1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
|
/*
* structural_analysis.hpp
* This code is derived from the ControlTree.h and ControlTree.cpp of
* project gpuocelot by Yongjia Zhang.
* The original copyright of gpuocelot appears below in its entirety.
*/
/*
* Copyright 2011
* GEORGIA TECH RESEARCH CORPORATION
* ALL RIGHTS RESERVED
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimers in the
* documentation and/or other materials provided with the
* distribution.
* * Neither the name of GEORGIA TECH RESEARCH CORPORATION nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GEORGIA TECH RESEARCH CORPORATION ''AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GEORGIA TECH RESEARCH
* CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You agree that the Software will not be shipped, transferred, exported,
* or re-exported directly into any country prohibited by the United States
* Export Administration Act and the regulations thereunder nor will be
* used for any purpose prohibited by the Act.
*/
#include "structural_analysis.hpp"
namespace analysis
{
ControlTree::~ControlTree()
{
NodeVector::iterator iter = nodes.begin();
NodeVector::iterator iter_end = nodes.end();
while(iter != iter_end)
{
delete *iter;
iter++;
}
}
/* recursive mark the bbs' variable needEndif, the bbs all belong to node.*/
void ControlTree::markNeedIf(Node *node, bool status)
{
if(node->type() == BasicBlock)
{
ir::BasicBlock* bb = ((BasicBlockNode*)node)->getBasicBlock();
bb->needIf = status;
return;
}
NodeList::iterator it = node->children.begin();
while(it != node->children.end())
{
markNeedIf(*it,status);
it++;
}
}
/* recursive mark the bbs' variable needIf, the bbs all belong to node.*/
void ControlTree::markNeedEndif(Node *node, bool status)
{
if(node->type() == BasicBlock)
{
ir::BasicBlock* bb = ((BasicBlockNode*)node)->getBasicBlock();
bb->needEndif = status;
return;
}
NodeList::iterator it = node->children.begin();
while(it != node->children.end())
{
markNeedEndif(*it, status);
it++;
}
}
/* recursive mark the bbs' variable mark, the bbs all belong to node. */
void ControlTree::markStructuredNodes(Node *node, bool status)
{
if(node->type() == BasicBlock)
{
BasicBlockNode* pbb = static_cast<BasicBlockNode *>(node);
pbb->getBasicBlock()->belongToStructure = true;
}
node->mark = status;
NodeList::iterator it = node->children.begin();
while(it != node->children.end())
{
markStructuredNodes(*it, status);
it++;
}
}
void ControlTree::handleIfNode(Node *node, ir::LabelIndex& matchingEndifLabel, ir::LabelIndex& matchingElseLabel)
{
ir::BasicBlock *pbb = node->getExit();
ir::BranchInstruction* pinsn = static_cast<ir::BranchInstruction *>(pbb->getLastInstruction());
ir::Register reg = pinsn->getPredicateIndex();
ir::BasicBlock::iterator it = pbb->end();
it--;
/* since this node is an if node, so we remove the BRA instruction at the bottom of the exit BB of 'node',
* and insert IF instead
*/
pbb->erase(it);
ir::Instruction insn = ir::IF(matchingElseLabel, reg);
ir::Instruction* p_new_insn = pbb->getParent().newInstruction(insn);
pbb->append(*p_new_insn);
pbb->matchingEndifLabel = matchingEndifLabel;
pbb->matchingElseLabel = matchingElseLabel;
}
void ControlTree::handleThenNode(Node *node, ir::LabelIndex& endiflabel)
{
ir::BasicBlock *pbb = node->getExit();
ir::BasicBlock::iterator it = pbb->end();
it--;
ir::Instruction *p_last_insn = pbb->getLastInstruction();
endiflabel = fn->newLabel();
//pbb->thisEndifLabel = endiflabel;
ir::Instruction insn = ir::ENDIF(endiflabel);
ir::Instruction* p_new_insn = pbb->getParent().newInstruction(insn);
// we need to insert ENDIF before the BRA(if exists).
