1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "validate.h"
#include "cfa.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "spirv_validator_options.h"
#include "val/basic_block.h"
#include "val/construct.h"
#include "val/function.h"
#include "val/validation_state.h"
using std::find;
using std::function;
using std::get;
using std::ignore;
using std::make_pair;
using std::make_tuple;
using std::numeric_limits;
using std::pair;
using std::string;
using std::tie;
using std::transform;
using std::tuple;
using std::unordered_map;
using std::unordered_set;
using std::vector;
using libspirv::BasicBlock;
namespace libspirv {
namespace {
using bb_ptr = BasicBlock*;
using cbb_ptr = const BasicBlock*;
using bb_iter = vector<BasicBlock*>::const_iterator;
} // namespace
void printDominatorList(const BasicBlock& b) {
std::cout << b.id() << " is dominated by: ";
const BasicBlock* bb = &b;
while (bb->immediate_dominator() != bb) {
bb = bb->immediate_dominator();
std::cout << bb->id() << " ";
}
}
#define CFG_ASSERT(ASSERT_FUNC, TARGET) \
if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode
spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
if (_.current_function().IsFirstBlock(target)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "First block " << _.getIdName(target) << " of function "
<< _.getIdName(_.current_function().id()) << " is targeted by block "
<< _.getIdName(_.current_function().current_block()->id());
}
return SPV_SUCCESS;
}
spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Block " << _.getIdName(merge_block)
<< " is already a merge block for another header";
}
return SPV_SUCCESS;
}
/// Update the continue construct's exit blocks once the backedge blocks are
/// identified in the CFG.
void UpdateContinueConstructExitBlocks(
Function& function, const vector<pair<uint32_t, uint32_t>>& back_edges) {
auto& constructs = function.constructs();
// TODO(umar): Think of a faster way to do this
for (auto& edge : back_edges) {
uint32_t back_edge_block_id;
uint32_t loop_header_block_id;
tie(back_edge_block_id, loop_header_block_id) = edge;
auto is_this_header = [=](Construct& c) {
return c.type() == ConstructType::kLoop &&
c.entry_block()->id() == loop_header_block_id;
};
for (auto construct : constructs) {
if (is_this_header(construct)) {
Construct* continue_construct =
construct.corresponding_constructs().back();
assert(continue_construct->type() == ConstructType::kContinue);
BasicBlock* back_edge_block;
tie(back_edge_block, ignore) = function.GetBlock(back_edge_block_id);
continue_construct->set_exit(back_edge_block);
}
}
}
}
tuple<string, string, string> ConstructNames(ConstructType type) {
string construct_name, header_name, exit_name;
switch (type) {
case ConstructType::kSelection:
construct_name = "selection";
header_name = "selection header";
exit_name = "merge block";
break;
case ConstructType::kLoop:
construct_name = "loop";
header_name = "loop header";
exit_name = "merge block";
break;
case ConstructType::kContinue:
construct_name = "continue";
header_name = "continue target";
exit_name = "back-edge block";
break;
case ConstructType::kCase:
construct_name = "case";
header_name = "case entry block";
exit_name = "case exit block";
break;
default:
assert(1 == 0 && "Not defined type");
}
return make_tuple(construct_name, header_name, exit_name);
}
/// Constructs an error message for construct validation errors
string ConstructErrorString(const Construct& construct,
const string& header_string,
const string& exit_string,
const string& dominate_text) {
string construct_name, header_name, exit_name;
tie(construct_name, header_name, exit_name) =
ConstructNames(construct.type());
// TODO(umar): Add header block for continue constructs to error message
return "The " + construct_name + " construct with the " + header_name + " " +
header_string + " " + dominate_text + " the " + exit_name + " " +
exit_string;
}
spv_result_t StructuredControlFlowChecks(
const ValidationState_t& _, const Function& function,
const vector<pair<uint32_t, uint32_t>>& back_edges) {
/// Check all backedges target only loop headers and have exactly one
/// back-edge branching to it
// Map a loop header to blocks with back-edges to the loop header.
