summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/r600/compute_memory_pool.c
blob: 2f0d4c86c99af704783a1eb5d9064a8ddb4d1a10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *      Adam Rak <adam.rak@streamnovation.com>
 */

#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "util/u_blitter.h"
#include "util/u_double_list.h"
#include "util/u_transfer.h"
#include "util/u_surface.h"
#include "util/u_pack_color.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_framebuffer.h"
#include "r600_shader.h"
#include "r600_pipe.h"
#include "r600_formats.h"
#include "compute_memory_pool.h"
#include "evergreen_compute.h"
#include "evergreen_compute_internal.h"
#include <inttypes.h>

/**
 * Creates a new pool
 */
struct compute_memory_pool* compute_memory_pool_new(
	struct r600_screen * rscreen)
{
	struct compute_memory_pool* pool = (struct compute_memory_pool*)
				CALLOC(sizeof(struct compute_memory_pool), 1);

	COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");

	pool->screen = rscreen;
	return pool;
}

static void compute_memory_pool_init(struct compute_memory_pool * pool,
	unsigned initial_size_in_dw)
{

	COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %ld\n",
		initial_size_in_dw);

	pool->shadow = (uint32_t*)CALLOC(initial_size_in_dw, 4);
	pool->next_id = 1;
	pool->size_in_dw = initial_size_in_dw;
	pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
							pool->size_in_dw * 4);
}

/**
 * Frees all stuff in the pool and the pool struct itself too
 */
void compute_memory_pool_delete(struct compute_memory_pool* pool)
{
	COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
	free(pool->shadow);
	if (pool->bo) {
		pool->screen->b.b.resource_destroy((struct pipe_screen *)
			pool->screen, (struct pipe_resource *)pool->bo);
	}
	free(pool);
}

/**
 * Searches for an empty space in the pool, return with the pointer to the
 * allocatable space in the pool, returns -1 on failure.
 */
int64_t compute_memory_prealloc_chunk(
	struct compute_memory_pool* pool,
	int64_t size_in_dw)
{
	struct compute_memory_item *item;

	int last_end = 0;

	assert(size_in_dw <= pool->size_in_dw);

	COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %ld\n",
		size_in_dw);

	for (item = pool->item_list; item; item = item->next) {
		if (item->start_in_dw > -1) {
			if (item->start_in_dw-last_end > size_in_dw) {
				return last_end;
			}

			last_end = item->start_in_dw + item->size_in_dw;
			last_end += (1024 - last_end % 1024);
		}
	}

	if (pool->size_in_dw - last_end < size_in_dw) {
		return -1;
	}

	return last_end;
}

/**
 *  Search for the chunk where we can link our new chunk after it.
 */
struct compute_memory_item* compute_memory_postalloc_chunk(
	struct compute_memory_pool* pool,
	int64_t start_in_dw)
{
	struct compute_memory_item* item;

	COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %ld\n",
		start_in_dw);

	/* Check if we can insert it in the front of the list */
	if (pool->item_list && pool->item_list->start_in_dw > start_in_dw) {
		return NULL;
	}

	for (item = pool->item_list; item; item = item->next) {
		if (item->next) {
			if (item->start_in_dw < start_in_dw
				&& item->next->start_in_dw > start_in_dw) {
				return item;
			}
		}
		else {
			/* end of chain */
			assert(item->start_in_dw < start_in_dw);
			return item;
		}
	}

	assert(0 && "unreachable");
	return NULL;
}

/**
 * Reallocates pool, conserves data
 */
void compute_memory_grow_pool(struct compute_memory_pool* pool,
	struct pipe_context * pipe, int new_size_in_dw)
{
	COMPUTE_DBG(pool->screen, "* compute_memory_grow_pool() "
		"new_size_in_dw = %d (%d bytes)\n",
		new_size_in_dw, new_size_in_dw * 4);

	assert(new_size_in_dw >= pool->size_in_dw);

	if (!pool->bo) {
		compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
	} else {
		new_size_in_dw += 1024 - (new_size_in_dw % 1024);