bool append_bra = false;
if((*it).getOpcode() == ir::OP_BRA)
{
pbb->erase(it);
append_bra = true;
}
pbb->append(*p_new_insn);
if(append_bra)
pbb->append(*p_last_insn);
}
void ControlTree::handleThenNode2(Node *node, Node *elsenode, ir::LabelIndex elseBBLabel)
{
ir::BasicBlock *pbb = node->getExit();
ir::BasicBlock::iterator it = pbb->end();
it--;
if((*it).getOpcode() == ir::OP_BRA)
pbb->erase(it);
if(node->getExit()->getNextBlock() == elsenode->getEntry())
return;
// Add an unconditional jump to 'else' block
ir::Instruction insn = ir::BRA(elseBBLabel);
ir::Instruction* p_new_insn = pbb->getParent().newInstruction(insn);
pbb->append(*p_new_insn);
}
void ControlTree::handleElseNode(Node* node, ir::LabelIndex& elselabel, ir::LabelIndex& endiflabel)
{
// to insert ENDIF properly
handleThenNode(node, endiflabel);
ir::BasicBlock *pbb = node->getEntry();
ir::BasicBlock::iterator it = pbb->begin();
it++;
elselabel = fn->newLabel();
pbb->thisElseLabel = elselabel;
// insert ELSE properly
ir::Instruction insn = ir::ELSE(endiflabel);
ir::Instruction* p_new_insn = pbb->getParent().newInstruction(insn);
pbb->insertAt(it, *p_new_insn);
}
void ControlTree::handleStructuredNodes()
{
NodeVector::iterator it;
NodeVector::iterator end = nodes.end();
NodeVector::iterator begin = nodes.begin();
it = end;
it--;
NodeVector::reverse_iterator rit = nodes.rbegin();
/* structured bbs only need if and endif insn to handle the execution
* in structure entry and exit BasicBlock, so we process the nodes backward, since
* the node at the back of nodes is always a 'not smaller' structure then
* the ones before it. we mark the nodes which are sub-nodes of the node
* we are dealing with, in order to ensure we are always handling the 'biggest'
* structures */
while(rit != nodes.rend())
{
if((*rit)->type() == IfThen || (*rit)->type() == IfElse)
{
if(false == (*rit)->mark && (*rit)->canBeHandled)
{
markStructuredNodes(*rit, true);
/* only the entry bb of this structure needs 'if' at backend and
* only the exit bb of this structure needs 'endif' at backend
* see comment about needEndif and needIf at function.hpp for detail. */
markNeedEndif(*rit, false);
markNeedIf(*rit, false);
ir::BasicBlock* entry = (*rit)->getEntry();
ir::BasicBlock* eexit = (*rit)->getExit();
entry->needIf = true;
eexit->needEndif = true;
entry->endifLabel = fn->newLabel();
eexit->endifLabel = entry->endifLabel;
eexit->isStructureExit = true;
eexit->matchingStructureEntry = entry;
}
}
rit++;
}
rit = nodes.rbegin();
gbe::vector<ir::BasicBlock *> &blocks = fn->getBlocks();
std::vector<ir::BasicBlock *> bbs;
bbs.resize(blocks.size());
/* here insert the bras to the BBs, which would
* simplify the reorder of basic blocks */
for(size_t i = 0; i < blocks.size(); ++i)
{
bbs[i] = blocks[i];
if(bbs[i]->getLastInstruction()->getOpcode() != ir::OP_BRA && i != blocks.size() - 1)
{
ir::Instruction insn = ir::BRA(bbs[i]->getNextBlock()->getLabelIndex());
ir::Instruction* pNewInsn = bbs[i]->getParent().newInstruction(insn);
bbs[i]->append(*pNewInsn);
}
}
/* now, reorder the basic blocks to reduce the unconditional jump we inserted whose
* targets are the 'else' nodes. the algorithm is quite simple, just put the unstructured
* BBs(maybe belong to another structure, but not this one) in front of the entry BB of
* this structure in front of all the others and put the other unstructured BBs at the
* back of the others. the sequence of structured is get through function getStructureSequence.