std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
for (auto back_edge : back_edges) {
uint32_t back_edge_block;
uint32_t header_block;
tie(back_edge_block, header_block) = back_edge;
if (!function.IsBlockType(header_block, kBlockTypeLoop)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Back-edges (" << _.getIdName(back_edge_block) << " -> "
<< _.getIdName(header_block)
<< ") can only be formed between a block and a loop header.";
}
loop_latch_blocks[header_block].insert(back_edge_block);
}
// Check the loop headers have exactly one back-edge branching to it
for (BasicBlock* loop_header : function.ordered_blocks()) {
if (!loop_header->reachable()) continue;
if (!loop_header->is_type(kBlockTypeLoop)) continue;
auto loop_header_id = loop_header->id();
auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
if (num_latch_blocks != 1) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Loop header " << _.getIdName(loop_header_id)
<< " is targeted by " << num_latch_blocks
<< " back-edge blocks but the standard requires exactly one";
}
}
// Check construct rules
for (const Construct& construct : function.constructs()) {
auto header = construct.entry_block();
auto merge = construct.exit_block();
if (header->reachable() && !merge) {
string construct_name, header_name, exit_name;
tie(construct_name, header_name, exit_name) =
ConstructNames(construct.type());
return _.diag(SPV_ERROR_INTERNAL)
<< "Construct " + construct_name + " with " + header_name + " " +
_.getIdName(header->id()) + " does not have a " +
exit_name + ". This may be a bug in the validator.";
}
// If the exit block is reachable then it's dominated by the
// header.
if (merge && merge->reachable()) {
if (!header->dominates(*merge)) {
return _.diag(SPV_ERROR_INVALID_CFG) << ConstructErrorString(
construct, _.getIdName(header->id()),
_.getIdName(merge->id()), "does not dominate");
}
// If it's really a merge block for a selection or loop, then it must be
// *strictly* dominated by the header.
if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
return _.diag(SPV_ERROR_INVALID_CFG) << ConstructErrorString(
construct, _.getIdName(header->id()),
_.getIdName(merge->id()), "does not strictly dominate");
}
}
// Check post-dominance for continue constructs. But dominance and
// post-dominance only make sense when the construct is reachable.
if (header->reachable() && construct.type() == ConstructType::kContinue) {
if (!merge->postdominates(*header)) {
return _.diag(SPV_ERROR_INVALID_CFG) << ConstructErrorString(
construct, _.getIdName(header->id()),
_.getIdName(merge->id()), "is not post dominated by");
}
}
// TODO(umar): an OpSwitch block dominates all its defined case
// constructs
// TODO(umar): each case construct has at most one branch to another
// case construct
// TODO(umar): each case construct is branched to by at most one other
// case construct
// TODO(umar): if Target T1 branches to Target T2, or if Target T1
// branches to the Default and the Default branches to Target T2, then
// T1 must immediately precede T2 in the list of the OpSwitch Target
// operands
}
return SPV_SUCCESS;
}
spv_result_t PerformCfgChecks(ValidationState_t& _) {
for (auto& function : _.functions()) {
// Check all referenced blocks are defined within a function
if (function.undefined_block_count() != 0) {
string undef_blocks("{");
for (auto undefined_block : function.undefined_blocks()) {
undef_blocks += _.getIdName(undefined_block) + " ";
}
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Block(s) " << undef_blocks << "\b}"
<< " are referenced but not defined in function "
<< _.getIdName(function.id());
}
// Set each block's immediate dominator and immediate postdominator,
// and find all back-edges.
//
// We want to analyze all the blocks in the function, even in degenerate
// control flow cases including unreachable blocks. So use the augmented
// CFG to ensure we cover all the blocks.
vector<const BasicBlock*> postorder;
vector<const BasicBlock*> postdom_postorder;
vector<pair<uint32_t, uint32_t>> back_edges;
auto ignore_block = [](cbb_ptr) {};
auto ignore_edge = [](cbb_ptr, cbb_ptr) {};
if (!function.ordered_blocks().empty()) {
/// calculate dominators
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.first_block(), function.AugmentedCFGSuccessorsFunction(),
ignore_block, [&](cbb_ptr b) { postorder.push_back(b); },
ignore_edge);
auto edges = spvtools::CFA<libspirv::BasicBlock>::CalculateDominators(
postorder, function.AugmentedCFGPredecessorsFunction());
for (auto edge : edges) {
edge.first->SetImmediateDominator(edge.second);
}
/// calculate post dominators
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.pseudo_exit_block(),
function.AugmentedCFGPredecessorsFunction(), ignore_block,
[&](cbb_ptr b) { postdom_postorder.push_back(b); }, ignore_edge);
auto postdom_edges = spvtools::CFA<libspirv::BasicBlock>::CalculateDominators(
postdom_postorder, function.AugmentedCFGSuccessorsFunction());
for (auto edge : postdom_edges) {
edge.first->SetImmediatePostDominator(edge.second);
}
/// calculate back edges.
