
-#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
-#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
-#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
-#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
-#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/TargetSelect.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cassert>
-#include <cctype>
-#include <cstdint>
-#include <cstdio>
-#include <cstdlib>
-#include <iomanip>
-#include <iostream>
-#include <map>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::orc;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10,
-
- // operators
- tok_binary = -11, tok_unary = -12,
-
- // var definition
- tok_var = -13
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- if (IdentifierStr == "var") return tok_var;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), nullptr);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-class IRGenContext;
-
-/// ExprAST - Base class for all expression nodes.
-struct ExprAST {
- virtual ~ExprAST() {}
- virtual Value *IRGen(IRGenContext &C) const = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-struct NumberExprAST : public ExprAST {
- NumberExprAST(double Val) : Val(Val) {}
- Value *IRGen(IRGenContext &C) const override;
-
- double Val;
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-struct VariableExprAST : public ExprAST {
- VariableExprAST(std::string Name) : Name(std::move(Name)) {}
- Value *IRGen(IRGenContext &C) const override;
-
- std::string Name;
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
- : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Opcode;
- std::unique_ptr<ExprAST> Operand;
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-struct BinaryExprAST : public ExprAST {
- BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
- : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Op;
- std::unique_ptr<ExprAST> LHS, RHS;
-};
-
-/// CallExprAST - Expression class for function calls.
-struct CallExprAST : public ExprAST {
- CallExprAST(std::string CalleeName,
- std::vector<std::unique_ptr<ExprAST>> Args)
- : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string CalleeName;
- std::vector<std::unique_ptr<ExprAST>> Args;
-};
-
-/// IfExprAST - Expression class for if/then/else.
-struct IfExprAST : public ExprAST {
- IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
- std::unique_ptr<ExprAST> Else)
- : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::unique_ptr<ExprAST> Cond, Then, Else;
-};
-
-/// ForExprAST - Expression class for for/in.
-struct ForExprAST : public ExprAST {
- ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
- std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
- std::unique_ptr<ExprAST> Body)
- : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
- Step(std::move(Step)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string VarName;
- std::unique_ptr<ExprAST> Start, End, Step, Body;
-};
-
-/// VarExprAST - Expression class for var/in
-struct VarExprAST : public ExprAST {
- typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
- typedef std::vector<Binding> BindingList;
-
- VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
- : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- BindingList VarBindings;
- std::unique_ptr<ExprAST> Body;
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
-struct PrototypeAST {
- PrototypeAST(std::string Name, std::vector<std::string> Args,
- bool IsOperator = false, unsigned Precedence = 0)
- : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
- Precedence(Precedence) {}
-
- Function *IRGen(IRGenContext &C) const;
- void CreateArgumentAllocas(Function *F, IRGenContext &C);
-
- bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
- bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size()-1];
- }
-
- std::string Name;
- std::vector<std::string> Args;
- bool IsOperator;
- unsigned Precedence; // Precedence if a binary op.
-};
-
-/// FunctionAST - This class represents a function definition itself.
-struct FunctionAST {
- FunctionAST(std::unique_ptr<PrototypeAST> Proto,
- std::unique_ptr<ExprAST> Body)
- : Proto(std::move(Proto)), Body(std::move(Body)) {}
-
- Function *IRGen(IRGenContext &C) const;
-
- std::unique_ptr<PrototypeAST> Proto;
- std::unique_ptr<ExprAST> Body;
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec <= 0) return -1;
- return TokPrec;
-}
-
-template <typename T>
-std::unique_ptr<T> ErrorU(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-template <typename T>
-T* ErrorP(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-static std::unique_ptr<ExprAST> ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return llvm::make_unique<VariableExprAST>(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector<std::unique_ptr<ExprAST>> Args;
- if (CurTok != ')') {
- while (true) {
- auto Arg = ParseExpression();
- if (!Arg) return nullptr;
- Args.push_back(std::move(Arg));
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
-}
-
-/// numberexpr ::= number
-static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
- auto Result = llvm::make_unique<NumberExprAST>(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static std::unique_ptr<ExprAST> ParseParenExpr() {
- getNextToken(); // eat (.
- auto V = ParseExpression();
- if (!V)
- return nullptr;
-
- if (CurTok != ')')
- return ErrorU<ExprAST>("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static std::unique_ptr<ExprAST> ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- auto Cond = ParseExpression();
- if (!Cond)
- return nullptr;
-
- if (CurTok != tok_then)
- return ErrorU<ExprAST>("expected then");
- getNextToken(); // eat the then
-
- auto Then = ParseExpression();
- if (!Then)
- return nullptr;
-
- if (CurTok != tok_else)
- return ErrorU<ExprAST>("expected else");
-
- getNextToken();
-
- auto Else = ParseExpression();
- if (!Else)
- return nullptr;
-
- return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
- std::move(Else));
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static std::unique_ptr<ForExprAST> ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return ErrorU<ForExprAST>("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return ErrorU<ForExprAST>("expected '=' after for");
- getNextToken(); // eat '='.
-
- auto Start = ParseExpression();
- if (!Start)
- return nullptr;
- if (CurTok != ',')
- return ErrorU<ForExprAST>("expected ',' after for start value");
- getNextToken();
-
- auto End = ParseExpression();
- if (!End)
- return nullptr;
-
- // The step value is optional.
- std::unique_ptr<ExprAST> Step;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (!Step)
- return nullptr;
- }
-
- if (CurTok != tok_in)
- return ErrorU<ForExprAST>("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (Body)
- return nullptr;
-
- return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
- std::move(Step), std::move(Body));
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static std::unique_ptr<VarExprAST> ParseVarExpr() {
- getNextToken(); // eat the var.
-
- VarExprAST::BindingList VarBindings;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier after var");
-
- while (true) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- std::unique_ptr<ExprAST> Init;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (!Init)
- return nullptr;
- }
-
- VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier list after var");
- }
-
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (!Body)
- return nullptr;
-
- return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-/// ::= varexpr
-static std::unique_ptr<ExprAST> ParsePrimary() {
- switch (CurTok) {
- default: return ErrorU<ExprAST>("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- case tok_var: return ParseVarExpr();
- }
-}
-
-/// unary
-/// ::= primary
-/// ::= '!' unary
-static std::unique_ptr<ExprAST> ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
-
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (auto Operand = ParseUnary())
- return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
- return nullptr;
-}
-
-/// binoprhs
-/// ::= ('+' unary)*
-static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
- std::unique_ptr<ExprAST> LHS) {
- // If this is a binop, find its precedence.
- while (true) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec < ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the unary expression after the binary operator.
- auto RHS = ParseUnary();
- if (!RHS)
- return nullptr;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
- if (!RHS)
- return nullptr;
- }
-
- // Merge LHS/RHS.
- LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
- }
-}
-
-/// expression
-/// ::= unary binoprhs
-///
-static std::unique_ptr<ExprAST> ParseExpression() {
- auto LHS = ParseUnary();
- if (!LHS)
- return nullptr;
-
- return ParseBinOpRHS(0, std::move(LHS));
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-/// ::= binary LETTER number? (id, id)
-/// ::= unary LETTER (id)
-static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
-
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
-
- switch (CurTok) {
- default:
- return ErrorU<PrototypeAST>("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
-
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal < 1 || NumVal > 100)
- return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
-
- if (CurTok != '(')
- return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
- std::vector<std::string> ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- // Verify right number of names for operator.
- if (Kind && ArgNames.size() != Kind)
- return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
- return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
- BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static std::unique_ptr<FunctionAST> ParseDefinition() {
- getNextToken(); // eat def.