*/
while(rit != nodes.rend())
{
if(((*rit)->type() == IfThen || (*rit)->type() == IfElse || (*rit)->type() == Block) &&
(*rit)->canBeHandled && (*rit)->mark == true)
{
markStructuredNodes(*rit, false);
std::set<int> ns = getStructureBasicBlocksIndex(*rit, bbs);
ir::BasicBlock *entry = (*it)->getEntry();
int entryIndex = *(ns.begin());
for(size_t i=0; i<bbs.size(); ++i)
{
if(bbs[i] == entry)
entryIndex = i;
}
std::set<int>::iterator iter = ns.begin();
int index = *iter;
std::vector<ir::BasicBlock *> unstruSeqHead;
std::vector<ir::BasicBlock *> unstruSeqTail;
iter = ns.begin();
while(iter != ns.end())
{
if(index != *iter)
{
if(index < entryIndex)
unstruSeqHead.push_back(bbs[index]);
else
unstruSeqTail.push_back(bbs[index]);
index++;
}
else
{
index++;
iter++;
}
}
std::vector<ir::BasicBlock *> struSeq;
getStructureSequence(*rit, struSeq);
int firstindex = *(ns.begin());
for(size_t i = 0; i < unstruSeqHead.size(); ++i)
bbs[firstindex++] = unstruSeqHead[i];
for(size_t i = 0; i < struSeq.size(); ++i)
bbs[firstindex++] = struSeq[i];
for(size_t i = 0; i < unstruSeqTail.size(); ++i)
bbs[firstindex++] = unstruSeqTail[i];
}
rit++;
}
/* now, erase the BRAs inserted before whose targets are their fallthrough blocks */
for(size_t i=0; i<bbs.size(); ++i)
{
if(bbs[i]->getLastInstruction()->getOpcode() == ir::OP_BRA &&
!((ir::BranchInstruction*)(bbs[i]->getLastInstruction()))->isPredicated())
{
if(((ir::BranchInstruction *)bbs[i]->getLastInstruction())->getLabelIndex() == bbs[i+1]->getLabelIndex())
{
ir::BasicBlock::iterator it= bbs[i]->end();
it--;
bbs[i]->erase(it);
}
}
}
for(size_t i=0; i<bbs.size(); ++i)
blocks[i] = bbs[i];
fn->sortLabels();
fn->computeCFG();
#if 1
it = begin;
while(it != end)
{
if((*it)->canBeHandled)
{
switch((*it)->type())
{
case IfThen:
{
NodeList::iterator child_iter = (*it)->children.end();
ir::LabelIndex endiflabel;
child_iter--;
handleThenNode(*child_iter, endiflabel); // this call would pass out the proper endiflabel for handleIfNode's use.
child_iter--;
handleIfNode(*child_iter, endiflabel, endiflabel);
}
break;
case IfElse:
{
NodeList::iterator child_iter = (*it)->children.end();
ir::LabelIndex endiflabel;
ir::LabelIndex elselabel;
NodeList::iterator else_node;
child_iter--;
else_node = child_iter;
handleElseNode(*child_iter, elselabel, endiflabel);
ir::LabelIndex elseBBLabel = (*child_iter)->getEntry()->getLabelIndex();
child_iter--;
handleThenNode2(*child_iter, *else_node, elseBBLabel);
child_iter--;
handleIfNode(*child_iter, endiflabel, elselabel);
}
break;
default:
break;
}
}
it++;
}
#endif
}
void ControlTree::getStructureSequence(Node *node, std::vector<ir::BasicBlock*> &seq)
{
/* in the control tree, for if-then, if node is before then node; for if-else, the
* stored sequence is if-then-else, for block structure, the stored sequence is just
* their executed sequence. so we could just get the structure sequence by recrusive
* calls getStructureSequence to all the elements in children one by one.