		COMPUTE_DBG(pool->screen, "  Aligned size = %d (%d bytes)\n",
			new_size_in_dw, new_size_in_dw * 4);

		compute_memory_shadow(pool, pipe, 1);
		pool->shadow = realloc(pool->shadow, new_size_in_dw*4);
		pool->size_in_dw = new_size_in_dw;
		pool->screen->b.b.resource_destroy(
			(struct pipe_screen *)pool->screen,
			(struct pipe_resource *)pool->bo);
		pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
							pool->screen,
							pool->size_in_dw * 4);
		compute_memory_shadow(pool, pipe, 0);
	}
}

/**
 * Copy pool from device to host, or host to device.
 */
void compute_memory_shadow(struct compute_memory_pool* pool,
	struct pipe_context * pipe, int device_to_host)
{
	struct compute_memory_item chunk;

	COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
		device_to_host);

	chunk.id = 0;
	chunk.start_in_dw = 0;
	chunk.size_in_dw = pool->size_in_dw;
	chunk.prev = chunk.next = NULL;
	compute_memory_transfer(pool, pipe, device_to_host, &chunk,
				pool->shadow, 0, pool->size_in_dw*4);
}

/**
 * Allocates pending allocations in the pool
 */
void compute_memory_finalize_pending(struct compute_memory_pool* pool,
	struct pipe_context * pipe)
{
	struct compute_memory_item *pending_list = NULL, *end_p = NULL;
	struct compute_memory_item *item, *next;

	int64_t allocated = 0;
	int64_t unallocated = 0;

	int64_t start_in_dw = 0;

	COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");

	for (item = pool->item_list; item; item = item->next) {
		COMPUTE_DBG(pool->screen, "  + list: offset = %i id = %i size = %i "
			"(%i bytes)\n",item->start_in_dw, item->id,
			item->size_in_dw, item->size_in_dw * 4);
	}

	/* Search through the list of memory items in the pool */
	for (item = pool->item_list; item; item = next) {
		next = item->next;

		/* Check if the item is pending. */
		if (item->start_in_dw == -1) {
			/* It is pending, so add it to the pending_list... */
			if (end_p) {
				end_p->next = item;
			}
			else {
				pending_list = item;
			}

			/* ... and then remove it from the item list. */
			if (item->prev) {
				item->prev->next = next;
			}
			else {
				pool->item_list = next;
			}

			if (next) {
				next->prev = item->prev;
			}

			/* This sequence makes the item be at the end of the list */
			item->prev = end_p;
			item->next = NULL;
			end_p = item;

			/* Update the amount of space we will need to allocate. */
			unallocated += item->size_in_dw+1024;
		}
		else {
			/* The item is not pendng, so update the amount of space
			 * that has already been allocated. */
			allocated += item->size_in_dw;
		}
	}

	/* If we require more space than the size of the pool, then grow the
	 * pool.
	 *
	 * XXX: I'm pretty sure this won't work.  Imagine this scenario:
	 *
	 * Offset Item Size
	 *   0    A    50
	 * 200    B    50
	 * 400    C    50
	 *
	 * Total size = 450
	 * Allocated size = 150
	 * Pending Item D Size = 200
	 *
	 * In this case, there are 300 units of free space in the pool, but
	 * they aren't contiguous, so it will be impossible to allocate Item D.
	 */
	if (pool->size_in_dw < allocated+unallocated) {
		compute_memory_grow_pool(pool, pipe, allocated+unallocated);
	}

	/* Loop through all the pending items, allocate space for them and
	 * add them back to the item_list. */
	for (item = pending_list; item; item = next) {
		next = item->next;

		/* Search for free space in the pool for this item. */
		while ((start_in_dw=compute_memory_prealloc_chunk(pool,
						item->size_in_dw)) == -1) {
			int64_t need = item->size_in_dw+2048 -
						(pool->size_in_dw - allocated);

			need += 1024 - (need % 1024);

			if (need > 0) {
				compute_memory_grow_pool(pool,
						pipe,
						pool->size_in_dw + need);
			}
			else {
				need = pool->size_in_dw / 10;
				need += 1024 - (need % 1024);
				compute_memory_grow_pool(pool,
						pipe,
						pool->size_in_dw + need);
			}
		}
		COMPUTE_DBG(pool->screen, "  + Found space for Item %p id = %u "
			"start_in_dw = %u (%u bytes) size_in_dw = %u (%u bytes)\n",
			item, item->id, start_in_dw, start_in_dw * 4,
			item->size_in_dw, item->size_in_dw * 4);