- auto Proto = ParsePrototype();
- if (!Proto)
- return nullptr;
-
- if (auto Body = ParseExpression())
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
- return nullptr;
-}
-
-/// toplevelexpr ::= expression
-static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
- if (auto E = ParseExpression()) {
- // Make an anonymous proto.
- auto Proto =
- llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
- }
- return nullptr;
-}
-
-/// external ::= 'extern' prototype
-static std::unique_ptr<PrototypeAST> ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-// FIXME: Obviously we can do better than this
-std::string GenerateUniqueName(const std::string &Root) {
- static int i = 0;
- std::ostringstream NameStream;
- NameStream << Root << ++i;
- return NameStream.str();
-}
-
-std::string MakeLegalFunctionName(std::string Name)
-{
- std::string NewName;
- assert(!Name.empty() && "Base name must not be empty");
-
- // Start with what we have
- NewName = Name;
-
- // Look for a numberic first character
- if (NewName.find_first_of("0123456789") == 0) {
- NewName.insert(0, 1, 'n');
- }
-
- // Replace illegal characters with their ASCII equivalent
- std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
- size_t pos;
- while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
- std::ostringstream NumStream;
- NumStream << (int)NewName.at(pos);
- NewName = NewName.replace(pos, 1, NumStream.str());
- }
-
- return NewName;
-}
-
-class SessionContext {
-public:
- SessionContext(LLVMContext &C)
- : Context(C), TM(EngineBuilder().selectTarget()) {}
- LLVMContext& getLLVMContext() const { return Context; }
- TargetMachine& getTarget() { return *TM; }
- void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
- PrototypeAST* getPrototypeAST(const std::string &Name);
-
-private:
- typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
- LLVMContext &Context;
- std::unique_ptr<TargetMachine> TM;
-
- PrototypeMap Prototypes;
-};
-
-void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
- Prototypes[P->Name] = std::move(P);
-}
-
-PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
- PrototypeMap::iterator I = Prototypes.find(Name);
- if (I != Prototypes.end())
- return I->second.get();
- return nullptr;
-}
-
-class IRGenContext {
-public:
- IRGenContext(SessionContext &S)
- : Session(S),
- M(new Module(GenerateUniqueName("jit_module_"),
- Session.getLLVMContext())),
- Builder(Session.getLLVMContext()) {
- M->setDataLayout(Session.getTarget().createDataLayout());
- }
-
- SessionContext& getSession() { return Session; }
- Module& getM() const { return *M; }
- std::unique_ptr<Module> takeM() { return std::move(M); }
- IRBuilder<>& getBuilder() { return Builder; }
- LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
- Function* getPrototype(const std::string &Name);
-
- std::map<std::string, AllocaInst*> NamedValues;
-
-private:
- SessionContext &Session;
- std::unique_ptr<Module> M;
- IRBuilder<> Builder;
-};
-
-Function* IRGenContext::getPrototype(const std::string &Name) {
- if (Function *ExistingProto = M->getFunction(Name))
- return ExistingProto;
- if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
- return ProtoAST->IRGen(*this);
- return nullptr;
-}
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &VarName) {
- IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
- TheFunction->getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(TheFunction->getContext()),
- nullptr, VarName);
-}
-
-Value *NumberExprAST::IRGen(IRGenContext &C) const {
- return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::IRGen(IRGenContext &C) const {
- // Look this variable up in the function.
- Value *V = C.NamedValues[Name];
-
- if (!V)
- return ErrorP<Value>("Unknown variable name '" + Name + "'");
-
- // Load the value.
- return C.getBuilder().CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::IRGen(IRGenContext &C) const {
- if (Value *OperandV = Operand->IRGen(C)) {
- std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
- if (Function *F = C.getPrototype(FnName))
- return C.getBuilder().CreateCall(F, OperandV, "unop");
- return ErrorP<Value>("Unknown unary operator");
- }
-
- // Could not codegen operand - return null.
- return nullptr;
-}
-
-Value *BinaryExprAST::IRGen(IRGenContext &C) const {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
- // Codegen the RHS.
- Value *Val = RHS->IRGen(C);
- if (!Val) return nullptr;
-
- // Look up the name.
- if (auto Variable = C.NamedValues[LHSVar.Name]) {
- C.getBuilder().CreateStore(Val, Variable);
- return Val;
- }
- return ErrorP<Value>("Unknown variable name");
- }
-
- Value *L = LHS->IRGen(C);
- Value *R = RHS->IRGen(C);
- if (!L || !R) return nullptr;
-
- switch (Op) {
- case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
- case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
- case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
- case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
- case '<':
- L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(C.getLLVMContext()),
- "booltmp");
- default: break;
- }
-
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
- if (Function *F = C.getPrototype(FnName)) {
- Value *Ops[] = { L, R };
- return C.getBuilder().CreateCall(F, Ops, "binop");
- }
-
- return ErrorP<Value>("Unknown binary operator");
-}
-
-Value *CallExprAST::IRGen(IRGenContext &C) const {
- // Look up the name in the global module table.
- if (auto CalleeF = C.getPrototype(CalleeName)) {
- // If argument mismatch error.
- if (CalleeF->arg_size() != Args.size())
- return ErrorP<Value>("Incorrect # arguments passed");
-
- std::vector<Value*> ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]->IRGen(C));
- if (!ArgsV.back()) return nullptr;
- }
-
- return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
- }
-
- return ErrorP<Value>("Unknown function referenced");
-}
-
-Value *IfExprAST::IRGen(IRGenContext &C) const {
- Value *CondV = Cond->IRGen(C);
- if (!CondV) return nullptr;
-
- // Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
- ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
- CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
- C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- C.getBuilder().SetInsertPoint(ThenBB);
-
- Value *ThenV = Then->IRGen(C);
- if (!ThenV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = C.getBuilder().GetInsertBlock();
-
- // Emit else block.
- TheFunction->getBasicBlockList().push_back(ElseBB);
- C.getBuilder().SetInsertPoint(ElseBB);
-
- Value *ElseV = Else->IRGen(C);
- if (!ElseV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = C.getBuilder().GetInsertBlock();
-
- // Emit merge block.
- TheFunction->getBasicBlockList().push_back(MergeBB);
- C.getBuilder().SetInsertPoint(MergeBB);
- PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(C.getLLVMContext()),
- 2, "iftmp");
-
- PN->addIncoming(ThenV, ThenBB);
- PN->addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::IRGen(IRGenContext &C) const {
- // Output this as:
- // var = alloca double
- // ...
- // start = startexpr
- // store start -> var
- // goto loop
- // loop:
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // endcond = endexpr
- //
- // curvar = load var
- // nextvar = curvar + step
- // store nextvar -> var
- // br endcond, loop, endloop
- // outloop:
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start->IRGen(C);
- if (!StartVal) return nullptr;
-
- // Store the value into the alloca.
- C.getBuilder().CreateStore(StartVal, Alloca);
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- BasicBlock *LoopBB =
- BasicBlock::Create(C.getLLVMContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- C.getBuilder().CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- C.getBuilder().SetInsertPoint(LoopBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- AllocaInst *OldVal = C.NamedValues[VarName];
- C.NamedValues[VarName] = Alloca;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (!Body->IRGen(C))
- return nullptr;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step->IRGen(C);
- if (!StepVal) return nullptr;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(C.getLLVMContext(), APFloat(1.0));
- }
-
- // Compute the end condition.