*/
if(node->type() == BasicBlock)
{
seq.push_back(((BasicBlockNode *)node)->getBasicBlock());
return;
}
NodeList::iterator iter = node->children.begin();
while(iter != node->children.end())
{
getStructureSequence(*iter, seq);
iter++;
}
}
std::set<int> ControlTree::getStructureBasicBlocksIndex(Node* node, std::vector<ir::BasicBlock *> &bbs)
{
std::set<int> result;
if(node->type() == BasicBlock)
{
for(size_t i=0; i<bbs.size(); i++)
{
if(bbs[i] == ((BasicBlockNode *)node)->getBasicBlock())
{
result.insert(i);
break;
}
}
return result;
}
NodeList::iterator iter = (node->children).begin();
NodeList::iterator end = (node->children).end();
while(iter != end)
{
std::set<int> ret = getStructureBasicBlocksIndex(*iter, bbs);
result.insert(ret.begin(), ret.end());
iter++;
}
return result;
}
std::set<ir::BasicBlock *> ControlTree::getStructureBasicBlocks(Node *node)
{
std::set<ir::BasicBlock *> result;
if(node->type() == BasicBlock)
{
result.insert(((BasicBlockNode *)node)->getBasicBlock());
return result;
}
NodeList::iterator iter = (node->children).begin();
NodeList::iterator end = (node->children).end();
while(iter != end)
{
std::set<ir::BasicBlock *> ret = getStructureBasicBlocks(*iter);
result.insert(ret.begin(), ret.end());
iter++;
}
return result;
}
Node* ControlTree::insertNode(Node *p_node)
{
nodes.push_back(p_node);
return p_node;
}
bool ControlTree::checkForBarrier(const ir::BasicBlock* bb)
{
ir::BasicBlock::const_iterator iter = bb->begin();
ir::BasicBlock::const_iterator iter_end = bb->end();
while(iter != iter_end)
{
if((*iter).getOpcode() == ir::OP_SYNC)
return true;
iter++;
}
return false;
}
void ControlTree::getLiveIn(ir::BasicBlock& bb, std::set<ir::Register>& livein)
{
ir::BasicBlock::iterator iter = bb.begin();
std::set<ir::Register> varKill;
while(iter != bb.end())
{
ir::Instruction& insn = *iter;
const uint32_t srcNum = insn.getSrcNum();
const uint32_t dstNum = insn.getDstNum();
for(uint32_t srcID = 0; srcID < srcNum; ++srcID)
{
const ir::Register reg = insn.getSrc(srcID);
if(varKill.find(reg) == varKill.end())
livein.insert(reg);
}
for(uint32_t dstID = 0; dstID < dstNum; ++dstID)
{
const ir::Register reg = insn.getDst(dstID);
varKill.insert(reg);
}
iter++;
}
}
void ControlTree::calculateNecessaryLiveout()
{
NodeVector::iterator iter = nodes.begin();
while(iter != nodes.end())
{
switch((*iter)->type())
{
case IfElse:
{
std::set<ir::BasicBlock *> bbs;
NodeList::iterator thenIter = (*iter)->children.begin();
thenIter++;
bbs = getStructureBasicBlocks(*thenIter);
Node *elseNode = *((*iter)->children.rbegin());
std::set<ir::Register> livein;
getLiveIn(*(elseNode->getEntry()), livein);
std::set<ir::BasicBlock *>::iterator bbiter = bbs.begin();
while(bbiter != bbs.end())
{
(*bbiter)->liveout.insert(livein.begin(), livein.end());
bbiter++;
}
}
default:
break;
}
iter++;
}
}
void ControlTree::initializeNodes()
{
ir::BasicBlock& tmp_bb = fn->getTopBlock();
ir::BasicBlock* p_tmp_bb = &tmp_bb;
Node* p = NULL;
if(NULL != p_tmp_bb)
{
Node *p_tmp_node = new BasicBlockNode(p_tmp_bb);
p_tmp_node->label = p_tmp_bb->getLabelIndex();
