summaryrefslogtreecommitdiff
path: root/docs/Beignet/Backend/flat_address_space.mdwn
diff options
context:
space:
mode:
Diffstat (limited to 'docs/Beignet/Backend/flat_address_space.mdwn')
-rw-r--r--docs/Beignet/Backend/flat_address_space.mdwn98
1 files changed, 98 insertions, 0 deletions
diff --git a/docs/Beignet/Backend/flat_address_space.mdwn b/docs/Beignet/Backend/flat_address_space.mdwn
new file mode 100644
index 00000000..3018a295
--- /dev/null
+++ b/docs/Beignet/Backend/flat_address_space.mdwn
@@ -0,0 +1,98 @@
+Flat Address Space
+==================
+
+Segmented address space...
+--------------------------
+
+The first challenge with OpenCL is its very liberal use of pointers. The memory
+is segment into several address spaces:
+
+- private. This is the memory for each work item
+
+- global. These are buffers in memory shared by all work items and work groups
+
+- constant. These are constant buffers in memory shared by all work items and
+work groups as well
+
+- local. These is a memory shared by all work items in the *same* work group
+
+... But with no restriction inside each address space
+-----------------------------------------------------
+
+The challenge is that there is no restriction in OpenCL inside each address
+space i.e. the full C semantic applies in particular regarding pointer
+arithmetic.
+
+Therefore the following code is valid:
+
+<code>
+\_\_kernel void example(\_\_global int *dst, \_\_global int *src0, \_\_global int *src1)<br/>
+{<br/>
+&nbsp;&nbsp;\_\_global int *from;<br/>
+&nbsp;&nbsp;if (get\_global\_id(0) % 2)<br/>
+&nbsp;&nbsp;&nbsp;&nbsp;from = src0;<br/>
+&nbsp;&nbsp;else<br/>
+&nbsp;&nbsp;&nbsp;&nbsp;from = src1;<br/>
+&nbsp;&nbsp;dst[get\_global\_id(0)] = from[get\_global\_id(0)];<br/>
+}
+</code>
+
+As one may see, the load done in the last line actually mixes pointers from both
+source src0 and src1. This typically makes the use of binding table indices
+pretty hard. In we use binding table 0 for dst, 1 for src0 and 2 for src1 (for
+example), we are not able to express the load in the last line with one send
+only.
+
+No support for stateless in required messages
+---------------------------------------------
+
+Furthermore, in IVB, we are going four types of messages to implement the loads
+and the stores
+
+- Byte scattered reads. They are used to read bytes/shorts/integers that are not
+aligned on 4 bytes. This is a gather message i.e. the user provides up to 16
+addresses
+
+- Byte scattered writes. They are used to write bytes/shorts/integers that are not
+aligned on 4 bytes. This is a scatter message i.e. the user provides up to 16
+addresses
+
+- Untyped reads. They allow to read from 1 to 4 double words (i.e 4 bytes) per
+lane. This is also a gather message i.e. up to 16 address are provided per
+message.
+
+- Untyped writes. They are the counter part of the untyped reads
+
+Problem is that IVB does not support stateless accesses for these messages. So
+surfaces are required. Secondly, stateless messages are not that interesting
+since all of them require a header which is still slow to assemble.
+
+Implemented solution
+--------------------
+
+The solution is actually quite simple. Even with no stateless support, it is
+actually possible to simulate it with a surface. As one may see in the run-time
+code in `intel/intel_gpgpu.c`, we simply create a surface:
+
+- 2GB big
+
+- Which starts at offset 0
+
+Surprisingly, this surface can actually map the complete GTT address space which
+is 2GB big. One may look at `flat_address_space` unit test in the run-time code
+that creates and copies buffers in such a way that the complete GTT address
+space is traversed.
+
+This solution brings a pretty simple implementation in the compiler side.
+Basically, there is nothing to do when translating from LLVM to Gen ISA. A
+pointer to `__global` or `__constant` memory is simply a 32 bits offset in that
+surface.
+
+Related problems
+----------------
+
+There is one drawback for this approach. Since we use a 2GB surface that maps
+the complete GTT space, there is no protection at all. Each write can therefore
+potentially modify any buffer including the command buffer, the frame buffer or
+the kernel code. There is *no* protection at all in the hardware to prevent
+that.