- Value *EndCond = End->IRGen(C);
- if (!EndCond) return nullptr;
-
- // Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
- Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
- C.getBuilder().CreateStore(NextVar, Alloca);
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(
- EndCond, ConstantFP::get(C.getLLVMContext(), APFloat(0.0)), "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *AfterBB =
- BasicBlock::Create(C.getLLVMContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- C.getBuilder().SetInsertPoint(AfterBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- C.NamedValues[VarName] = OldVal;
- else
- C.NamedValues.erase(VarName);
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(C.getLLVMContext()));
-}
-
-Value *VarExprAST::IRGen(IRGenContext &C) const {
- std::vector<AllocaInst *> OldBindings;
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
- auto &VarName = VarBindings[i].first;
- auto &Init = VarBindings[i].second;
-
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init->IRGen(C);
- if (!InitVal) return nullptr;
- } else // If not specified, use 0.0.
- InitVal = ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- C.getBuilder().CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(C.NamedValues[VarName]);
-
- // Remember this binding.
- C.NamedValues[VarName] = Alloca;
- }
-
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body->IRGen(C);
- if (!BodyVal) return nullptr;
-
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
- C.NamedValues[VarBindings[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-
-Function *PrototypeAST::IRGen(IRGenContext &C) const {
- std::string FnName = MakeLegalFunctionName(Name);
-
- // Make the function type: double(double,double) etc.
- std::vector<Type *> Doubles(Args.size(),
- Type::getDoubleTy(C.getLLVMContext()));
- FunctionType *FT =
- FunctionType::get(Type::getDoubleTy(C.getLLVMContext()), Doubles, false);
- Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
- &C.getM());
-
- // If F conflicted, there was already something named 'FnName'. If it has a
- // body, don't allow redefinition or reextern.
- if (F->getName() != FnName) {
- // Delete the one we just made and get the existing one.
- F->eraseFromParent();
- F = C.getM().getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F->empty()) {
- ErrorP<Function>("redefinition of function");
- return nullptr;
- }
-
- // If F took a different number of args, reject.
- if (F->arg_size() != Args.size()) {
- ErrorP<Function>("redefinition of function with different # args");
- return nullptr;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
- ++AI, ++Idx)
- AI->setName(Args[Idx]);
-
- return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
- Function::arg_iterator AI = F->arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- C.getBuilder().CreateStore(&*AI, Alloca);
-
- // Add arguments to variable symbol table.
- C.NamedValues[Args[Idx]] = Alloca;
- }
-}
-
-Function *FunctionAST::IRGen(IRGenContext &C) const {
- C.NamedValues.clear();
-
- Function *TheFunction = Proto->IRGen(C);
- if (!TheFunction)
- return nullptr;
-
- // If this is an operator, install it.
- if (Proto->isBinaryOp())
- BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(C.getLLVMContext(), "entry", TheFunction);
- C.getBuilder().SetInsertPoint(BB);
-
- // Add all arguments to the symbol table and create their allocas.
- Proto->CreateArgumentAllocas(TheFunction, C);
-
- if (Value *RetVal = Body->IRGen(C)) {
- // Finish off the function.
- C.getBuilder().CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction->eraseFromParent();
-
- if (Proto->isBinaryOp())
- BinopPrecedence.erase(Proto->getOperatorName());
- return nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
- const FunctionAST &F) {
- IRGenContext C(S);
- auto LF = F.IRGen(C);
- if (!LF)
- return nullptr;
-#ifndef MINIMAL_STDERR_OUTPUT
- fprintf(stderr, "Read function definition:");
- LF->dump();
-#endif
- return C.takeM();
-}
-
-template <typename T>
-static std::vector<T> singletonSet(T t) {
- std::vector<T> Vec;
- Vec.push_back(std::move(t));
- return Vec;
-}
-
-class KaleidoscopeJIT {
-public:
- typedef ObjectLinkingLayer<> ObjLayerT;
- typedef IRCompileLayer<ObjLayerT> CompileLayerT;
- typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
-
- typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
-
- KaleidoscopeJIT(SessionContext &Session)
- : DL(Session.getTarget().createDataLayout()),
- CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
- LazyEmitLayer(CompileLayer) {}
-
- std::string mangle(const std::string &Name) {
- std::string MangledName;
- {
- raw_string_ostream MangledNameStream(MangledName);
- Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
- }
- return MangledName;
- }
-
- ModuleHandleT addModule(std::unique_ptr<Module> M) {
- // We need a memory manager to allocate memory and resolve symbols for this
- // new module. Create one that resolves symbols by looking back into the
- // JIT.
- auto Resolver = createLambdaResolver(
- [&](const std::string &Name) {
- if (auto Sym = findSymbol(Name))
- return RuntimeDyld::SymbolInfo(Sym.getAddress(),
- Sym.getFlags());
- return RuntimeDyld::SymbolInfo(nullptr);
- },
- [](const std::string &S) { return nullptr; } );
-
- return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
- make_unique<SectionMemoryManager>(),
- std::move(Resolver));
- }
-
- void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
-
- JITSymbol findSymbol(const std::string &Name) {
- return LazyEmitLayer.findSymbol(Name, true);
- }
-
- JITSymbol findUnmangledSymbol(const std::string Name) {
- return findSymbol(mangle(Name));
- }
-
-private:
- const DataLayout DL;
- ObjLayerT ObjectLayer;
- CompileLayerT CompileLayer;
- LazyEmitLayerT LazyEmitLayer;
-};
-
-static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
- if (auto F = ParseDefinition()) {
- if (auto M = IRGen(S, *F)) {
- S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
- J.addModule(std::move(M));
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern(SessionContext &S) {
- if (auto P = ParseExtern())
- S.addPrototypeAST(std::move(P));
- else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
- // Evaluate a top-level expression into an anonymous function.
- if (auto F = ParseTopLevelExpr()) {
- IRGenContext C(S);
- if (auto ExprFunc = F->IRGen(C)) {
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "Expression function:\n";
- ExprFunc->dump();
-#endif
- // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
- // this module as soon as we've executed Function ExprFunc.
- auto H = J.addModule(C.takeM());
-
- // Get the address of the JIT'd function in memory.
- auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
-#ifdef MINIMAL_STDERR_OUTPUT
- FP();
-#else
- std::cerr << "Evaluated to " << FP() << "\n";
-#endif
-
- // Remove the function.
- J.removeModule(H);
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- LLVMContext TheContext;
- SessionContext S(TheContext);
- KaleidoscopeJIT J(S);
-
- while (true) {
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); continue; // ignore top-level semicolons.
- case tok_def: HandleDefinition(S, J); break;
- case tok_extern: HandleExtern(S); break;
- default: HandleTopLevelExpression(S, J); break;
- }
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
-double printd(double X) {
- printf("%f", X);
- return 0;
-}
-
-extern "C"
-double printlf() {
- printf("\n");
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- InitializeNativeTargetAsmPrinter();
- InitializeNativeTargetAsmParser();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['='] = 2;
- BinopPrecedence['<'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['/'] = 40;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- getNextToken();
-
- std::cerr << std::fixed;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- return 0;
-}
diff --git a/examples/Kaleidoscope/Orc/lazy_irgen/CMakeLists.txt b/examples/Kaleidoscope/Orc/lazy_irgen/CMakeLists.txt
deleted file mode 100644
index 44886818e0f..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_irgen/CMakeLists.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-set(LLVM_LINK_COMPONENTS
- Core
- ExecutionEngine
- Object
- RuntimeDyld
- Support
- native
- )
-
-add_kaleidoscope_chapter(Kaleidoscope-Orc-lazy_irgen
- toy.cpp
- )
diff --git a/examples/Kaleidoscope/Orc/lazy_irgen/README.txt b/examples/Kaleidoscope/Orc/lazy_irgen/README.txt
deleted file mode 100644
index 9aaa431712d..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_irgen/README.txt
+++ /dev/null
@@ -1,16 +0,0 @@
-//===----------------------------------------------------------------------===/
-// Kaleidoscope with Orc - Lazy IRGen Version
-//===----------------------------------------------------------------------===//
-
-This version of Kaleidoscope with Orc demonstrates lazy IR-generation.