if(checkForBarrier(p_tmp_bb))
p_tmp_node->hasBarrier() = true;
nodes.push_back(p_tmp_node);
bbmap[p_tmp_bb] = p_tmp_node;
p_tmp_bb = p_tmp_bb->getNextBlock();
p = p_tmp_node;
}
while(p_tmp_bb != NULL)
{
Node *p_tmp_node = new BasicBlockNode(p_tmp_bb);
p_tmp_node->label = p_tmp_bb->getLabelIndex();
if(checkForBarrier(p_tmp_bb))
p_tmp_node->hasBarrier() = true;
p->fallthrough() = p_tmp_node;
p = p_tmp_node;
nodes.push_back(p_tmp_node);
bbmap[p_tmp_bb] = p_tmp_node;
p_tmp_bb = p_tmp_bb->getNextBlock();
}
if(NULL != p)
p->fallthrough() = NULL;
p_tmp_bb = &tmp_bb;
this->nodes_entry = bbmap[p_tmp_bb];
while(p_tmp_bb != NULL)
{
ir::BlockSet::const_iterator iter_begin = p_tmp_bb->getPredecessorSet().begin();
ir::BlockSet::const_iterator iter_end = p_tmp_bb->getPredecessorSet().end();
while(iter_begin != iter_end)
{
bbmap[p_tmp_bb]->preds().insert(bbmap[*iter_begin]);
iter_begin++;
}
iter_begin = p_tmp_bb->getSuccessorSet().begin();
iter_end = p_tmp_bb->getSuccessorSet().end();
while(iter_begin != iter_end)
{
bbmap[p_tmp_bb]->succs().insert(bbmap[*iter_begin]);
iter_begin++;
}
p_tmp_bb = p_tmp_bb->getNextBlock();
}
}
void ControlTree::DFSPostOrder(Node *start)
{
visited.insert(start);
NodeSet::iterator y;
NodeSet::iterator iter_begin = start->succs().begin();
NodeSet::iterator iter_end = start->succs().end();
for(y = iter_begin; y != iter_end; ++y )
{
if(visited.find(*y) != visited.end())
continue;
DFSPostOrder(*y);
}
post_order.push_back(start);
}
bool ControlTree::isCyclic(Node* node)
{
if(node->type() == NaturalLoop ||
node->type() == WhileLoop ||
node->type() == SelfLoop)
return true;
return false;
}
bool ControlTree::isBackedge(const Node* head, const Node* tail)
{
const Node* match[] = {head, tail};
NodeList::iterator n = find_first_of(post_order.begin(), post_order.end(), match, match + 2);
if(*n == head)
return true;
if(*n == tail)
return false;
return false;
}
bool ControlTree::pathBack(Node* m, Node* n)
{
for(NodeSet::const_iterator iter = n->preds().begin(); iter!= n->preds().end(); iter++)
{
if(isBackedge(*iter, n))
{
visited.clear();
if(path(m, *iter, n))
return true;
}
}
return false;
}
/* this algorithm is from Muchnick's textbook(sec 7.7) (Advanced Compiler Design and Implementation) */
Node* ControlTree::acyclicRegionType(Node* node, NodeSet& nset)
{
nset.clear();
Node *n;
bool p, s, barrier;
NodeList nodes;
n = node;
p = true;
s = (n->succs().size()==1);
barrier = n->hasBarrier();
while(p && s && !barrier)
{
if(nset.insert(n).second)
nodes.push_back(n);
n = *(n->succs().begin());
barrier = n->hasBarrier();
p = (n->preds().size() == 1);
s = (n->succs().size() == 1);
}
if(p && !barrier)
{
if(nset.insert(n).second)
nodes.push_back(n);
}
n = node;
p = (n->preds().size() == 1);
s = true;
barrier = n->hasBarrier();
while(p && s && !barrier)
{
if(nset.insert(n).second)
nodes.push_front(n);
n = *(n->preds().begin());
barrier = n->hasBarrier();
p = (n->preds().size() == 1);
s = (n->succs().size() == 1);
}
if(s && !barrier)
{
if(nset.insert(n).second)
nodes.push_front(n);
}
node = n;
if(nodes.size() >=2 )
{
Node* p = new BlockNode(nodes);