spvtools::CFA<libspirv::BasicBlock>::DepthFirstTraversal(
function.pseudo_entry_block(),
function
.AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge(),
ignore_block, ignore_block, [&](cbb_ptr from, cbb_ptr to) {
back_edges.emplace_back(from->id(), to->id());
});
}
UpdateContinueConstructExitBlocks(function, back_edges);
auto& blocks = function.ordered_blocks();
if (!blocks.empty()) {
// Check if the order of blocks in the binary appear before the blocks
// they dominate
for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
if (auto idom = (*block)->immediate_dominator()) {
if (idom != function.pseudo_entry_block() &&
block == std::find(begin(blocks), block, idom)) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Block " << _.getIdName((*block)->id())
<< " appears in the binary before its dominator "
<< _.getIdName(idom->id());
}
}
}
// If we have structed control flow, check that no block has a control
// flow nesting depth larger than the limit.
if (_.HasCapability(SpvCapabilityShader)) {
const int control_flow_nesting_depth_limit =
_.options()->universal_limits_.max_control_flow_nesting_depth;
for (auto block = begin(blocks); block != end(blocks); ++block) {
if (function.GetBlockDepth(*block) >
control_flow_nesting_depth_limit) {
return _.diag(SPV_ERROR_INVALID_CFG)
<< "Maximum Control Flow nesting depth exceeded.";
}
}
}
}
/// Structured control flow checks are only required for shader capabilities
if (_.HasCapability(SpvCapabilityShader)) {
if (auto error = StructuredControlFlowChecks(_, function, back_edges))
return error;
}
}
return SPV_SUCCESS;
}
spv_result_t CfgPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
SpvOp opcode = static_cast<SpvOp>(inst->opcode);
switch (opcode) {
case SpvOpLabel:
if (auto error = _.current_function().RegisterBlock(inst->result_id))
return error;
break;
case SpvOpLoopMerge: {
uint32_t merge_block = inst->words[inst->operands[0].offset];
uint32_t continue_block = inst->words[inst->operands[1].offset];
CFG_ASSERT(MergeBlockAssert, merge_block);
if (auto error = _.current_function().RegisterLoopMerge(merge_block,
continue_block))
return error;
} break;
case SpvOpSelectionMerge: {
uint32_t merge_block = inst->words[inst->operands[0].offset];
CFG_ASSERT(MergeBlockAssert, merge_block);
if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
return error;
} break;
case SpvOpBranch: {
uint32_t target = inst->words[inst->operands[0].offset];
CFG_ASSERT(FirstBlockAssert, target);
_.current_function().RegisterBlockEnd({target}, opcode);
} break;
case SpvOpBranchConditional: {
uint32_t tlabel = inst->words[inst->operands[1].offset];
uint32_t flabel = inst->words[inst->operands[2].offset];
CFG_ASSERT(FirstBlockAssert, tlabel);
CFG_ASSERT(FirstBlockAssert, flabel);
_.current_function().RegisterBlockEnd({tlabel, flabel}, opcode);
} break;
case SpvOpSwitch: {
vector<uint32_t> cases;
for (int i = 1; i < inst->num_operands; i += 2) {
uint32_t target = inst->words[inst->operands[i].offset];
CFG_ASSERT(FirstBlockAssert, target);
cases.push_back(target);
}
_.current_function().RegisterBlockEnd({cases}, opcode);
} break;
case SpvOpKill:
case SpvOpReturn:
case SpvOpReturnValue:
case SpvOpUnreachable:
_.current_function().RegisterBlockEnd(vector<uint32_t>(), opcode);
break;
default:
break;
}
return SPV_SUCCESS;
}
} // namespace libspirv
|