-Building on the lazy-codegen version of the tutorial, this version reduces the
-amount of up-front work that must be done by lazily IRgen'ing ASTs. When a
-function definition is entered, its AST is added to a map of available
-definitions. No IRGen is performed at this point and nothing is added to the JIT.
-When attempting to resolve symbol addresses, the lambda in
-KaleidoscopeJIT::getSymbolAddress will scan the AST map and generate IR on the
-fly.
-
-This directory contains a Makefile that allows the code to be built in a
-standalone manner, independent of the larger LLVM build infrastructure. To build
-the program you will need to have 'clang++' and 'llvm-config' in your path.
diff --git a/examples/Kaleidoscope/Orc/lazy_irgen/toy.cpp b/examples/Kaleidoscope/Orc/lazy_irgen/toy.cpp
deleted file mode 100644
index 72bcd7b633c..00000000000
--- a/examples/Kaleidoscope/Orc/lazy_irgen/toy.cpp
+++ /dev/null
@@ -1,1390 +0,0 @@
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/RuntimeDyld.h"
-#include "llvm/ExecutionEngine/SectionMemoryManager.h"
-#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
-#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
-#include "llvm/ExecutionEngine/Orc/JITSymbol.h"
-#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
-#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
-#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Mangler.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/TargetSelect.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cassert>
-#include <cctype>
-#include <cstdint>
-#include <cstdio>
-#include <cstdlib>
-#include <iomanip>
-#include <iostream>
-#include <map>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::orc;
-
-//===----------------------------------------------------------------------===//
-// Lexer
-//===----------------------------------------------------------------------===//
-
-// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
-// of these for known things.
-enum Token {
- tok_eof = -1,
-
- // commands
- tok_def = -2, tok_extern = -3,
-
- // primary
- tok_identifier = -4, tok_number = -5,
-
- // control
- tok_if = -6, tok_then = -7, tok_else = -8,
- tok_for = -9, tok_in = -10,
-
- // operators
- tok_binary = -11, tok_unary = -12,
-
- // var definition
- tok_var = -13
-};
-
-static std::string IdentifierStr; // Filled in if tok_identifier
-static double NumVal; // Filled in if tok_number
-
-/// gettok - Return the next token from standard input.
-static int gettok() {
- static int LastChar = ' ';
-
- // Skip any whitespace.
- while (isspace(LastChar))
- LastChar = getchar();
-
- if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
- IdentifierStr = LastChar;
- while (isalnum((LastChar = getchar())))
- IdentifierStr += LastChar;
-
- if (IdentifierStr == "def") return tok_def;
- if (IdentifierStr == "extern") return tok_extern;
- if (IdentifierStr == "if") return tok_if;
- if (IdentifierStr == "then") return tok_then;
- if (IdentifierStr == "else") return tok_else;
- if (IdentifierStr == "for") return tok_for;
- if (IdentifierStr == "in") return tok_in;
- if (IdentifierStr == "binary") return tok_binary;
- if (IdentifierStr == "unary") return tok_unary;
- if (IdentifierStr == "var") return tok_var;
- return tok_identifier;
- }
-
- if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
- std::string NumStr;
- do {
- NumStr += LastChar;
- LastChar = getchar();
- } while (isdigit(LastChar) || LastChar == '.');
-
- NumVal = strtod(NumStr.c_str(), nullptr);
- return tok_number;
- }
-
- if (LastChar == '#') {
- // Comment until end of line.
- do LastChar = getchar();
- while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
- if (LastChar != EOF)
- return gettok();
- }
-
- // Check for end of file. Don't eat the EOF.
- if (LastChar == EOF)
- return tok_eof;
-
- // Otherwise, just return the character as its ascii value.
- int ThisChar = LastChar;
- LastChar = getchar();
- return ThisChar;
-}
-
-//===----------------------------------------------------------------------===//
-// Abstract Syntax Tree (aka Parse Tree)
-//===----------------------------------------------------------------------===//
-
-class IRGenContext;
-
-/// ExprAST - Base class for all expression nodes.
-struct ExprAST {
- virtual ~ExprAST() {}
- virtual Value *IRGen(IRGenContext &C) const = 0;
-};
-
-/// NumberExprAST - Expression class for numeric literals like "1.0".
-struct NumberExprAST : public ExprAST {
- NumberExprAST(double Val) : Val(Val) {}
- Value *IRGen(IRGenContext &C) const override;
-
- double Val;
-};
-
-/// VariableExprAST - Expression class for referencing a variable, like "a".
-struct VariableExprAST : public ExprAST {
- VariableExprAST(std::string Name) : Name(std::move(Name)) {}
- Value *IRGen(IRGenContext &C) const override;
-
- std::string Name;
-};
-
-/// UnaryExprAST - Expression class for a unary operator.
-struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
- : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Opcode;
- std::unique_ptr<ExprAST> Operand;
-};
-
-/// BinaryExprAST - Expression class for a binary operator.
-struct BinaryExprAST : public ExprAST {
- BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
- : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- char Op;
- std::unique_ptr<ExprAST> LHS, RHS;
-};
-
-/// CallExprAST - Expression class for function calls.
-struct CallExprAST : public ExprAST {
- CallExprAST(std::string CalleeName,
- std::vector<std::unique_ptr<ExprAST>> Args)
- : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string CalleeName;
- std::vector<std::unique_ptr<ExprAST>> Args;
-};
-
-/// IfExprAST - Expression class for if/then/else.
-struct IfExprAST : public ExprAST {
- IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
- std::unique_ptr<ExprAST> Else)
- : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::unique_ptr<ExprAST> Cond, Then, Else;
-};
-
-/// ForExprAST - Expression class for for/in.
-struct ForExprAST : public ExprAST {
- ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
- std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
- std::unique_ptr<ExprAST> Body)
- : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
- Step(std::move(Step)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- std::string VarName;
- std::unique_ptr<ExprAST> Start, End, Step, Body;
-};
-
-/// VarExprAST - Expression class for var/in
-struct VarExprAST : public ExprAST {
- typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
- typedef std::vector<Binding> BindingList;
-
- VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
- : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
-
- Value *IRGen(IRGenContext &C) const override;
-
- BindingList VarBindings;
- std::unique_ptr<ExprAST> Body;
-};
-
-/// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
-struct PrototypeAST {
- PrototypeAST(std::string Name, std::vector<std::string> Args,
- bool IsOperator = false, unsigned Precedence = 0)
- : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
- Precedence(Precedence) {}
-
- Function *IRGen(IRGenContext &C) const;
- void CreateArgumentAllocas(Function *F, IRGenContext &C);
-
- bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
- bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
- char getOperatorName() const {
- assert(isUnaryOp() || isBinaryOp());
- return Name[Name.size()-1];
- }
-
- std::string Name;
- std::vector<std::string> Args;
- bool IsOperator;
- unsigned Precedence; // Precedence if a binary op.
-};
-
-/// FunctionAST - This class represents a function definition itself.