NodeList::iterator iter = nodes.begin();
while(iter != nodes.end())
{
if((*iter)->canBeHandled == false)
{
p->canBeHandled = false;
break;
}
iter++;
}
return insertNode(p);
}
else if(node->succs().size() == 2)
{
Node *m;
m = *(node->succs().begin());
n = *(++(node->succs().begin()));
/* check for if node then n */
if(n->succs().size() == 1 &&
n->preds().size() == 1 &&
*(n->succs().begin()) == m &&
!n->hasBarrier() && !node->hasBarrier())
{
nset.clear();
nset.insert(node);
nset.insert(n);
Node* p = new IfThenNode(node, n);
if(node->canBeHandled == false || n->canBeHandled == false)
p->canBeHandled = false;
return insertNode(p);
}
/* check for if node then m */
if(m->succs().size() == 1 &&
m->preds().size() == 1 &&
*(m->succs().begin()) == n &&
!m->hasBarrier() && !node->hasBarrier())
{
nset.clear();
nset.insert(node);
nset.insert(m);
Node* p = new IfThenNode(node, m);
if(node->canBeHandled == false || m->canBeHandled == false)
p->canBeHandled = false;
return insertNode(p);
}
/* check for if node then n else m */
if(m->succs().size() == 1 && n->succs().size() == 1 &&
m->preds().size() == 1 && n->preds().size() == 1 &&
*(m->succs().begin()) == *(n->succs().begin()) &&
node->fallthrough() == n && !m->hasBarrier() && !n->hasBarrier() && !node->hasBarrier())
{
nset.clear();
nset.insert(node);
nset.insert(n);
nset.insert(m);
Node* p = new IfElseNode(node, n, m);
if(node->canBeHandled == false ||
m->canBeHandled == false ||
n->canBeHandled == false)
p->canBeHandled = false;
return insertNode(p);
}
/* check for if node then m else n */
if(m->succs().size() == 1 && n->succs().size() == 1 &&
m->preds().size() == 1 && n->preds().size() == 1 &&
*(m->succs().begin()) == *(n->succs().begin()) &&
node->fallthrough() == m && !m->hasBarrier() && !n->hasBarrier() &&!node->hasBarrier())
{
nset.clear();
nset.insert(node);
nset.insert(m);
nset.insert(n);
Node* p = new IfElseNode(node, m, n);
if(node->canBeHandled == false ||
m->canBeHandled == false ||
n->canBeHandled == false)
p->canBeHandled = false;
return insertNode(p);
}
}
return NULL;
}
bool ControlTree::path(Node *from, Node *to, Node *notthrough)
{
if(from == notthrough || visited.find(from) != visited.end())
return false;
if(from == to)
return true;
visited.insert(from);
for(NodeSet::const_iterator s = from->succs().begin(); s != from->succs().end(); s++)
{
if(path(*s, to, notthrough))
return true;
}
return false;
}
/* this algorithm could work right, but it is quite inefficient, and
* we are not handling any cyclic regions at this moment, so here just
* ignore the identification of cyclic regions. */
Node * ControlTree::cyclicRegionType(Node *node, NodeList &nset)
{
#if 0
/* check for self-loop */
if(nset.size() == 1)
{
if(node->succs().find(node) != node->succs().end())
{
Node* p = new SelfLoopNode(node);
p->canBeHandled = false;
return insertNode(p);
}
else
return NULL;
}
/* check for improper region */
for(NodeList::const_iterator m = nset.begin(); m != nset.end(); m++)
{
visited.clear();
if(!path(node, *m))
return NULL;
}
/* check for while loop */
NodeList::iterator m;
for(m = nset.begin(); m != nset.end(); ++m)