		item->start_in_dw = start_in_dw;
		item->next = NULL;
		item->prev = NULL;

		if (pool->item_list) {
			struct compute_memory_item *pos;

			pos = compute_memory_postalloc_chunk(pool, start_in_dw);
			if (pos) {
				item->prev = pos;
				item->next = pos->next;
				pos->next = item;
				if (item->next) {
					item->next->prev = item;
				}
			} else {
				/* Add item to the front of the list */
				item->next = pool->item_list;
				item->prev = pool->item_list->prev;
				pool->item_list->prev = item;
				pool->item_list = item;
			}
		}
		else {
			pool->item_list = item;
		}

		allocated += item->size_in_dw;
	}
}


void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
{
	struct compute_memory_item *item, *next;

	COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %ld \n", id);

	for (item = pool->item_list; item; item = next) {
		next = item->next;

		if (item->id == id) {
			if (item->prev) {
				item->prev->next = item->next;
			}
			else {
				pool->item_list = item->next;
			}

			if (item->next) {
				item->next->prev = item->prev;
			}

			free(item);

			return;
		}
	}

	fprintf(stderr, "Internal error, invalid id %"PRIi64" "
		"for compute_memory_free\n", id);

	assert(0 && "error");
}

/**
 * Creates pending allocations
 */
struct compute_memory_item* compute_memory_alloc(
	struct compute_memory_pool* pool,
	int64_t size_in_dw)
{
	struct compute_memory_item *new_item = NULL, *last_item = NULL;

	COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %ld (%ld bytes)\n",
			size_in_dw, 4 * size_in_dw);

	new_item = (struct compute_memory_item *)
				CALLOC(sizeof(struct compute_memory_item), 1);
	new_item->size_in_dw = size_in_dw;
	new_item->start_in_dw = -1; /* mark pending */
	new_item->id = pool->next_id++;
	new_item->pool = pool;

	if (pool->item_list) {
		for (last_item = pool->item_list; last_item->next;
						last_item = last_item->next);

		last_item->next = new_item;
		new_item->prev = last_item;
	}
	else {
		pool->item_list = new_item;
	}

	COMPUTE_DBG(pool->screen, "  + Adding item %p id = %u size = %u (%u bytes)\n",
			new_item, new_item->id, new_item->size_in_dw,
			new_item->size_in_dw * 4);
	return new_item;
}

/**
 * Transfer data host<->device, offset and size is in bytes
 */
void compute_memory_transfer(
	struct compute_memory_pool* pool,
	struct pipe_context * pipe,
	int device_to_host,
	struct compute_memory_item* chunk,
	void* data,
	int offset_in_chunk,
	int size)
{
	int64_t aligned_size = pool->size_in_dw;
	struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
	int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;

	struct pipe_transfer *xfer;
	uint32_t *map;

	assert(gart);

	COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
		"offset_in_chunk = %d, size = %d\n", device_to_host,
		offset_in_chunk, size);

	if (device_to_host) {
		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
			&(struct pipe_box) { .width = aligned_size * 4,
			.height = 1, .depth = 1 }, &xfer);
                assert(xfer);
		assert(map);
		memcpy(data, map + internal_offset, size);
		pipe->transfer_unmap(pipe, xfer);
	} else {
		map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
			&(struct pipe_box) { .width = aligned_size * 4,
			.height = 1, .depth = 1 }, &xfer);
		assert(xfer);
		assert(map);
		memcpy(map + internal_offset, data, size);
		pipe->transfer_unmap(pipe, xfer);
	}
}

/**
 * Transfer data between chunk<->data, it is for VRAM<->GART transfers
 */
void compute_memory_transfer_direct(
	struct compute_memory_pool* pool,
	int chunk_to_data,
	struct compute_memory_item* chunk,
	struct r600_resource* data,
	int offset_in_chunk,
	int offset_in_data,
	int size)
{
	///TODO: DMA
}