-struct FunctionAST {
- FunctionAST(std::unique_ptr<PrototypeAST> Proto,
- std::unique_ptr<ExprAST> Body)
- : Proto(std::move(Proto)), Body(std::move(Body)) {}
-
- Function *IRGen(IRGenContext &C) const;
-
- std::unique_ptr<PrototypeAST> Proto;
- std::unique_ptr<ExprAST> Body;
-};
-
-//===----------------------------------------------------------------------===//
-// Parser
-//===----------------------------------------------------------------------===//
-
-/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
-/// token the parser is looking at. getNextToken reads another token from the
-/// lexer and updates CurTok with its results.
-static int CurTok;
-static int getNextToken() {
- return CurTok = gettok();
-}
-
-/// BinopPrecedence - This holds the precedence for each binary operator that is
-/// defined.
-static std::map<char, int> BinopPrecedence;
-
-/// GetTokPrecedence - Get the precedence of the pending binary operator token.
-static int GetTokPrecedence() {
- if (!isascii(CurTok))
- return -1;
-
- // Make sure it's a declared binop.
- int TokPrec = BinopPrecedence[CurTok];
- if (TokPrec <= 0) return -1;
- return TokPrec;
-}
-
-template <typename T>
-std::unique_ptr<T> ErrorU(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-template <typename T>
-T* ErrorP(const std::string &Str) {
- std::cerr << "Error: " << Str << "\n";
- return nullptr;
-}
-
-static std::unique_ptr<ExprAST> ParseExpression();
-
-/// identifierexpr
-/// ::= identifier
-/// ::= identifier '(' expression* ')'
-static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
- std::string IdName = IdentifierStr;
-
- getNextToken(); // eat identifier.
-
- if (CurTok != '(') // Simple variable ref.
- return llvm::make_unique<VariableExprAST>(IdName);
-
- // Call.
- getNextToken(); // eat (
- std::vector<std::unique_ptr<ExprAST>> Args;
- if (CurTok != ')') {
- while (true) {
- auto Arg = ParseExpression();
- if (!Arg) return nullptr;
- Args.push_back(std::move(Arg));
-
- if (CurTok == ')') break;
-
- if (CurTok != ',')
- return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
- getNextToken();
- }
- }
-
- // Eat the ')'.
- getNextToken();
-
- return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
-}
-
-/// numberexpr ::= number
-static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
- auto Result = llvm::make_unique<NumberExprAST>(NumVal);
- getNextToken(); // consume the number
- return Result;
-}
-
-/// parenexpr ::= '(' expression ')'
-static std::unique_ptr<ExprAST> ParseParenExpr() {
- getNextToken(); // eat (.
- auto V = ParseExpression();
- if (!V)
- return nullptr;
-
- if (CurTok != ')')
- return ErrorU<ExprAST>("expected ')'");
- getNextToken(); // eat ).
- return V;
-}
-
-/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static std::unique_ptr<ExprAST> ParseIfExpr() {
- getNextToken(); // eat the if.
-
- // condition.
- auto Cond = ParseExpression();
- if (!Cond)
- return nullptr;
-
- if (CurTok != tok_then)
- return ErrorU<ExprAST>("expected then");
- getNextToken(); // eat the then
-
- auto Then = ParseExpression();
- if (!Then)
- return nullptr;
-
- if (CurTok != tok_else)
- return ErrorU<ExprAST>("expected else");
-
- getNextToken();
-
- auto Else = ParseExpression();
- if (!Else)
- return nullptr;
-
- return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
- std::move(Else));
-}
-
-/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static std::unique_ptr<ForExprAST> ParseForExpr() {
- getNextToken(); // eat the for.
-
- if (CurTok != tok_identifier)
- return ErrorU<ForExprAST>("expected identifier after for");
-
- std::string IdName = IdentifierStr;
- getNextToken(); // eat identifier.
-
- if (CurTok != '=')
- return ErrorU<ForExprAST>("expected '=' after for");
- getNextToken(); // eat '='.
-
- auto Start = ParseExpression();
- if (!Start)
- return nullptr;
- if (CurTok != ',')
- return ErrorU<ForExprAST>("expected ',' after for start value");
- getNextToken();
-
- auto End = ParseExpression();
- if (!End)
- return nullptr;
-
- // The step value is optional.
- std::unique_ptr<ExprAST> Step;
- if (CurTok == ',') {
- getNextToken();
- Step = ParseExpression();
- if (!Step)
- return nullptr;
- }
-
- if (CurTok != tok_in)
- return ErrorU<ForExprAST>("expected 'in' after for");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (Body)
- return nullptr;
-
- return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
- std::move(Step), std::move(Body));
-}
-
-/// varexpr ::= 'var' identifier ('=' expression)?
-// (',' identifier ('=' expression)?)* 'in' expression
-static std::unique_ptr<VarExprAST> ParseVarExpr() {
- getNextToken(); // eat the var.
-
- VarExprAST::BindingList VarBindings;
-
- // At least one variable name is required.
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier after var");
-
- while (true) {
- std::string Name = IdentifierStr;
- getNextToken(); // eat identifier.
-
- // Read the optional initializer.
- std::unique_ptr<ExprAST> Init;
- if (CurTok == '=') {
- getNextToken(); // eat the '='.
-
- Init = ParseExpression();
- if (!Init)
- return nullptr;
- }
-
- VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
- // End of var list, exit loop.
- if (CurTok != ',') break;
- getNextToken(); // eat the ','.
-
- if (CurTok != tok_identifier)
- return ErrorU<VarExprAST>("expected identifier list after var");
- }
-
- // At this point, we have to have 'in'.
- if (CurTok != tok_in)
- return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
- getNextToken(); // eat 'in'.
-
- auto Body = ParseExpression();
- if (!Body)
- return nullptr;
-
- return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
-}
-
-/// primary
-/// ::= identifierexpr
-/// ::= numberexpr
-/// ::= parenexpr
-/// ::= ifexpr
-/// ::= forexpr
-/// ::= varexpr
-static std::unique_ptr<ExprAST> ParsePrimary() {
- switch (CurTok) {
- default: return ErrorU<ExprAST>("unknown token when expecting an expression");
- case tok_identifier: return ParseIdentifierExpr();
- case tok_number: return ParseNumberExpr();
- case '(': return ParseParenExpr();
- case tok_if: return ParseIfExpr();
- case tok_for: return ParseForExpr();
- case tok_var: return ParseVarExpr();
- }
-}
-
-/// unary
-/// ::= primary
-/// ::= '!' unary
-static std::unique_ptr<ExprAST> ParseUnary() {
- // If the current token is not an operator, it must be a primary expr.
- if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
- return ParsePrimary();
-
- // If this is a unary operator, read it.
- int Opc = CurTok;
- getNextToken();
- if (auto Operand = ParseUnary())
- return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
- return nullptr;
-}
-
-/// binoprhs
-/// ::= ('+' unary)*
-static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
- std::unique_ptr<ExprAST> LHS) {
- // If this is a binop, find its precedence.
- while (true) {
- int TokPrec = GetTokPrecedence();
-
- // If this is a binop that binds at least as tightly as the current binop,
- // consume it, otherwise we are done.
- if (TokPrec < ExprPrec)
- return LHS;
-
- // Okay, we know this is a binop.
- int BinOp = CurTok;
- getNextToken(); // eat binop
-
- // Parse the unary expression after the binary operator.
- auto RHS = ParseUnary();
- if (!RHS)
- return nullptr;
-
- // If BinOp binds less tightly with RHS than the operator after RHS, let
- // the pending operator take RHS as its LHS.
- int NextPrec = GetTokPrecedence();
- if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
- if (!RHS)
- return nullptr;
- }
-
- // Merge LHS/RHS.
- LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
- }
-}
-
-/// expression
-/// ::= unary binoprhs
-///
-static std::unique_ptr<ExprAST> ParseExpression() {
- auto LHS = ParseUnary();
- if (!LHS)
- return nullptr;
-
- return ParseBinOpRHS(0, std::move(LHS));
-}
-
-/// prototype
-/// ::= id '(' id* ')'
-/// ::= binary LETTER number? (id, id)
-/// ::= unary LETTER (id)
-static std::unique_ptr<PrototypeAST> ParsePrototype() {
- std::string FnName;
-
- unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
- unsigned BinaryPrecedence = 30;
-
- switch (CurTok) {
- default:
- return ErrorU<PrototypeAST>("Expected function name in prototype");
- case tok_identifier:
- FnName = IdentifierStr;
- Kind = 0;
- getNextToken();
- break;
- case tok_unary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected unary operator");
- FnName = "unary";
- FnName += (char)CurTok;
- Kind = 1;
- getNextToken();
- break;
- case tok_binary:
- getNextToken();
- if (!isascii(CurTok))
- return ErrorU<PrototypeAST>("Expected binary operator");
- FnName = "binary";
- FnName += (char)CurTok;
- Kind = 2;
- getNextToken();
-
- // Read the precedence if present.
- if (CurTok == tok_number) {
- if (NumVal < 1 || NumVal > 100)
- return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
- BinaryPrecedence = (unsigned)NumVal;
- getNextToken();
- }
- break;
- }
-
- if (CurTok != '(')
- return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
- std::vector<std::string> ArgNames;
- while (getNextToken() == tok_identifier)
- ArgNames.push_back(IdentifierStr);
- if (CurTok != ')')
- return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
- // success.
- getNextToken(); // eat ')'.
-
- // Verify right number of names for operator.
- if (Kind && ArgNames.size() != Kind)
- return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
- return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
- BinaryPrecedence);
-}
-
-/// definition ::= 'def' prototype expression
-static std::unique_ptr<FunctionAST> ParseDefinition() {
- getNextToken(); // eat def.
- auto Proto = ParsePrototype();
- if (!Proto)
- return nullptr;
-
- if (auto Body = ParseExpression())
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
- return nullptr;
-}
-
-/// toplevelexpr ::= expression
-static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
- if (auto E = ParseExpression()) {
- // Make an anonymous proto.
- auto Proto =
- llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
- return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
- }
- return nullptr;
-}
-
-/// external ::= 'extern' prototype
-static std::unique_ptr<PrototypeAST> ParseExtern() {
- getNextToken(); // eat extern.
- return ParsePrototype();
-}
-
-//===----------------------------------------------------------------------===//
-// Code Generation
-//===----------------------------------------------------------------------===//
-
-// FIXME: Obviously we can do better than this
-std::string GenerateUniqueName(const std::string &Root) {
- static int i = 0;
- std::ostringstream NameStream;
- NameStream << Root << ++i;
- return NameStream.str();
-}
-
-std::string MakeLegalFunctionName(std::string Name)
-{
- std::string NewName;
- assert(!Name.empty() && "Base name must not be empty");
-
- // Start with what we have
- NewName = Name;
-
- // Look for a numberic first character
- if (NewName.find_first_of("0123456789") == 0) {
- NewName.insert(0, 1, 'n');
- }
-
- // Replace illegal characters with their ASCII equivalent
- std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
- size_t pos;
- while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
- std::ostringstream NumStream;
- NumStream << (int)NewName.at(pos);
- NewName = NewName.replace(pos, 1, NumStream.str());
- }
-
- return NewName;
-}
-
-class SessionContext {
-public:
- SessionContext(LLVMContext &C)
- : Context(C), TM(EngineBuilder().selectTarget()) {}
- LLVMContext& getLLVMContext() const { return Context; }
- TargetMachine& getTarget() { return *TM; }
- void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
- PrototypeAST* getPrototypeAST(const std::string &Name);
-
-private:
- typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
- LLVMContext &Context;
- std::unique_ptr<TargetMachine> TM;
-
- PrototypeMap Prototypes;
-};
-
-void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
- Prototypes[P->Name] = std::move(P);
-}
-
-PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
- PrototypeMap::iterator I = Prototypes.find(Name);
- if (I != Prototypes.end())
- return I->second.get();
- return nullptr;
-}
-
-class IRGenContext {
-public:
- IRGenContext(SessionContext &S)
- : Session(S),
- M(new Module(GenerateUniqueName("jit_module_"),
- Session.getLLVMContext())),
- Builder(Session.getLLVMContext()) {
- M->setDataLayout(Session.getTarget().createDataLayout());
- }
-
- SessionContext& getSession() { return Session; }
- Module& getM() const { return *M; }
- std::unique_ptr<Module> takeM() { return std::move(M); }
- IRBuilder<>& getBuilder() { return Builder; }
- LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
- Function* getPrototype(const std::string &Name);
-
- std::map<std::string, AllocaInst*> NamedValues;
-
-private:
- SessionContext &Session;
- std::unique_ptr<Module> M;
- IRBuilder<> Builder;
-};
-
-Function* IRGenContext::getPrototype(const std::string &Name) {
- if (Function *ExistingProto = M->getFunction(Name))
- return ExistingProto;
- if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
- return ProtoAST->IRGen(*this);
- return nullptr;
-}
-
-/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
-/// the function. This is used for mutable variables etc.
-static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
- const std::string &VarName) {
- IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
- TheFunction->getEntryBlock().begin());
- return TmpB.CreateAlloca(Type::getDoubleTy(TheFunction->getContext()),
- nullptr, VarName);
-}
-
-Value *NumberExprAST::IRGen(IRGenContext &C) const {
- return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
-}
-
-Value *VariableExprAST::IRGen(IRGenContext &C) const {
- // Look this variable up in the function.
- Value *V = C.NamedValues[Name];
-
- if (!V)
- return ErrorP<Value>("Unknown variable name '" + Name + "'");
-
- // Load the value.
- return C.getBuilder().CreateLoad(V, Name.c_str());
-}
-
-Value *UnaryExprAST::IRGen(IRGenContext &C) const {
- if (Value *OperandV = Operand->IRGen(C)) {
- std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
- if (Function *F = C.getPrototype(FnName))
- return C.getBuilder().CreateCall(F, OperandV, "unop");
- return ErrorP<Value>("Unknown unary operator");
- }
-
- // Could not codegen operand - return null.
- return nullptr;
-}
-
-Value *BinaryExprAST::IRGen(IRGenContext &C) const {
- // Special case '=' because we don't want to emit the LHS as an expression.
- if (Op == '=') {
- // Assignment requires the LHS to be an identifier.
- auto &LHSVar = static_cast<VariableExprAST &>(*LHS);
- // Codegen the RHS.
- Value *Val = RHS->IRGen(C);
- if (!Val) return nullptr;
-
- // Look up the name.
- if (auto Variable = C.NamedValues[LHSVar.Name]) {
- C.getBuilder().CreateStore(Val, Variable);
- return Val;
- }
- return ErrorP<Value>("Unknown variable name");
- }
-
- Value *L = LHS->IRGen(C);
- Value *R = RHS->IRGen(C);
- if (!L || !R) return nullptr;
-
- switch (Op) {
- case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
- case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
- case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
- case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
- case '<':
- L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
- // Convert bool 0/1 to double 0.0 or 1.0
- return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(C.getLLVMContext()),
- "booltmp");
- default: break;
- }
-
- // If it wasn't a builtin binary operator, it must be a user defined one. Emit
- // a call to it.