{
if(*m == node)
continue;
if(node->succs().size() == 2 && (*m)->succs().size() == 1 &&
node->preds().size() == 2 && (*m)->preds().size() == 1)
{
Node* p = new WhileLoopNode(node, *m);
p->canBeHandled = false;
return insertNode(p);
}
}
#endif
return NULL;
}
/* this algorithm is from Muchnick's textbook(sec 7.7) (Advanced Compiler Design and Implementation) */
void ControlTree::reduce(Node* node, NodeSet nodeSet)
{
NodeSet::iterator n;
for(n = nodeSet.begin(); n != nodeSet.end(); n++)
{
NodeSet::iterator p;
for(p = (*n)->preds().begin(); p != (*n)->preds().end(); p++)
{
if(nodeSet.find(*p) != nodeSet.end())
continue;
(*p)->succs().erase(*n);
(*p)->succs().insert(node);
node->preds().insert(*p);
if((*p)->fallthrough() == *n)
(*p)->fallthrough() = node;
}
NodeSet::iterator s;
for(s = (*n)->succs().begin(); s != (*n)->succs().end(); s++)
{
if(nodeSet.find(*s) != nodeSet.end())
continue;
(*s)->preds().erase(*n);
(*s)->preds().insert(node);
node->succs().insert(*s);
if((*n)->fallthrough() == *s)
node->fallthrough() = *s;
}
}
if(!isCyclic(node))
{
for(n = nodeSet.begin(); n != nodeSet.end(); n++)
{
bool shouldbreak = false;
NodeSet::iterator p;
for(p = (*n)->preds().begin(); p != (*n)->preds().end(); p++)
{
if(nodeSet.find(*p) == nodeSet.end())
continue;
if(isBackedge(*p, *n))
{
node->preds().insert(node);
node->succs().insert(node);
shouldbreak = true;
break;
}
}
if(shouldbreak)
break;
}
}
compact(node, nodeSet);
}
/* this algorithm is from Muchnick's textbook(sec 7.7) (Advanced Compiler Design and Implementation) */
void ControlTree::compact(Node* node, NodeSet nodeSet)
{
NodeList::iterator n, pos;
for(n = post_order.begin(); n!= post_order.end() && !nodeSet.empty();)
{
if(!nodeSet.erase(*n))
{
n++;
continue;
}
n = post_order.erase(n);
pos = n;
}
post_ctr = post_order.insert(pos, node);
}
/* this algorithm is from Muchnick's textbook(sec 7.7) (Advanced Compiler Design and Implementation) */
void ControlTree::structuralAnalysis(Node *entry)
{
Node* n;
NodeSet nset;
NodeList reachUnder;
bool changed;
do
{
changed = false;
post_order.clear();
visited.clear();
DFSPostOrder(entry);
post_ctr = post_order.begin();
while(post_order.size() > 1 && post_ctr != post_order.end())
{
n = *post_ctr;
Node* region = acyclicRegionType(n, nset);
if( NULL != region)
{
changed = true;
reduce(region, nset);
if(nset.find(entry) != nset.end())
entry = region;
}
else
{
/* We now only deal with acyclic regions at this moment. */
#if 0
reachUnder.clear();
nset.clear();
for(NodeList::const_iterator m = post_order.begin(); m != post_order.end(); m++)
{
if(*m != n && pathBack(*m, n))
{
reachUnder.push_front(*m);
nset.insert(*m);
}
}
reachUnder.push_front(n);
nset.insert(n);
region = cyclicRegionType(n, reachUnder);
if(NULL != region)
{
reduce(region, nset);
changed = true;
if(nset.find(entry) != nset.end())
entry = region;
}
else
{
#endif
post_ctr++;
// }
}
}
if(!changed)
break;
} while(post_order.size()>1);
}
void ControlTree::analyze()
{
initializeNodes();
structuralAnalysis(nodes_entry);
handleStructuredNodes();
calculateNecessaryLiveout();
}
}
|