1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements dead code elimination and basic block merging, along
// with a collection of other peephole control flow optimizations. For example:
//
// * Removes basic blocks with no predecessors.
// * Merges a basic block into its predecessor if there is only one and the
// predecessor only has one successor.
// * Eliminates PHI nodes for basic blocks with a single predecessor.
// * Eliminates a basic block that only contains an unconditional branch.
// * Changes invoke instructions to nounwind functions to be calls.
// * Change things like "if (x) if (y)" into "if (x&y)".
// * etc..
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OptBisect.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
#define DEBUG_TYPE "simplifycfg"
static cl::opt<unsigned>
UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
cl::desc("Control the number of bonus instructions (default = 1)"));
STATISTIC(NumSimpl, "Number of blocks simplified");
/// If we have more than one empty (other than phi node) return blocks,
/// merge them together to promote recursive block merging.
static bool mergeEmptyReturnBlocks(Function &F) {
bool Changed = false;
BasicBlock *RetBlock = nullptr;
// Scan all the blocks in the function, looking for empty return blocks.
for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
BasicBlock &BB = *BBI++;
// Only look at return blocks.
ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
if (!Ret) continue;
// Only look at the block if it is empty or the only other thing in it is a
// single PHI node that is the operand to the return.
if (Ret != &BB.front()) {
// Check for something else in the block.
BasicBlock::iterator I(Ret);
--I;
// Skip over debug info.
while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
--I;
if (!isa<DbgInfoIntrinsic>(I) &&
(!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 ||
Ret->getOperand(0) != &*I))
continue;
}
// If this is the first returning block, remember it and keep going.
if (!RetBlock) {
RetBlock = &BB;
continue;
}
// Otherwise, we found a duplicate return block. Merge the two.
Changed = true;
// Case when there is no input to the return or when the returned values
// agree is trivial. Note that they can't agree if there are phis in the
// blocks.
if (Ret->getNumOperands() == 0 ||
Ret->getOperand(0) ==
cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
BB.replaceAllUsesWith(RetBlock);
BB.eraseFromParent();
continue;
}
// If the canonical return block has no PHI node, create one now.
PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
if (!RetBlockPHI) {
Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
std::distance(PB, PE), "merge",
&RetBlock->front());
for (pred_iterator PI = PB; PI != PE; ++PI)
RetBlockPHI->addIncoming(InVal, *PI);
RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
}
// Turn BB into a block that just unconditionally branches to the return
// block. This handles the case when the two return blocks have a common
// predecessor but that return different things.
RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
BB.getTerminator()->eraseFromParent();
BranchInst::Create(RetBlock, &BB);
}
return Changed;
}
/// Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
AssumptionCache *AC,
unsigned BonusInstThreshold) {
bool Changed = false;
bool LocalChange = true;
SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 32> Edges;
FindFunctionBackedges(F, Edges);
SmallPtrSet<BasicBlock *, 16> LoopHeaders;
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
LoopHeaders.insert(const_cast<BasicBlock *>(Edges[i].second));
while (LocalChange) {
LocalChange = false;
// Loop over all of the basic blocks and remove them if they are unneeded.
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
if (SimplifyCFG(&*BBIt++, TTI, BonusInstThreshold, AC, &LoopHeaders)) {
LocalChange = true;
++NumSimpl;
}
}
Changed |= LocalChange;
}
return Changed;
}
static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
AssumptionCache *AC, int BonusInstThreshold) {
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
// iterativelySimplifyCFG can (rarely) make some loops dead. If this happens,
// removeUnreachableBlocks is needed to nuke them, which means we should
// iterate between the two optimizations. We structure the code like this to
// avoid rerunning iterativelySimplifyCFG if the second pass of
// removeUnreachableBlocks doesn't do anything.
if (!removeUnreachableBlocks(F))
return true;
do {
EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
return true;
}
SimplifyCFGPass::SimplifyCFGPass()
: BonusInstThreshold(UserBonusInstThreshold) {}
SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold)
: BonusInstThreshold(BonusInstThreshold) {}
PreservedAnalyses SimplifyCFGPass::run(Function &F,
AnalysisManager<Function> &AM) {
if (skipPassForFunction(name(), F))
return PreservedAnalyses::all();
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
if (simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
namespace {
struct CFGSimplifyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
unsigned BonusInstThreshold;
std::function<bool(const Function &)> PredicateFtor;
CFGSimplifyPass(int T = -1,
std::function<bool(const Function &)> Ftor = nullptr)
: FunctionPass(ID), PredicateFtor(Ftor) {
BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T);
initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (PredicateFtor && !PredicateFtor(F))
return false;
if (skipFunction(F))
return false;
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
}
char CFGSimplifyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
false)
// Public interface to the CFGSimplification pass
FunctionPass *
llvm::createCFGSimplificationPass(int Threshold,
std::function<bool(const Function &)> Ftor) {
return new CFGSimplifyPass(Threshold, Ftor);
}
|