- std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
- if (Function *F = C.getPrototype(FnName)) {
- Value *Ops[] = { L, R };
- return C.getBuilder().CreateCall(F, Ops, "binop");
- }
-
- return ErrorP<Value>("Unknown binary operator");
-}
-
-Value *CallExprAST::IRGen(IRGenContext &C) const {
- // Look up the name in the global module table.
- if (auto CalleeF = C.getPrototype(CalleeName)) {
- // If argument mismatch error.
- if (CalleeF->arg_size() != Args.size())
- return ErrorP<Value>("Incorrect # arguments passed");
-
- std::vector<Value*> ArgsV;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- ArgsV.push_back(Args[i]->IRGen(C));
- if (!ArgsV.back()) return nullptr;
- }
-
- return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
- }
-
- return ErrorP<Value>("Unknown function referenced");
-}
-
-Value *IfExprAST::IRGen(IRGenContext &C) const {
- Value *CondV = Cond->IRGen(C);
- if (!CondV) return nullptr;
-
- // Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
- ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
- CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create blocks for the then and else cases. Insert the 'then' block at the
- // end of the function.
- BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
- BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
- BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
- C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
- // Emit then value.
- C.getBuilder().SetInsertPoint(ThenBB);
-
- Value *ThenV = Then->IRGen(C);
- if (!ThenV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
- ThenBB = C.getBuilder().GetInsertBlock();
-
- // Emit else block.
- TheFunction->getBasicBlockList().push_back(ElseBB);
- C.getBuilder().SetInsertPoint(ElseBB);
-
- Value *ElseV = Else->IRGen(C);
- if (!ElseV) return nullptr;
-
- C.getBuilder().CreateBr(MergeBB);
- // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
- ElseBB = C.getBuilder().GetInsertBlock();
-
- // Emit merge block.
- TheFunction->getBasicBlockList().push_back(MergeBB);
- C.getBuilder().SetInsertPoint(MergeBB);
- PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(C.getLLVMContext()),
- 2, "iftmp");
-
- PN->addIncoming(ThenV, ThenBB);
- PN->addIncoming(ElseV, ElseBB);
- return PN;
-}
-
-Value *ForExprAST::IRGen(IRGenContext &C) const {
- // Output this as:
- // var = alloca double
- // ...
- // start = startexpr
- // store start -> var
- // goto loop
- // loop:
- // ...
- // bodyexpr
- // ...
- // loopend:
- // step = stepexpr
- // endcond = endexpr
- //
- // curvar = load var
- // nextvar = curvar + step
- // store nextvar -> var
- // br endcond, loop, endloop
- // outloop:
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Create an alloca for the variable in the entry block.
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
- // Emit the start code first, without 'variable' in scope.
- Value *StartVal = Start->IRGen(C);
- if (!StartVal) return nullptr;
-
- // Store the value into the alloca.
- C.getBuilder().CreateStore(StartVal, Alloca);
-
- // Make the new basic block for the loop header, inserting after current
- // block.
- BasicBlock *LoopBB =
- BasicBlock::Create(C.getLLVMContext(), "loop", TheFunction);
-
- // Insert an explicit fall through from the current block to the LoopBB.
- C.getBuilder().CreateBr(LoopBB);
-
- // Start insertion in LoopBB.
- C.getBuilder().SetInsertPoint(LoopBB);
-
- // Within the loop, the variable is defined equal to the PHI node. If it
- // shadows an existing variable, we have to restore it, so save it now.
- AllocaInst *OldVal = C.NamedValues[VarName];
- C.NamedValues[VarName] = Alloca;
-
- // Emit the body of the loop. This, like any other expr, can change the
- // current BB. Note that we ignore the value computed by the body, but don't
- // allow an error.
- if (!Body->IRGen(C))
- return nullptr;
-
- // Emit the step value.
- Value *StepVal;
- if (Step) {
- StepVal = Step->IRGen(C);
- if (!StepVal) return nullptr;
- } else {
- // If not specified, use 1.0.
- StepVal = ConstantFP::get(C.getLLVMContext(), APFloat(1.0));
- }
-
- // Compute the end condition.
- Value *EndCond = End->IRGen(C);
- if (!EndCond) return nullptr;
-
- // Reload, increment, and restore the alloca. This handles the case where
- // the body of the loop mutates the variable.
- Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
- Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
- C.getBuilder().CreateStore(NextVar, Alloca);
-
- // Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(
- EndCond, ConstantFP::get(C.getLLVMContext(), APFloat(0.0)), "loopcond");
-
- // Create the "after loop" block and insert it.
- BasicBlock *AfterBB =
- BasicBlock::Create(C.getLLVMContext(), "afterloop", TheFunction);
-
- // Insert the conditional branch into the end of LoopEndBB.
- C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
- // Any new code will be inserted in AfterBB.
- C.getBuilder().SetInsertPoint(AfterBB);
-
- // Restore the unshadowed variable.
- if (OldVal)
- C.NamedValues[VarName] = OldVal;
- else
- C.NamedValues.erase(VarName);
-
- // for expr always returns 0.0.
- return Constant::getNullValue(Type::getDoubleTy(C.getLLVMContext()));
-}
-
-Value *VarExprAST::IRGen(IRGenContext &C) const {
- std::vector<AllocaInst *> OldBindings;
-
- Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
- // Register all variables and emit their initializer.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
- auto &VarName = VarBindings[i].first;
- auto &Init = VarBindings[i].second;
-
- // Emit the initializer before adding the variable to scope, this prevents
- // the initializer from referencing the variable itself, and permits stuff
- // like this:
- // var a = 1 in
- // var a = a in ... # refers to outer 'a'.
- Value *InitVal;
- if (Init) {
- InitVal = Init->IRGen(C);
- if (!InitVal) return nullptr;
- } else // If not specified, use 0.0.
- InitVal = ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
-
- AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
- C.getBuilder().CreateStore(InitVal, Alloca);
-
- // Remember the old variable binding so that we can restore the binding when
- // we unrecurse.
- OldBindings.push_back(C.NamedValues[VarName]);
-
- // Remember this binding.
- C.NamedValues[VarName] = Alloca;
- }
-
- // Codegen the body, now that all vars are in scope.
- Value *BodyVal = Body->IRGen(C);
- if (!BodyVal) return nullptr;
-
- // Pop all our variables from scope.
- for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
- C.NamedValues[VarBindings[i].first] = OldBindings[i];
-
- // Return the body computation.
- return BodyVal;
-}
-
-Function *PrototypeAST::IRGen(IRGenContext &C) const {
- std::string FnName = MakeLegalFunctionName(Name);
-
- // Make the function type: double(double,double) etc.
- std::vector<Type *> Doubles(Args.size(),
- Type::getDoubleTy(C.getLLVMContext()));
- FunctionType *FT =
- FunctionType::get(Type::getDoubleTy(C.getLLVMContext()), Doubles, false);
- Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
- &C.getM());
-
- // If F conflicted, there was already something named 'FnName'. If it has a
- // body, don't allow redefinition or reextern.
- if (F->getName() != FnName) {
- // Delete the one we just made and get the existing one.
- F->eraseFromParent();
- F = C.getM().getFunction(Name);
-
- // If F already has a body, reject this.
- if (!F->empty()) {
- ErrorP<Function>("redefinition of function");
- return nullptr;
- }
-
- // If F took a different number of args, reject.
- if (F->arg_size() != Args.size()) {
- ErrorP<Function>("redefinition of function with different # args");
- return nullptr;
- }
- }
-
- // Set names for all arguments.
- unsigned Idx = 0;
- for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
- ++AI, ++Idx)
- AI->setName(Args[Idx]);
-
- return F;
-}
-
-/// CreateArgumentAllocas - Create an alloca for each argument and register the
-/// argument in the symbol table so that references to it will succeed.
-void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
- Function::arg_iterator AI = F->arg_begin();
- for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
- // Create an alloca for this variable.
- AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
-
- // Store the initial value into the alloca.
- C.getBuilder().CreateStore(&*AI, Alloca);
-
- // Add arguments to variable symbol table.
- C.NamedValues[Args[Idx]] = Alloca;
- }
-}
-
-Function *FunctionAST::IRGen(IRGenContext &C) const {
- C.NamedValues.clear();
-
- Function *TheFunction = Proto->IRGen(C);
- if (!TheFunction)
- return nullptr;
-
- // If this is an operator, install it.
- if (Proto->isBinaryOp())
- BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
- // Create a new basic block to start insertion into.
- BasicBlock *BB = BasicBlock::Create(C.getLLVMContext(), "entry", TheFunction);
- C.getBuilder().SetInsertPoint(BB);
-
- // Add all arguments to the symbol table and create their allocas.
- Proto->CreateArgumentAllocas(TheFunction, C);
-
- if (Value *RetVal = Body->IRGen(C)) {
- // Finish off the function.
- C.getBuilder().CreateRet(RetVal);
-
- // Validate the generated code, checking for consistency.
- verifyFunction(*TheFunction);
-
- return TheFunction;
- }
-
- // Error reading body, remove function.
- TheFunction->eraseFromParent();
-
- if (Proto->isBinaryOp())
- BinopPrecedence.erase(Proto->getOperatorName());
- return nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Level parsing and JIT Driver
-//===----------------------------------------------------------------------===//
-
-static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
- const FunctionAST &F) {
- IRGenContext C(S);
- auto LF = F.IRGen(C);
- if (!LF)
- return nullptr;
-#ifndef MINIMAL_STDERR_OUTPUT
- fprintf(stderr, "Read function definition:");
- LF->dump();
-#endif
- return C.takeM();
-}
-
-template <typename T>
-static std::vector<T> singletonSet(T t) {
- std::vector<T> Vec;
- Vec.push_back(std::move(t));
- return Vec;
-}
-
-class KaleidoscopeJIT {
-public:
- typedef ObjectLinkingLayer<> ObjLayerT;
- typedef IRCompileLayer<ObjLayerT> CompileLayerT;
- typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
- typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
-
- KaleidoscopeJIT(SessionContext &Session)
- : Session(Session),
- CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
- LazyEmitLayer(CompileLayer) {}
-
- std::string mangle(const std::string &Name) {
- std::string MangledName;
- {
- raw_string_ostream MangledNameStream(MangledName);
- Mangler::getNameWithPrefix(MangledNameStream, Name,
- Session.getTarget().createDataLayout());
- }
- return MangledName;
- }
-
- void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
- std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
- FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
- }
-
- ModuleHandleT addModule(std::unique_ptr<Module> M) {
- // We need a memory manager to allocate memory and resolve symbols for this
- // new module. Create one that resolves symbols by looking back into the
- // JIT.
- auto Resolver = createLambdaResolver(
- [&](const std::string &Name) {
- // First try to find 'Name' within the JIT.
- if (auto Symbol = findSymbol(Name))
- return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
- Symbol.getFlags());
-
- // If we don't already have a definition of 'Name' then search
- // the ASTs.
- return searchFunctionASTs(Name);
- },
- [](const std::string &S) { return nullptr; } );
-
- return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
- make_unique<SectionMemoryManager>(),
- std::move(Resolver));
- }
-
- void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
-
- JITSymbol findSymbol(const std::string &Name) {
- return LazyEmitLayer.findSymbol(Name, true);
- }
-
- JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
- return LazyEmitLayer.findSymbolIn(H, Name, true);
- }
-
- JITSymbol findUnmangledSymbol(const std::string &Name) {
- return findSymbol(mangle(Name));
- }
-
-private:
- // This method searches the FunctionDefs map for a definition of 'Name'. If it
- // finds one it generates a stub for it and returns the address of the stub.
- RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
- auto DefI = FunctionDefs.find(Name);
- if (DefI == FunctionDefs.end())
- return nullptr;
-
- // Take the FunctionAST out of the map.
- auto FnAST = std::move(DefI->second);
- FunctionDefs.erase(DefI);
-
- // IRGen the AST, add it to the JIT, and return the address for it.
- auto H = addModule(IRGen(Session, *FnAST));
- auto Sym = findSymbolIn(H, Name);
- return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
- }
-
- SessionContext &Session;
- ObjLayerT ObjectLayer;
- CompileLayerT CompileLayer;
- LazyEmitLayerT LazyEmitLayer;
-
- std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
-};
-
-static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
- if (auto F = ParseDefinition()) {
- S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
- J.addFunctionAST(std::move(F));
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleExtern(SessionContext &S) {
- if (auto P = ParseExtern())
- S.addPrototypeAST(std::move(P));
- else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
- // Evaluate a top-level expression into an anonymous function.
- if (auto F = ParseTopLevelExpr()) {
- IRGenContext C(S);
- if (auto ExprFunc = F->IRGen(C)) {
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "Expression function:\n";
- ExprFunc->dump();
-#endif
- // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
- // this module as soon as we've executed Function ExprFunc.
- auto H = J.addModule(C.takeM());
-
- // Get the address of the JIT'd function in memory.
- auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
-#ifdef MINIMAL_STDERR_OUTPUT
- FP();
-#else
- std::cerr << "Evaluated to " << FP() << "\n";
-#endif
-
- // Remove the function.
- J.removeModule(H);
- }
- } else {
- // Skip token for error recovery.
- getNextToken();
- }
-}
-
-/// top ::= definition | external | expression | ';'
-static void MainLoop() {
- LLVMContext TheContext;
- SessionContext S(TheContext);
- KaleidoscopeJIT J(S);
-
- while (true) {
- switch (CurTok) {
- case tok_eof: return;
- case ';': getNextToken(); continue; // ignore top-level semicolons.
- case tok_def: HandleDefinition(S, J); break;
- case tok_extern: HandleExtern(S); break;
- default: HandleTopLevelExpression(S, J); break;
- }
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- }
-}
-
-//===----------------------------------------------------------------------===//
-// "Library" functions that can be "extern'd" from user code.
-//===----------------------------------------------------------------------===//
-
-/// putchard - putchar that takes a double and returns 0.
-extern "C"
-double putchard(double X) {
- putchar((char)X);
- return 0;
-}
-
-/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
-double printd(double X) {
- printf("%f", X);
- return 0;
-}
-
-extern "C"
-double printlf() {
- printf("\n");
- return 0;
-}
-
-//===----------------------------------------------------------------------===//
-// Main driver code.
-//===----------------------------------------------------------------------===//
-
-int main() {
- InitializeNativeTarget();
- InitializeNativeTargetAsmPrinter();
- InitializeNativeTargetAsmParser();
-
- // Install standard binary operators.
- // 1 is lowest precedence.
- BinopPrecedence['='] = 2;
- BinopPrecedence['<'] = 10;
- BinopPrecedence['+'] = 20;
- BinopPrecedence['-'] = 20;
- BinopPrecedence['/'] = 40;
- BinopPrecedence['*'] = 40; // highest.
-
- // Prime the first token.
-#ifndef MINIMAL_STDERR_OUTPUT
- std::cerr << "ready> ";
-#endif
- getNextToken();
-
- std::cerr << std::fixed;
-
- // Run the main "interpreter loop" now.
- MainLoop();
-
- return 0;
-}